918
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Free and glycosidically bound aroma compounds in fruit: biosynthesis, transformation, and practical control

ORCID Icon & ORCID Icon

References

  • Angelino, D., J. Godos, F. Ghelfi, M. Tieri, L. Titta, A. Lafranconi, S. Marventano, E. Alonzo, A. Gambera, S. Sciacca, et al. 2019. Fruit and vegetable consumption and health outcomes: An umbrella review of observational studies. International Journal of Food Sciences and Nutrition 70 (6):652–67.
  • Aprea, E., F. Biasioli, and F. Gasperi. 2015. Volatile compounds of raspberry fruit: From analytical methods to biological role and sensory impact. Molecules (Basel, Switzerland) 20 (2):2445–74. doi: 10.3390/molecules20022445.
  • Budić-Leto, I., I. Humar, J. Gajdoš Kljusurić, G. Zdunić, and E. Zlatić. 2020. Free and bound volatile aroma compounds of ´Maraštiná grapes as influenced by dehydration techniques. Applied Sciences 10 (24):8928. doi: 10.3390/app10248928.
  • Buttery, R. G., and G. R. Takeoka. 2004. Some unusual minor volatile components of tomato. Journal of Agricultural and Food Chemistry 52 (20):6264–6.
  • Buttery, R. G., R. M. Seifert, D. G. Guadagni, and L. C. Ling. 1971. Characterization of additional volatile components of tomato. Journal of Agricultural and Food Chemistry 19 (3):524–9. doi: 10.1021/jf60175a011.
  • Caffrey, A. J., L. A. Lerno, J. Zweigenbaum, and S. E. Ebeler. 2020. Direct analysis of glycosidic aroma precursors containing multiple aglycone classes in Vitis vinifera berries. Journal of Agricultural and Food Chemistry 68 (12):3817–33.
  • Cai, C., C.-J. Xu, X. Li, I. Ferguson, and K.-S. Chen. 2006. Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharvest Biology and Technology 40 (2):163–9. doi: 10.1016/j.postharvbio.2005.12.009.
  • Carlomagno, A., A. Schubert, and A. Ferrandino. 2016. Screening and evolution of volatile compounds during ripening of ‘Nebbiolo,’ ‘Dolcetto’ and ‘Barbera’ (Vitis vinifera L.) neutral grapes by SBSE–GC/MS. European Food Research and Technology 242 (8):1221–33. doi: 10.1007/s00217-015-2626-4.
  • Chandra, A., and M. G. Nair. 1993. Quantification of benzaldehyde and its precursors in Montmorency cherry (Prunus cerasus L.) kernels. Phytochemical Analysis 4 (3):120–3. doi: 10.1002/pca.2800040308.
  • Chen, J., J. Lu, Z. He, F. Zhang, S. Zhang, and H. Zhang. 2020. Investigations into the production of volatile compounds in Korla fragrant pears (Pyrus sinkiangensis Yu). Food Chemistry 302:125337. doi: 10.1016/j.foodchem.2019.125337.
  • Chen, L., X. Zhang, Q. Jin, L. Yang, J. Li, and F. Chen. 2015. Free and bound volatile chemicals in mulberry (Morus atropurpurea Roxb.). Journal of Food Science 80 (5):C975–982.
  • Chen, X., B. Fedrizzi, P. A. Kilmartin, and S.-Y. Quek. 2021a. Development of volatile organic compounds and their glycosylated precursors in tamarillo (Solanum betaceum Cav.) during fruit ripening: A prediction of biochemical pathway. Food Chemistry 339:128046. doi: 10.1016/j.foodchem.2020.128046.
  • Chen, X., B. Fedrizzi, P. A. Kilmartin, and S.-Y. Quek. 2021b. Free and glycosidic volatiles in tamarillo (Solanum betaceum Cav. syn. Cyphomandra betacea Sendt.) juices prepared from three cultivars grown in New Zealand. Journal of Agricultural and Food Chemistry 69 (15):4518–32.
  • Chen, X., P. A. Kilmartin, B. Fedrizzi, and S.-Y. Quek. 2021c. Elucidation of endogenous aroma compounds in tamarillo (Solanum betaceum) using a molecular sensory approach. Journal of Agricultural and Food Chemistry 69 (32):9362–75.
  • Chen, X., S.-Y. Quek, B. Fedrizzi, and P. A. Kilmartin. 2020. Characterization of free and glycosidically bound volatile compounds from tamarillo (Solanum betaceum Cav.) with considerations on hydrolysis strategies and incubation time. LWT 124:109178. doi: 10.1016/j.lwt.2020.109178.
  • Contreras, C., and R. Beaudry. 2013. Lipoxygenase-associated apple volatiles and their relationship with aroma perception during ripening. Postharvest Biology and Technology 82:28–38. doi: 10.1016/j.postharvbio.2013.02.006.
  • Cui, J., T. Katsuno, K. Totsuka, T. Ohnishi, H. Takemoto, N. Mase, M. Toda, T. Narumi, K. Sato, T. Matsuo, et al. 2016. Characteristic fluctuations in glycosidically bound volatiles during tea processing and identification of their unstable derivatives. Journal of Agricultural and Food Chemistry 64 (5):1151–7.
  • Dal Cin, V., D. M. Tieman, T. Tohge, R. McQuinn, R. C. de Vos, S. Osorio, E. A. Schmelz, M. G. Taylor, M. T. Smits-Kroon, R. C. Schuurink, et al. 2011. Identification of genes in the phenylalanine metabolic pathway by ectopic expression of a MYB transcription factor in tomato fruit. The Plant Cell 23 (7):2738–53.
  • Davidovich-Rikanati, R., E. Lewinsohn, E. Bar, Y. Iijima, E. Pichersky, and Y. Sitrit. 2008. Overexpression of the lemon basil alpha-zingiberene synthase gene increases both mono- and sesquiterpene contents in tomato fruit. The Plant Journal: For Cell and Molecular Biology 56 (2):228–38.
  • Davidovich-Rikanati, R., Y. Sitrit, Y. Tadmor, Y. Iijima, N. Bilenko, E. Bar, B. Carmona, E. Fallik, N. Dudai, J. E. Simon, et al. 2007. Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nature Biotechnology 25 (8):899–901.
  • Degenhardt, J., T. G. Kollner, and J. Gershenzon. 2009. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry 70 (15-16):1621–37.
  • Dellacassa, E., O. Trenchs, L. Farina, F. Debernardis, G. Perez, E. Boido, and F. Carrau. 2017. Pineapple (Ananas comosus L. Merr.) wine production in Angola: Characterization of volatile aroma compounds and yeast native flora. International Journal of Food Microbiology 241:161–7. doi: 10.1016/j.ijfoodmicro.2016.10.014.
  • Dincer, C., I. Tontul, and A. Topuz. 2016. A comparative study of black mulberry juice concentrates by thermal evaporation and osmotic distillation as influenced by storage. Innovative Food Science & Emerging Technologies 38:57–64. doi: 10.1016/j.ifset.2016.09.012.
  • Durant, A. A., C. Rodríguez, A. I. Santana, C. Herrero, J. C. Rodríguez, and M. P. Gupta. 2013. Analysis of volatile compounds from Solanum betaceum Cav. fruits from Panama by head-space micro extraction. Records of Natural Products 7 (1):15–26.
  • Dziadas, M., and H. H. Jeleń. 2016. Comparison of enzymatic and acid hydrolysis of bound flavor compounds in model system and grapes. Food Chemistry 190:412–8.
  • Fang, Y., and M. C. Qian. 2012. Accumulation of C13-norisoprenoids and other aroma volatiles in glycoconjugate form during the development of Pinot noir grapes. In Flavor Chemistry of Wine and Other Alcoholic Beverages, ed. M. C. Qian, and T. H. Shellhammer, 101–15. American Chemical Society.
  • Fu, X., S. Cheng, Y. Zhang, B. Du, C. Feng, Y. Zhou, X. Mei, Y. Jiang, X. Duan, and Z. Yang. 2017. Differential responses of four biosynthetic pathways of aroma compounds in postharvest strawberry (Fragariaxananassa Duch.) under interaction of light and temperature. Food Chemistry 221:356–64.
  • Gachon, C. M., M. Langlois-Meurinne, and P. Saindrenan. 2005. Plant secondary metabolism glycosyltransferases: The emerging functional analysis. Trends in Plant Science 10 (11):542–9.
  • Garcia, C. V., S.-Y. Quek, R. J. Stevenson, and R. A. Winz. 2012a. Kiwifruit flavor: A review. Trends in Food Science & Technology 24 (2):82–91. doi: 10.1016/j.tifs.2011.08.012.
  • Garcia, C. V., S.-Y. Quek, R. J. Stevenson, and R. A. Winz. 2011. Characterization of the bound volatile extract from baby kiwi (Actinidia arguta). Journal of Agricultural and Food Chemistry 59 (15):8358–65.
  • Garcia, C. V., S. Y. Quek, R. J. Stevenson, and R. A. Winz. 2012b. Characterisation of bound volatile compounds of a low flavour kiwifruit species: Actinidia eriantha. Food Chemistry 134 (2):655–61. doi: 10.1016/j.foodchem.2012.02.148.
  • Garcia, C. V., R. J. Stevenson, R. G. Atkinson, R. A. Winz, and S.-Y. Quek. 2013. Changes in the bound aroma profiles of ‘Hayward’ and ‘Hort16A’ kiwifruit (Actinidia spp.) during ripening and GC-olfactometry analysis. Food Chemistry 137 (1-4):45–54. doi: 10.1016/j.foodchem.2012.10.002.
  • Genovese, A., S. A. Lamorte, A. Gambuti, and L. Moio. 2013. Aroma of Aglianico and Uva di Troia grapes by aromatic series. Food Research International 53 (1):15–23. doi: 10.1016/j.foodres.2013.03.051.
  • Ghaste, M., L. Narduzzi, S. Carlin, U. Vrhovsek, V. Shulaev, and F. Mattivi. 2015. Chemical composition of volatile aroma metabolites and their glycosylated precursors that can uniquely differentiate individual grape cultivars. Food Chemistry 188:309–19.
  • Göğüş, F., A. C. Lewis, and M. Z. Özel. 2011. Analysis of black mulberry volatiles using GCxGC-TOF/MS. International Journal of Food Properties 14 (1):29–36. doi: 10.1080/10942910903125276.
  • Gómez García-Carpintero, E., E. Sánchez-Palomo, M. A. Gómez Gallego, and M. A. González-Viñas. 2012. Free and bound volatile compounds as markers of aromatic typicalness of Moravia Dulce, Rojal and Tortosí red wines. Food Chemistry 131 (1):90–8. doi: 10.1016/j.foodchem.2011.08.035.
  • Gonda, I., R. Davidovich-Rikanati, E. Bar, S. Lev, P. Jhirad, Y. Meshulam, G. Wissotsky, V. Portnoy, J. Burger, A. A. Schaffer, et al. 2018. Differential metabolism of L-phenylalanine in the formation of aromatic volatiles in melon (Cucumis melo L.) fruit. Phytochemistry 148:122–31.
  • Granell, A, and J. L. Rambla. 2013. Biosynthesis of volatile compounds. In The molecular biology and biochemistry of fruit ripening, ed. G. B. Seymour, M. Poole, J. J. Giovannoni, and G. Tucker, 135–55. New Jersey: John Wiley & Sons, Inc.
  • Hampel, D., A. L. Robinson, A. J. Johnson, and S. E. Ebeler. 2014. Direct hydrolysis and analysis of glycosidically bound aroma compounds in grapes and wines: Comparison of hydrolysis conditions and sample preparation methods. Australian Journal of Grape and Wine Research 20 (3):361–77. doi: 10.1111/ajgw.12087.
  • Hartl, K., F. C. Huang, A. P. Giri, K. Franz-Oberdorf, J. Frotscher, Y. Shao, T. Hoffmann, and W. Schwab. 2017. Glucosylation of smoke-derived volatiles in grapevine (Vitis vinifera) is catalyzed by a promiscuous resveratrol/guaiacol glucosyltransferase. Journal of Agricultural and Food Chemistry 65 (28):5681–9.
  • Hayasaka, Y., G. A. Baldock, M. Parker, K. H. Pardon, C. A. Black, M. J. Herderich, and D. W. Jeffery. 2010. Glycosylation of smoke-derived volatile phenols in grapes as a consequence of grapevine exposure to bushfire smoke. Journal of Agricultural and Food Chemistry 58 (20):10989–98.
  • Hemmerlin, A., J. L. Harwood, and T. J. Bach. 2012. A raison d’etre for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Progress in Lipid Research 51 (2):95–148.
  • Herderich, M., W. Feser, and P. Schreier. 1992. Vomifoliol 9-O-beta-D-glucopyranosyl-4-O-beta-D-xylopyranosyl-6-O-beta-D- glucopyranoside: a trisaccharide glycoside from apple fruit . Phytochemistry 31 (3):895–7. doi: 10.1016/0031-9422(92)80035-D.
  • Herrmann, A. 2007. Controlled release of volatiles under mild reaction conditions: From nature to everyday products. Angewandte Chemie (International ed. in English) 46 (31):5836–63. doi: 10.1002/anie.200700264.
  • Hjelmeland, A. K., and S. E. Ebeler. 2015. Glycosidically bound volatile aroma compounds in grapes and wine: A review. American Journal of Enology and Viticulture 66 (1):1–11. doi: 10.5344/ajev.2014.14104.
  • Hu, K., X.-L. Zhu, H. Mu, Y. Ma, N. Ullah, and Y.-S. Tao. 2016. A novel extracellular glycosidase activity from Rhodotorula mucilaginosa: Its application potential in wine aroma enhancement. Letters in Applied Microbiology 62 (2):169–76.
  • Jian, W., H. Cao, S. Yuan, Y. Liu, J. Lu, W. Lu, N. Li, J. Wang, J. Zou, N. Tang, et al. 2019. SlMYB75, an MYB-type transcription factor, promotes anthocyanin accumulation and enhances volatile aroma production in tomato fruits. Horticulture Research 6:22.
  • Jorgensen, M. E., H. H. Nour-Eldin, and B. A. Halkier. 2015. Transport of defense compounds from source to sink: Lessons learned from glucosinolates. Trends in Plant Science 20 (8):508–14.
  • Jung, K., O. Fastowski, I. Poplacean, and K. H. Engel. 2017. Analysis and sensory evaluation of volatile constituents of fresh blackcurrant (Ribes nigrum L.) Fruits. Journal of Agricultural and Food Chemistry 65 (43):9475–87.
  • Klein, D., B. Fink, B. Arold, W. Eisenreich, and W. Schwab. 2007. Functional characterization of enone oxidoreductases from strawberry and tomato fruit. Journal of Agricultural and Food Chemistry 55 (16):6705–11.
  • Koeduka, T., E. Fridman, D. R. Gang, D. G. Vassão, B. L. Jackson, C. M. Kish, I. Orlova, S. M. Spassova, N. G. Lewis, J. P. Noel, et al. 2006. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proceedings of the National Academy of Sciences 103 (26):10128–33. doi: 10.1073/pnas.0603732103.
  • Lan, Y. B., X. Qian, Z. J. Yang, X. F. Xiang, W. X. Yang, T. Liu, B. Q. Zhu, Q. H. Pan, and C. Q. Duan. 2016. Striking changes in volatile profiles at sub-zero temperatures during over-ripening of ‘Beibinghong’ grapes in Northeastern China. Food Chemistry 212:172–82.
  • Lan, Y. B., X. F. Xiang, W. X. Yang, B. Q. Zhu, H. T. Pu, and C. Q. Duan. 2020. Characterization of free and glycosidically bound volatile compounds, fatty acids, and amino acids in Vitis davidii Foex grape species native to China. Food Science and Biotechnology 29 (12):1641–53.
  • Lasekan, O. 2017. Identification of the aroma compounds in Vitex doniana sweet: Free and bound odorants. Chemistry Central Journal 11:19.
  • Le Roy, J., B. Huss, A. Creach, S. Hawkins, and G. Neutelings. 2016. Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants. Frontiers in Plant Science 7:735.
  • Li, X., D. Tieman, Z. Liu, K. Chen, and H. J. Klee. 2020. Identification of a lipase gene with a role in tomato fruit short-chain fatty acid-derived flavor volatiles by genome-wide association. The Plant Journal: For Cell and Molecular Biology 104 (3):631–44. doi: 10.1111/tpj.14951.
  • Liang, Z., Z. Fang, A. Pai, J. Luo, R. Gan, Y. Gao, J. Lu, and P. Zhang. 2022. Glycosidically bound aroma precursors in fruits: A comprehensive review. Critical Reviews in Food Science and Nutrition 62 (1):215–243.
  • Liu, J., X. L. Zhu, N. Ullah, and Y. S. Tao. 2017. Aroma glycosides in grapes and wine. Journal of Food Science 82 (2):248–59.
  • Liu, Y., S. Wang, J. Ren, G. Yuan, Y. Li, B. Zhang, and B. Zhu. 2018. Characterization of free and bound volatile compounds in six Ribes nigrum L. blackcurrant cultivars. Food Research International (Ottawa, Ont.) 103:301–15.
  • Malowicki, S. M., R. Martin, and M. C. Qian. 2008. Volatile composition in raspberry cultivars grown in the Pacific Northwest determined by stir bar sorptive extraction-gas chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry 56 (11):4128–33.
  • Marsol-Vall, A., M. Kortesniemi, S. T. Karhu, H. Kallio, and B. Yang. 2018. Profiles of volatile compounds in blackcurrant (Ribes nigrum) cultivars with a special focus on the influence of growth latitude and weather conditions. Journal of Agricultural and Food Chemistry 66 (28):7485–95.
  • Matsui, K. 2006. Green leaf volatiles: Hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology 9 (3):274–80.
  • Mayr, C. M., M. Parker, G. A. Baldock, C. A. Black, K. H. Pardon, P. O. Williamson, M. J. Herderich, and I. L. Francis. 2014. Determination of the importance of in-mouth release of volatile phenol glycoconjugates to the flavor of smoke-tainted wines. Journal of Agricultural and Food Chemistry 62 (11):2327–36. doi: 10.1021/jf405327s.
  • Munoz-Gonzalez, C., C. Cueva, M. Angeles Pozo-Bayon, and M. V. Moreno-Arribas. 2015. Ability of human oral microbiota to produce wine odorant aglycones from odorless grape glycosidic aroma precursors. Food Chemistry 187:112–9. doi: 10.1016/j.foodchem.2015.04.068.
  • Nagegowda, D. A. 2010. Plant volatile terpenoid metabolism: Biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Letters 584 (14):2965–73.
  • Noguerol-Pato, R., M. Gonzalez-Alvarez, C. Gonzalez-Barreiro, B. Cancho-Grande, and J. Simal-Gandara. 2013. Evolution of the aromatic profile in Garnacha Tintorera grapes during raisining and comparison with that of the naturally sweet wine obtained. Food Chemistry 139 (1-4):1052–61.
  • Ohgami, S., E. Ono, M. Horikawa, J. Murata, K. Totsuka, H. Toyonaga, Y. Ohba, H. Dohra, T. Asai, K. Matsui, et al. 2015. Volatile glycosylation in tea plants: Sequential glycosylations for the biosynthesis of aroma β-primeverosides are catalyzed by two Camellia sinensis glycosyltransferases . Plant Physiology 168 (2):464–77. doi: 10.1104/pp.15.00403.
  • Ortiz-Serrano, P., and J. V. Gil. 2007. Quantitation of free and glycosidically bound volatiles in and effect of glycosidase addition on three tomato varieties (Solanum lycopersicum L.). Journal of Agricultural and Food Chemistry 55 (22):9170–6.
  • Ortiz-Serrano, P., and J. V. Gil. 2010. Quantitative comparison of free and bound volatiles of two commercial tomato cultivars (Solanum lycopersicum L.) during ripening. Journal of Agricultural and Food Chemistry 58 (2):1106–14.
  • Özkaya, O., K. Şen, C. Aubert, Ö. Dündar, and Z. Gunata. 2018. Characterization of the free and glycosidically bound aroma potential of two important tomato cultivars grown in Turkey. Journal of Food Science and Technology 55 (11):4440–9.
  • Palomo, E., M. Hidalgo, M. Gonzalezvinas, and M. Perezcoello. 2005. Aroma enhancement in wines from different grape varieties using exogenous glycosidases. Food Chemistry 92 (4):627–35. doi: 10.1016/j.foodchem.2004.08.025.
  • Perestrelo, R., M. Caldeira, and J. S. Camara. 2012. Solid phase microextraction as a reliable alternative to conventional extraction techniques to evaluate the pattern of hydrolytically released components in Vitis vinifera L. grapes. Talanta 95:1–11. doi: 10.1016/j.talanta.2012.03.005.
  • Raab, T., J. A. Lopez-Raez, D. Klein, J. L. Caballero, E. Moyano, W. Schwab, and J. Munoz-Blanco. 2006. FaQR, required for the biosynthesis of the strawberry flavor compound 4-hydroxy-2,5-dimethyl-3(2H)-furanone, encodes an enone oxidoreductase. The Plant Cell 18 (4):1023–37. doi: 10.1105/tpc.105.039784.
  • Rabetafika, H. N., C. Gigot, M. L. Fauconnier, M. Ongena, J. Destain, P. du Jardin, J. P. Wathelet, and P. Thonart. 2008. Sugar beet leaves as new source of hydroperoxide lyase in a bioprocess producing green-note aldehydes. Biotechnology Letters 30 (6):1115–9. doi: 10.1007/s10529-008-9652-2.
  • Sarry, J., and Z. Gunata. 2004. Plant and microbial glycoside hydrolases: Volatile release from glycosidic aroma precursors. Food Chemistry 87 (4):509–21. doi: 10.1016/j.foodchem.2004.01.003.
  • Schwab, W., R. Davidovich-Rikanati, and E. Lewinsohn. 2008. Biosynthesis of plant-derived flavor compounds. The Plant Journal: For Cell and Molecular Biology 54 (4):712–32. doi: 10.1111/j.1365-313X.2008.03446.x.
  • Serradilla, M. J., A. Martín, S. Ruiz-Moyano, A. Hernández, M. López-Corrales, and M. d G. Córdoba. 2012. Physicochemical and sensorial characterization of four sweet cherry cultivars grown in Jerte Valley (Spain). Food Chemistry 133 (4):1551–9. doi: 10.1016/j.foodchem.2012.02.048.
  • Shen, J., D. Tieman, J. B. Jones, M. G. Taylor, E. Schmelz, A. Huffaker, D. Bies, K. Chen, and H. J. Klee. 2014. A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavor volatiles in tomato. Journal of Experimental Botany 65 (2):419–28. doi: 10.1093/jxb/ert382.
  • Simkin, A. J., J. Gaffe, J. P. Alcaraz, J. P. Carde, P. M. Bramley, P. D. Fraser, and M. Kuntz. 2007. Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochemistry 68 (11):1545–56. doi: 10.1016/j.phytochem.2007.03.014.
  • Simkin, A. J., S. H. Schwartz, M. Auldridge, M. G. Taylor, and H. J. Klee. 2004. The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone. The Plant Journal 40 (6):882–92. doi: 10.1111/j.1365-313X.2004.02263.x.
  • Singh, D. P., H. H. Chong, K. M. Pitt, M. Cleary, N. K. Dokoozlian, and M. O. Downey. 2011. Guaiacol and 4-methylguaiacol accumulate in wines made from smoke-affected fruit because of hydrolysis of their conjugates. Australian Journal of Grape and Wine Research 17 (2):S13–S21. doi: 10.1111/j.1755-0238.2011.00128.x.
  • Singh, R., S. Rastogi, and U. N. Dwivedi. 2010. Phenylpropanoid metabolism in ripening fruits. Comprehensive Reviews in Food Science and Food Safety 9 (4):398–416. doi: 10.1111/j.1541-4337.2010.00116.x.
  • Song, C., X. Hong, S. Zhao, J. Liu, K. Schulenburg, F. C. Huang, K. Franz-Oberdorf, and W. Schwab. 2016. Glucosylation of 4-hydroxy-2,5-dimethyl-3(2H)-furanone, the key strawberry flavor compound in strawberry fruit. Plant Physiology 171 (1):139–51. doi: 10.1104/pp.16.00226.
  • Sun, Y., W. Peng, L. Zeng, Y. Xue, W. Lin, X. Ye, R. Guan, and P. Sun. 2021. Using power ultrasound to release glycosidically bound volatiles from orange juice: A new method. Food Chemistry 344:128580. doi: 10.1016/j.foodchem.2020.128580.
  • Tieman, D., M. Taylor, N. Schauer, A. R. Fernie, A. D. Hanson, and H. J. Klee. 2006. Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proceedings of the National Academy of Sciences 103 (21):8287–92. doi: 10.1073/pnas.0602469103.
  • Tieman, D. M., H. M. Loucas, J. Y. Kim, D. G. Clark, and H. J. Klee. 2007. Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry 68 (21):2660–9.
  • Torrado, A., M. Suárez, C. Duque, D. Krajewski, W. Neugebauer, and P. Schreier. 1995. Volatile constituents from tamarillo. Flavour and Fragrance Journal 10 (6):349–54. doi: 10.1002/ffj.2730100603.
  • Tyagi, K., I. Maoz, E. Lewinsohn, L. Lerno, S. E. Ebeler, and A. Lichter. 2020. Girdling of table grapes at fruit set can divert the phenylpropanoid pathway towards accumulation of proanthocyanidins and change the volatile composition. Plant Science: An International Journal of Experimental Plant Biology 296:110495. doi: 10.1016/j.plantsci.2020.110495.
  • Ubeda, C., F. San-Juan, B. Concejero, R. M. Callejon, A. M. Troncoso, M. L. Morales, V. Ferreira, and P. Hernandez-Orte. 2012. Glycosidically bound aroma compounds and impact odorants of four strawberry varieties. Journal of Agricultural and Food Chemistry 60 (24):6095–102.
  • Ugliano, M., and L. Moio. 2008. Free and hydrolytically released volatile compounds of Vitis vinifera L. cv. Fiano grapes as odor-active constituents of Fiano wine. Analytica Chimica Acta 621 (1):79–85. doi: 10.1016/j.aca.2008.03.002.
  • ul Hassan, M. N., Z. Zainal, and I. Ismail. 2015. Green leaf volatiles: Biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnology Journal 13 (6):727–39.
  • Vavoura, M. V., A. V. Badeka, S. Kontakos, and M. G. Kontominas. 2015. Characterization of four popular sweet cherry cultivars grown in Greece by volatile compound and physicochemical data analysis and sensory evaluation. Molecules 20 (2):1922–40. doi: 10.3390/molecules20021922.
  • Vrhovsek, U., C. Lotti, D. Masuero, S. Carlin, G. Weingart, and F. Mattivi. 2014. Quantitative metabolic profiling of grape, apple and raspberry volatile compounds (VOCs) using a GC/MS/MS method. Journal of Chromatography B 966:132–9. doi: 10.1016/j.jchromb.2014.01.009.
  • Wang, L., E. A. Baldwin, and J. Bai. 2016. Recent advance in aromatic volatile research in tomato fruit: The metabolisms and regulations. Food and Bioprocess Technology 9 (2):203–16. doi: 10.1007/s11947-015-1638-1.
  • War, A. R., M. G. Paulraj, T. Ahmad, A. A. Buhroo, B. Hussain, S. Ignacimuthu, and H. C. Sharma. 2012. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior 7 (10):1306–20. doi: 10.4161/psb.21663.
  • Wen, Y. Q., F. He, B. Q. Zhu, Y. B. Lan, Q. H. Pan, C. Y. Li, M. J. Reeves, and J. Wang. 2014. Free and glycosidically bound aroma compounds in cherry. Food Chemistry 152:29–36.
  • Williams, P. J., C. R. Strauss, B. Wilson, and R. A. Massy-Westropp. 1982. Novel monoterpene disaccharide glycosides of Vitis vinifera grapes and wines. Phytochemistry 21 (8):2013–20. doi: 10.1016/0031-9422(82)83034-3.
  • Wills, R. B. H., and F. M. Scriven. 1979. Metabolism of geraniol by apples in relation to the development of storage breakdown. Phytochemistry 18 (5):785–6. doi: 10.1016/0031-9422(79)80014-X.
  • Winterhalter, P, and G. K. Skouroumounis. 1997. Glycoconjugated aroma compounds: Occurrence, role and biotechnological transformation. In Biotechnology of aroma compounds, 73–105. Heidelberg: Springer.
  • Wong, K. C., and S. N. Wong. 1997. Volatile constituents of Cyphomandra betacea Sendtn. fruit. Journal of Essential Oil Research 9 (3):357–9. doi: 10.1080/10412905.1997.10554261.
  • Yang, Y. N., F. P. Zheng, A. N. Yu, and B. G. Sun. 2019. Changes of the free and bound volatile compounds in Rubus corchorifolius L. f. fruit during ripening. Food Chemistry 287:232–40. doi: 10.1016/j.foodchem.2019.02.080.
  • Yu, A. N., Y. N. Yang, Y. Yang, F. P. Zheng, and B. G. Sun. 2019. Free and bound volatile compounds in the Rubus coreanus fruits of different ripening stages. Journal of Food Biochemistry 43 (10):e12964.
  • Yu, X. H., J. Y. Gou, and C. J. Liu. 2009. BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis: Bioinformatics and gene expression. Plant Molecular Biology 70 (4):421–42.
  • Zhang, W., F. Lao, S. Bi, X. Pan, X. Pang, X. Hu, X. Liao, and J. Wu. 2021. Insights into the major aroma-active compounds in clear red raspberry juice (Rubus idaeus L. cv. Heritage) by molecular sensory science approaches. Food Chemistry 336:127721. doi: 10.1016/j.foodchem.2020.127721.
  • Zhao, N., Y. Zhang, D. Liu, J. Zhang, Y. Qi, J. Xu, X. Wei, and M. Fan. 2020. Free and bound volatile compounds in ‘Hayward’ and ‘Hort16A’ kiwifruit and their wines. European Food Research and Technology 246 (5):875–90. doi: 10.1007/s00217-020-03452-9.
  • Zhu, X., J. Luo, Q. Li, J. Li, T. Liu, R. Wang, W. Chen, and X. Li. 2018. Low temperature storage reduces aroma-related volatiles production during shelf-life of banana fruit mainly by regulating key genes involved in volatile biosynthetic pathways. Postharvest Biology and Technology 146:68–78. doi: 10.1016/j.postharvbio.2018.08.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.