1,305
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Generation methods, stability, detection techniques, and applications of bulk nanobubbles in agro-food industries: a review and future perspective

&

References

  • Adhikari, B. M., T. Truong, N. Bansal, and B. Bhandari. 2018. Influence of gas addition on crystallisation behaviour of lactose from supersaturated solution. Food and Bioproducts Processing 109:86–97. doi: 10.1016/j.fbp.2018.03.003.
  • Adhikari, B. M., T. Truong, S. Prakash, N. Bansal, and B. Bhandari. 2020. Impact of incorporation of CO2 on the melting, texture and sensory attributes of soft-serve ice cream. International Dairy Journal 109:104789. doi: 10.1016/j.idairyj.2020.104789.
  • Agarwal, A., W. J. Ng, and Y. Liu. 2011. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84 (9):1175–80. doi: 10.1016/j.chemosphere.2011.05.054.
  • Agarwal, A., W. J. Ng, and Y. Liu. 2013. Cleaning of biologically fouled membranes with self-collapsing microbubbles. Biofouling 29 (1):69–76. doi: 10.1080/08927014.2012.746319.
  • Ahmed, A. K. A., C. Sun, L. Hua, Z. Zhang, Y. Zhang, W. Zhang, and T. Marhaba. 2018. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure. Chemosphere 203:327–35. doi: 10.1016/j.chemosphere.2018.03.157.
  • Ahmed, A. K. A., X. Shi, L. Hua, L. Manzueta, W. Qing, T. Marhaba, and W. Zhang. 2018. Influences of air, oxygen, nitrogen, and carbon dioxide nanobubbles on seed germination and plant growth. Journal of Agricultural and Food Chemistry 66 (20):5117–24. doi: 10.1021/acs.jafc.8b00333.
  • Alheshibri, M., and V. S. Craig. 2019. Generation of nanoparticles upon mixing ethanol and water; Nanobubbles or Not? Journal of Colloid and Interface Science 542:136–43. doi: 10.1016/j.jcis.2019.01.134.
  • Alheshibri, M., J. Qian, M. Jehannin, and V. S. Craig. 2016. A history of nanobubbles. Langmuir : The ACS Journal of Surfaces and Colloids 32 (43):11086–100. doi: 10.1021/acs.langmuir.6b02489.
  • Shawli, H., K. Iohara, M. Tarrosh, G. T.-J. Huang, M. Nakashima, and A. A. Azim. 2020. Nanobubble-enhanced antimicrobial agents: A promising approach for regenerative endodontics. Journal of Endodontics 46 (9):1248–55. doi: 10.1016/j.joen.2020.06.002.
  • Amamcharla, J. B. Li, and D. Z. Liu. 2017. Use of micro- and nanobubbles in liquid processing. US Patent WO 2017/127636 Al filed July 27, 2017.
  • Attard, P. 2003. Nanobubbles and the hydrophobic attraction. Advances in Colloid and Interface Science 104:75–91. doi: 0.1016/S0001-8686(03)00037-X doi: 10.1016/s0001-8686(03)00037-x.
  • Azevedo, A., R. Etchepare, and J. Rubio. 2017. Raw water clarification by flotation with microbubbles and nanobubbles generated with a multiphase pump. Water Science and Technology: A Journal of the International Association on Water Pollution Research 75 (10):2342–9. doi: 10.2166/wst.2017.113.
  • Azevedo, A., R. Etchepare, S. Calgaroto, and J. Rubio. 2016. Aqueous dispersions of nanobubbles: Generation, properties and features. Minerals Engineering 94:29–37. doi: 10.1016/j.mineng.2016.05.001.
  • Babu, K. S., and J. K. Amamcharla. 2018. Application of front-face fluorescence spectroscopy as a tool for monitoring changes in milk protein concentrate powders during storage. Journal of Dairy Science 101 (12):10844–59. doi: 10.3168/jds.2018-14885.
  • Babu, K. S., K. Siliveru, J. K. Amamcharla, P. V. Vadlani, and R. K. Ambrose. 2018. Influence of protein content and storage temperature on the particle morphology and flowability characteristics of milk protein concentrate powders. Journal of Dairy Science 101 (8):7013–26. doi: 10.3168/jds.2018-14885.
  • Babu, K. S., and J. K. Amamcharla. 2021. Application of bulk nanobubbles generated by acoustic cavitation to improve the processability of milk protein concentrates. Oral competition presented at the American Dairy Science Association Virtual Annual Meeting, July 11–14.
  • Babu, K. S., D. Z. Liu, and J. K. Amamcharla. 2022. Use of micro- and nano-bubbles for improving the functional properties of Greek-style yogurt. Foods 11 (4):619. doi: 10.3390/foods11040619.
  • Babu, K. S., and J. K. Amamcharla. 2022a. Application of micro- and nano-bubbles in spray drying of milk protein concentrates. Journal of Dairy Science. doi: 10.3168/jds.2021-21341.
  • Babu, K. S., and J. K. Amamcharla. 2022b. Effect of bulk nanobubbles during ultrafiltration on membrane performance. Submitted to the American Dairy Science Association Virtual Annual Meeting, June 19–22.
  • Barker, G. S., B. Jefferson, and S. J. Judd. 2002. The control of bubble size in carbonated beverages. Chemical Engineering Science 57 (4):565–73. doi: 10.1016/S0009-2509(01)00391-8.
  • Borkent, B. M., S. de Beer, F. Mugele, and D. Lohse. 2010. On the shape of surface nanobubbles. Langmuir: The ACS Journal of Surfaces and Colloids 26 (1):260–8. doi: 10.1021/la902121x.
  • Brenner, M. P., and D. Lohse. 2008. Dynamic equilibrium mechanism for surface nanobubble stabilization. Physical Review Letters 101 (21):214505. doi: 10.1103/PhysRevLett.101.214505.
  • Bu, X., and M. Alheshibri. 2021. The effect of ultrasound on bulk and surface nanobubbles: A review of the current status. Ultrasonics Sonochemistry 76:105629. doi: 10.1016/j.ultsonch.2021.105629.
  • Bunkin, N. F., A. V. Kochergin, A. V. Lobeyev, B. W. Ninham, and O. I. Vinogradova. 1996. Existence of charged submicrobubble clusters in polar liquids as revealed by correlation between optical cavitation and electrical conductivity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 110 (2):207–12. doi: 10.1016/0927-7757(95)03422-6.
  • Calgaroto, S., A. Azevedo, and J. Rubio. 2016. Separation of amine-insoluble species by flotation with nano and microbubbles. Minerals Engineering 89:24–9. doi: 10.1016/j.mineng.2016.01.006.
  • Calgaroto, S., K. Q. Wilberg, and J. Rubio. 2014. On the nanobubbles interfacial properties and future applications in flotation. Minerals Engineering 60:33–40. doi: 10.1016/j.mineng.2014.02.002.
  • Che, Z., and P. E. Theodorakis. 2017. Formation, dissolution and properties of surface nanobubbles. Journal of Colloid and Interface Science 487:123–9. doi: 10.1016/j.jcis.2016.10.027.
  • Chen, H., H. Mao, L. Wu, J. Zhang, Y. Dong, Z. Wu, and J. Hu. 2009. Defouling and cleaning using nanobubbles on stainless steel. Biofouling 25 (4):353–7. doi: 10.1080/08927010902807645.
  • Deotale, S. M., S. Dutta, J. A. Moses, and C. Anandharamakrishnan. 2020. Stability of instant coffee foam by nanobubbles using spray-freeze drying technique. Food and Bioprocess Technology 13 (11):1866–77. doi: 10.1007/s11947-020-02526-6.
  • Dhungana, P., and B. Bhandari. 2021. Development of a continuous membrane nanobubble generation method applicable in liquid food processing. International Journal of Food Science & Technology 56 (9):4268–77. doi: 10.1111/ijfs.15182.
  • Ducker, W. A. 2009. Contact angle and stability of interfacial nanobubbles. Langmuir: The ACS Journal of Surfaces and Colloids 25 (16):8907–10. doi: 10.1021/la902011v.
  • Ebina, K., K. Shi, M. Hirao, J. Hashimoto, Y. Kawato, S. Kaneshiro, T. Morimoto, K. Koizumi, and H. Yoshikawa. 2013. Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice. PLoS One. 8 (6):e65339. doi: 10.1371/journal.pone.0065339.
  • Epstein, P. S., and M. S. Plesset. 1950. On the stability of gas bubbles in liquid‐gas solutions. The Journal of Chemical Physics 18 (11):1505–9. doi: 10.1063/1.1747520.
  • Etchepare, R., A. Azevedo, S. Calgaroto, and J. Rubio. 2017. Removal of ferric hydroxide by flotation with micro and nanobubbles. Separation and Purification Technology 184:347–53. doi: 10.1016/j.seppur.2017.05.0143.
  • Etchepare, R., H. Oliveira, M. Nicknig, A. Azevedo, and J. Rubio. 2017. Nanobubbles: Generation using a multiphase pump, properties and features in flotation. Minerals Engineering 112:19–26. doi: 10.1016/j.mineng.2017.06.020.
  • Fang, Z., L. Wang, X. Wang, L. Zhou, S. Wang, Z. Zou, R. Tai, L. Zhang, and J. Hu. 2018. Formation and stability of surface/bulk nanobubbles produced by decompression at lower gas concentration. The Journal of Physical Chemistry C 122 (39):22418–23. doi: 10.1021/acs.jpcc.8b05688.
  • Fang, Z., X. Wang, L. Zhou, L. Zhang, and J. Hu. 2020. Formation and stability of bulk nanobubbles by vibration. Langmuir: The ACS Journal of Surfaces and Colloids 36 (9):2264–70. doi: 10.1021/acs.langmuir.0c00036.
  • Favvas, E. P., G. Z. Kyzas, E. K. Efthimiadou, and A. C. Mitropoulos. 2021. Bulk nanobubbles, generation methods and potential applications. Current Opinion in Colloid & Interface Science 54:101455. doi: 10.1016/j.cocis.2021.101455.
  • Ferraro, G., A. J. Jadhav, and M. Barigou. 2020. A Henry’s law method for generating bulk nanobubbles. Nanoscale 12 (29):15869–79. doi: 10.1039/d0nr03332d.
  • Filipe, V., A. Hawe, and W. Jiskoot. 2010. Critical evaluation of nanoparticle tracking analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharmaceutical Research 27 (5):796–810. doi: 10.1007/s11095-010-0073-2.
  • Fujikawa, S., R. Zhang, S. Hayama, and G. Peng. 2003. The control of micro-air-bubble generation by a rotational porous plate. International Journal of Multiphase Flow 29 (8):1221–36. doi: 10.1016/S0301-9322(03)00106-X.
  • Gandhi, G. 2018. Study of high protein dairy powder (MPC80) susceptibility to fouling and efficacy of micro-nano-bubble aqueous ozone in removal of Bacillus spp. biofilms on stainless steel surfaces. Accessed October 1, 2021. https://krex.k-state.edu/dspace/bitstream/handle/2097/38842/GaganGandhi2018.pdf?sequence=1&isAllowed=y
  • Gao, Y., Y. Duan, W. Fan, T. Guo, M. Huo, W. Yang, S. Zhu, and W. An. 2019. Intensifying ozonation treatment of municipal secondary effluent using a combination of microbubbles and ultraviolet irradiation. Environmental Science and Pollution Research 26 (21):21915–24. doi: 10.1007/s11356-019-05554-8.
  • Gao, Z., W. Wu, W. Sun, and B. Wang. 2021. Understanding the stabilization of a bulk nanobubble: A molecular dynamics analysis. Langmuir: The ACS Journal of Surfaces and Colloids 37 (38):11281–91. doi: 10.1021/acs.langmuir.1c01796.
  • German, S. R., M. A. Edwards, Q. Chen, and H. S. White. 2016. Laplace pressure of individual H2 nanobubbles from pressure-addition electrochemistry. Nano Letters 16 (10):6691–4. doi: 10.1021/acs.nanolett.6b03590.
  • Ghaani, M. R., P. G. Kusalik, and N. J. English. 2020. Massive generation of metastable bulk nanobubbles in water by external electric fields. Science Advances 6 (14):eaaz0094. doi: 10.1126/sciadv.aaz0094.
  • Ghadimkhani, A., W. Zhang, and T. Marhaba. 2016. Ceramic membrane defouling (cleaning) by air nano bubbles. Chemosphere 146:379–84. doi: 10.1016/j.chemosphere.2015.12.023.
  • Global Industry Analysts. 2021. Nanomaterials - market trajectory & analytics. Re-search and Markets. Accessed November 11, 2021. https://www.strategyr.com/market-report-nanomaterials-forecasts-global-industry-analysts-inc.asp
  • Guan, M., W. Guo, L. Gao, Y. Tang, J. Hu, and Y. Dong. 2012. Investigation on the temperature difference method for producing nanobubbles and their physical properties. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry 13 (8):2115–8. doi: 10.1002/cphc.201100912.
  • Guidance, D. 2011. Considering whether an FDA-regulated product involves the application of nanotechnology. Accessed November 11, 2021. http://www.food-label-compliance.com/Sites/5/Downloads/003-FDA-Draft-Industry-Guidance-CONSIDERING-NANOTECHNOLOGY-APPLICATIONS-14-June-2011.pdf
  • Gurung, A., O. Dahl, and K. Jansson. 2016. The fundamental phenomena of nanobubbles and their behavior in wastewater treatment technologies. Geosystem Engineering 19 (3):133–42. doi: 10.1080/12269328.2016.1153987.
  • Henderson, R. M. 2020. Efficacy of microscale/nanoscale aqueous ozone on the removal of Bacillus spp. biofilms from polyethersulfone membranes in the dairy industry. Accessed October 1, 2021. https://krex.k-state.edu/dspace/handle/2097/40944
  • Hewage, S. A., J. Kewalramani, and J. N. Meegoda. 2021. Stability of nanobubbles in different salts solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects 609:125669. doi: 10.1016/j.colsurfa.2020.125669.
  • Ikeura, H., F. Kobayashi, and M. Tamaki. 2011. Removal of residual pesticide, fenitrothion, in vegetables by using ozone microbubbles generated by different methods. Journal of Food Engineering 103 (3):345–9. doi: 10.1016/j.jfoodeng.2010.11.002.
  • Ishida, N., T. Inoue, M. Miyahara, and K. Higashitani. 2000. Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir 16 (16):6377–80. doi: 10.1021/la000219r.
  • Jadhav, A. J., and M. Barigou. 2020a. Bulk Nanobubbles or Not Nanobubbles: That is the Question. Langmuir: The ACS Journal of Surfaces and Colloids 36 (7):1699–708. doi: 10.1021/acs.langmuir.9b03532.
  • Jadhav, A. J., and M. Barigou. 2020b. Response to “comment on bulk nanobubbles or not nanobubbles: that is the question.” Langmuir: The ACS Journal of Surfaces and Colloids 37 (1):596–601. doi: 10.1021/acs.langmuir.0c03165.
  • Jeevanandam, J., A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah. 2018. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein Journal of Nanotechnology 9 (1):1050–74. doi: 10.3762/bjnano.9.98.
  • Jin, J., Z. Feng, F. Yang, and N. Gu. 2019. Bulk nanobubbles fabricated by repeated compression of microbubbles. Langmuir: The ACS Journal of Surfaces and Colloids 35 (12):4238–45. doi: 10.1021/acs.langmuir.8b04314.
  • Johnson, B. D., and R. C. Cooke. 1981. Generation of stabilized microbubbles in seawater. Science (New York, N.Y.) 213 (4504):209–11. doi: 10.1126/science.213.4504.209.
  • Kanematsu, W., T. Tuziuti, and K. Yasui. 2020. The influence of storage conditions and container materials on the long term stability of bulk nanobubbles—Consideration from a perspective of interactions between bubbles and surroundings. Chemical Engineering Science 219:115594. doi: 10.1016/j.ces.2020.115594.
  • Khaira, N. M., N. A. Abd Rahmana, A. S. Baharuddina, H. S. Hafidb, and M. Wakisakab. 2020. Capturing the impact of nanobubble liquid in enhancing the physical quality of ice cream. Journal of Agricultural and Food Engineering 2:12. doi: 10.37865/jafe.2020.0012.
  • Khaire, R. A., and P. R. Gogate. 2021. Application of hydrodynamic cavitation in food processing. In Design and optimization of innovative food processing techniques assisted by ultrasound. San Diego, CA: Academic Press.
  • Kikuchi, K.,H. Takeda,B. Rabolt,T. Okaya,Z. Ogumi,Y. Saihara, andH. Noguchi. 2001. Hydrogen particles and supersaturation in alkaline water from an Alkali–Ion–Water electrolyzer. Journal of Electroanalytical Chemistry 506 (1):22–7. doi:10.1016/S0022-0728(01)00517-4.
  • Kikuchi, K., A. Ioka, T. Oku, Y. Tanaka, Y. Saihara, and Z. Ogumi. 2009. Concentration determination of oxygen nanobubbles in electrolyzed water. Journal of Colloid and Interface Science 329 (2):306–9. doi: 10.1016/j.jcis.2008.10.009.
  • Kikuchi, K., S. Nagata, Y. Tanaka, Y. Saihara, and Z. Ogumi. 2007. Characteristics of hydrogen nanobubbles in solutions obtained with water electrolysis. Journal of Electroanalytical Chemistry 600 (2):303–10. doi: 10.1016/j.jelechem.2006.10.005.
  • Kikuchi, K., Y. Tanaka, Y. Saihara, M. Maeda, M. Kawamura, and Z. Ogumi. 2006. Concentration of hydrogen nanobubbles in electrolyzed water. Journal of Colloid and Interface Science 298 (2):914–9. doi: 10.1016/j.jcis.2006.01.010.
  • Kobayashi, F. H. Ikeura, M. Tamaki, and Y. Hayata. 2009. Application of CO2 micro-and nano-bubbles at lower pressure and room temperature to inactivate microorganisms in Cut wakegi (Allium wakegi Araki). In Southeast Asia Symposium on Quality and Safety of Fresh and Fresh-Cut Produce 875 (pp. 417–424). doi: 10.17660/ActaHortic.2010.875.54.
  • Kobayashi, H. S. Maeda, M. Kashiwa, and T. Fujita. 2014. Measurement and identification of ultrafine bubbles by resonant mass measurement method. In OPC ‘14: Proc. SPIE 9232, International Conference on Optical Particle Characterization (9232): 92320S. doi: 10.1117/12.2064811.
  • Kukizaki, M. 2009. Microbubble formation using asymmetric Shirasu porous glass (SPG) membranes and porous ceramic membranes—A comparative study. Colloids and Surfaces A: Physicochemical and Engineering Aspects 340 (1-3):20–32. doi: 10.1016/j.colsurfa.2009.02.033.
  • Kukizaki, M., and M. Goto. 2006. Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes. Journal of Membrane Science 281 (1-2):386–96. doi: 10.1016/j.memsci.2006.04.007.
  • Kyzas, G. Z., G. Bomis, R. I. Kosheleva, E. K. Efthimiadou, E. P. Favvas, M. Kostoglou, and A. C. Mitropoulos. 2019. Nanobubbles effect on heavy metal ions adsorption by activated carbon. Chemical Engineering Journal 356:91–7. doi: 10.1016/j.cej.2018.09.019.
  • Li, H., A. Afacan, Q. Liu, and Z. Xu. 2015. Study interactions between fine particles and micron size bubbles generated by hydrodynamic cavitation. Minerals Engineering 84:106–15. doi: 10.1016/j.mineng.2015.09.023.
  • Li, T., Z. Cui, J. Sun, C. Jiang, and G. Li. 2021. Generation of Bulk Nanobubbles by Self-Developed Venturi-Type Circulation Hydrodynamic Cavitation Device. Langmuir: The ACS Journal of Surfaces and Colloids 37 (44):12952–60. doi: 10.1021/acs.langmuir.1c02010.
  • Liu, G., Z. Wu, and V. S. Craig. 2008. Cleaning of protein-coated surfaces using nanobubbles: An investigation using a quartz crystal microbalance. The Journal of Physical Chemistry C 112 (43):16748–53. doi: 10.1021/jp805143c.
  • Liu, H., and G. Cao. 2016. Effectiveness of the Young-Laplace equation at nanoscale. Scientific Reports 6:23936. doi: 10.1038/srep23936.
  • Liu, S., M. Enari, Y. Kawagoe, Y. Makino, and S. Oshita. 2013. Properties of the water containing nanobubbles as a new technology of the acceleration of physiological activity. Chemical Engineering Science 93:250–6. doi: 10.1016/j.ces.2013.02.004.
  • Liu, S., Y. Kawagoe, Y. Makino, and S. Oshita. 2013. Effects of nanobubbles on the physicochemical properties of water: The basis for peculiar properties of water containing nanobubbles. Chemical Engineering Science 93:250–6. doi: 10.1016/j.ces.2013.02.004.
  • Lou, S. T., Z. Q. Ouyang, Y. Zhang, X. J. Li, J. Hu, M. Q. Li, and F. J. Yang. 2000. Nanobubbles on solid surface imaged by atomic force microscopy. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 18 (5):2573–5. doi: 10.1116/1.1289925.
  • Lu, Y. H., C. W. Yang, and I. S. Hwang. 2012. Molecular layer of gaslike domains at a hydrophobic-water interface observed by frequency-modulation atomic force microscopy . Langmuir : The ACS Journal of Surfaces and Colloids 28 (35):12691–5. doi: 10.1021/la301671a.
  • Luo, L., and H. S. White. 2013. Electrogeneration of single nanobubbles at sub-50-nm-radius platinum nanodisk electrodes. Langmuir : The ACS Journal of Surfaces and Colloids 29 (35):11169–75. doi: 10.1021/la402496z.
  • Manning, G. S. 2020. On the thermodynamic stability of bubbles, immiscible droplets, and cavities. Physical Chemistry Chemical Physics: PCCP 22 (31):17523–31. doi: 10.1039/D0CP02517H.
  • Maoming, F. A. N., T. A. O. Daniel, R. Honaker, and L. U. O. Zhenfu. 2010. Nanobubble generation and its application in froth flotation (part I): nanobubble generation and its effects on properties of microbubble and millimeter scale bubble solutions. Mining Science and Technology (China) 20 (1):1–19. doi: 10.1016/S1674-5264(09)60154-X.
  • McSweeney, D. J., V. Maidannyk, J. A. O’Mahony, and N. A. McCarthy. 2021. Influence of nitrogen gas injection and agglomeration during spray drying on the physical and bulk handling properties of milk protein concentrate powders. Journal of Food Engineering 293:110399. doi: 10.1016/j.jfoodeng.2020.110399.
  • Mech, A., W. Wohlleben, A. Ghanem, V. D. Hodoroaba, S. Weigel, F. Babick, R. Brüngel, C. M. Friedrich, K. Rasmussen, and H. Rauscher. 2020. Nano or not nano? A structured approach for identifying nanomaterials according to the European Commission’s Definition. Small 16 (36):2002228. doi: 10.1002/smll.202002228.
  • Meegoda, J. N., S. Aluthgun Hewage, and J. H. Batagoda. 2018. Stability of nanobubbles. Environmental Engineering Science 35 (11):1216–27. doi: 10.1089/ees.2018.0203.
  • Michailidi, E. D., G. Bomis, A. Varoutoglou, G. Z. Kyzas, G. Mitrikas, A. C. Mitropoulos, E. K. Efthimiadou, and E. P. Favvas. 2020. Bulk nanobubbles: Production and investigation of their formation/stability mechanism. Journal of Colloid and Interface Science 564:371–80. doi: 10.1016/j.jcis.2019.12.093.
  • Millare, J. C., and B. A. Basilia. 2018. Nanobubbles from ethanol‐water mixtures: generation and solute effects via solvent replacement method. ChemistrySelect 3 (32):9268–75. doi: 10.1002/slct.201801504.
  • Mo, C. R., J. Wang, Z. Fang, L. M. Zhou, L. J. Zhang, and J. Hu. 2018. Formation and stability of ultrasonic generated bulk nanobubbles. Chinese Physics B 27 (11):118104. doi: 10.1088/1674-1056/27/11/118104/meta.
  • Nirmalkar, N., A. W. Pacek, and M. Barigou. 2018a. On the existence and stability of bulk nanobubbles. Langmuir : The ACS Journal of Surfaces and Colloids 34 (37):10964–73. doi: 10.1021/acs.langmuir.8b01163.
  • Nirmalkar, N., A. W. Pacek, and M. Barigou. 2018b. Interpreting the interfacial and colloidal stability of bulk nanobubbles. Soft Matter 14 (47):9643–56. doi: 10.1039/C8SM01949E.
  • Nussinovitch, A., R. Velez‐Silvestre, and M. Peleg. 1992. Mechanical properties of hydrocolloid gels filled with internally produced CO2 gas bubbles. Biotechnology Progress 8 (5):424–8. doi: 10.1021/bp00017a009.
  • Oh, S. H., and J. M. Kim. 2017. Generation and stability of bulk nanobubbles. Langmuir : The ACS Journal of Surfaces and Colloids 33 (15):3818–23. doi: 10.1021/acs.langmuir.7b00510.
  • Oh, S. H., S. H. Yoon, H. Song, J. G. Han, and J. M. Kim. 2013. Effect of hydrogen nanobubble addition on combustion characteristics of gasoline engine. International Journal of Hydrogen Energy 38 (34):14849–53. doi: 10.1016/j.ijhydene.2013.09.063.
  • Ohgaki, K., N. Q. Khanh, Y. Joden, A. Tsuji, and T. Nakagawa. 2010. Physicochemical approach to nanobubble solutions. Chemical Engineering Science 65 (3):1296–300. doi: 10.1016/j.ces.2009.10.003.
  • Oliveira, H., A. Azevedo, and J. Rubio. 2018. Nanobubbles generation in a high-rate hydrodynamic cavitation tube. Minerals Engineering 116:32–4. doi: 10.1016/j.mineng.2017.10.020.
  • Panchal, J., J. Kotarek, E. Marszal, and E. M. Topp. 2014. Analyzing subvisible particles in protein drug products: A comparison of dynamic light scattering (DLS) and resonant mass measurement (RMM). The AAPS Journal 16 (3):440–51. doi: 10.1208/s12248-014-9579-6.
  • Parker, J. L., P. M. Claesson, and P. Attard. 1994. Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces. The Journal of Physical Chemistry 98 (34):8468–80. doi: 10.1021/j100085a029.
  • Patil, M. H., G. Tanguy, C. L. Floch-Fouéré, R. Jeantet, and E. G. Murphy. 2021. Energy usage in the manufacture of dairy powders: Advances in conventional processing and disruptive technologies. Drying Technology 1-19 39 (11):1595–613. doi: 10.1080/073737.2021.1903489.
  • Patois, E., M. A. H. Capelle, C. Palais, R. Gurny, and T. Arvinte. 2012. Evaluation of nanoparticle tracking analysis (NTA) in the characterization of therapeutic antibodies and seasonal influenza vaccines: Pros and cons. Journal of Drug Delivery Science and Technology 22 (5):427–33. doi: 10.1016/S1773-2247(12)50069-9.
  • Peng, H., M. A. Hampton, and A. V. Nguyen. 2013. Nanobubbles do not sit alone at the solid-liquid interface. Langmuir: The ACS Journal of Surfaces and Colloids 29 (20):6123–30. doi: 10.1021/la305138v.
  • Phan, K. K. T., T. Truong, Y. Wang, and B. Bhandari. 2020. Nanobubbles: Fundamental characteristics and applications in food processing. Trends in Food Science & Technology 95:118–30. doi: 10.1016/j.tifs.2019.11.019.
  • Phan, K. K. T., T. Truong, Y. Wang, and B. Bhandari. 2021a. Formation and stability of carbon dioxide nanobubbles for potential applications in food processing. Food Engineering Reviews 13 (1):3–14. doi: 10.1007/s12393-020-09233-0.
  • Phan, K., T. Truong, Y. Wang, and B. Bhandari. 2021b. Effect of CO2 nanobubbles incorporation on the viscosity reduction of fruit juice concentrate and vegetable oil. International Journal of Food Science & Technology 56 (9):4278–86. doi: 10.1111/ijfs.15240.
  • Phan, K., T. Truong, Y. Wang, and B. Bhandari. 2021c. Effect of electrolytes and surfactants on generation and longevity of carbon dioxide nanobubbles. Food Chemistry 363:130299. doi: 10.1016/j.foodchem.2021.130299.
  • Pongprasert, N., V. Srilaong, and S. Sugaya. 2020. An alternative technique using ethylene micro-bubble technology to accelerate the ripening of banana fruit. Scientia Horticulturae 272:109566. doi: 10.1016/j.scienta.2020.109566.
  • Postnikov, A. V., I. V. Uvarov, N. V. Penkov, and V. B. Svetovoy. 2018. Collective behavior of bulk nanobubbles produced by alternating polarity electrolysis. Nanoscale 10 (1):428–35. doi: 10.1039/C7NR07126D.
  • Qiu, J., Z. Zou, S. Wang, X. Wang, L. Wang, Y. Dong, H. Zhao, L. Zhang, and J. Hu. 2017. Formation and stability of bulk nanobubbles generated by ethanol-water exchange. Chemphyschem: A European Journal of Chemical Physics and Physical Chemistry 18 (10):1345–50. doi: 10.1002/cphc.201700010.
  • Rak, D., and M. Sedlák. 2020. Comment on “bulk nanobubbles or not nanobubbles: That is the question.” Langmuir: The ACS Journal of Surfaces and Colloids 36 (51):15618–21. doi: 10.1021/acs.langmuir.0c01614.
  • Rak, D., M. Ovadová, and M. Sedlák. 2019. (Non)Existence of bulk nanobubbles: The role of ultrasonic cavitation and organic solutes in water. The Journal of Physical Chemistry Letters 10 (15):4215–21. doi: 10.1021/acs.jpclett.9b01402.
  • Ruckenstein, E. 2013. Nanodispersions of bubbles and oil drops in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects 423:112–4. doi: 10.1016/j.colsurfa.2013.01.056.
  • Saint-Eve, A., I. Déléris, G. Feron, D. Ibarra, E. Guichard, and I. Souchon. 2010. How trigeminal, taste and aroma perceptions are affected in mint-flavored carbonated beverages. Food Quality and Preference 21 (8):1026–33. doi: 10.1016/j.foodqual.2010.05.021.
  • Seddon, J. R., H. J. Zandvliet, and D. Lohse. 2011. Knudsen gas provides nanobubble stability. Physical Review Letters 107 (11):116101. doi: 10.1103/PhysRevLett.107.116101.
  • Sekhon, A. S., P. Unger, A. Singh, Y. Yang, and M. Michael. 2021. Impact of gas ultrafine bubbles on the potency of chlorine solutions against Listeria monocytogenes biofilms. Journal of Food Safety doi: 10.1111/jfs.12954.
  • Singh, A., A. S. Sekhon, P. Unger, M. Babb, Y. Yang, and M. Michael. 2021. Impact of gas micro-nano-bubbles on the efficacy of commonly used antimicrobials in the food industry . Journal of Applied Microbiology 130 (4):1092–1105. doi: 10.1111/jam.14840.
  • Singla, M., and N. Sit. 2021. Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry 73:105506. doi: 10.1016/j.ultsonch.2021.105506.
  • Soli, K. W., A. Yoshizumi, A. Motomatsu, M. Yamakawa, M. Yamasaki, T. Mishima, N. Miyaji, K. I. Honjoh, and T. Miyamoto. 2010. Decontamination of fresh produce by the use of slightly acidic hypochlorous water following pre-treatment with sucrose fatty acid ester under microbubble generation. Food Control 21 (9):1240–4. doi: 10.1016/j.foodcont.2010.02.009.
  • Takahashi, M. 2005. Zeta potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface. The Journal of Physical Chemistry B 109 (46):21858–64. doi: 10.1021/jp0445270.
  • Tan, B. H., H. An, and C. D. Ohl. 2020. How bulk nanobubbles might survive. Physical Review Letters 124 (13):134503. doi: 10.1103/PhysRevLett.124.134503.
  • Tan, B. H., H. An, and C. D. Ohl. 2021. Stability of surface and bulk nanobubbles. Current Opinion in Colloid & Interface Science 53:101428. doi: 10.1016/j.cocis.2021.101428.
  • Tanaka, S., H. Kobayashi, S. Ohuchi, K. Terasaka, and S. Fujioka. 2021. Destabilization of ultrafine bubbles in water using indirect ultrasonic irradiation. Ultrasonics Sonochemistry 71:105366. doi: 10.1016/j.ultsonch.2020.105366.
  • Tao, D., S. Yu, X. Zhou, R. Q. Honaker, and B. K. Parekh. 2008. Picobubble column flotation of fine coal. International Journal of Coal Preparation and Utilization 28 (1):1–14. doi: 10.1080/07349340701640901.
  • Temesgen, T., T. T. Bui, M. Han, T. I. Kim, and H. Park. 2017. Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review. Advances in Colloid and Interface Science 246:40–51. doi: 10.1016/j.cis.2017.06.011.
  • Theodorakis, P. E., and Z. Che. 2019. Surface nanobubbles: Theory, simulation, and experiment. A review. Advances in Colloid and Interface Science 272:101995. doi: 10.1016/j.cis.2019.101995.
  • Tsuge, H. 2014. Micro-and nanobubbles: Fundamentals and applications. Boca Raton, FL: CRC Press.
  • Tyrrell, J. W., and P. Attard. 2001. Images of nanobubbles on hydrophobic surfaces and their interactions. Physical Review Letters 87 (17):176104. doi: 10.1103/PhysRevLett.87.176104.
  • Uchida, T., K. Yamazaki, and K. Gohara. 2016. Generation of micro-and nano-bubbles in water by dissociation of gas hydrates. Korean Journal of Chemical Engineering 33 (5):1749–55. doi: 10.1007/s11814-016-0032-7.
  • Uchida, T., S. Liu, M. Enari, S. Oshita, K. Yamazaki, and K. Gohara. 2016. Effect of NaCl on the lifetime of micro-and nanobubbles. Nanomaterials 6 (2):31. doi: 10.3390/nano6020031.
  • Ulatowski, K., and P. Sobieszuk. 2018. Influence of liquid flowrate on size of nanobubbles generated by porous-membrane modules. Chemical and Process Engineering 39 (3):335–45. doi: 10.24425/122954.
  • Ushida, A., T. Koyama, Y. Nakamoto, T. Narumi, T. Sato, and T. Hasegawa. 2017. Antimicrobial effectiveness of ultra-fine ozone-rich bubble mixtures for fresh vegetables using an alternating flow. Journal of Food Engineering 206:48–56. doi: 10.1016/j.jfoodeng.2017.03.003.
  • Ushikubo, F. Y., T. Furukawa, R. Nakagawa, M. Enari, Y. Makino, Y. Kawagoe, T. Shiina, and S. Oshita. 2010. Evidence of the existence and the stability of nano-bubbles in water. Colloids and Surfaces A: Physicochemical and Engineering Aspects 361 (1-3):31–7. doi: 10.1016/j.colsurfa.2010.03.005.
  • Walczyk, W., N. Hain, and H. Schönherr. 2014. Hydrodynamic effects of the tip movement on surface nanobubbles: A combined tapping mode, lift mode and force volume mode AFM study. Soft Matter 10 (32):5945–54. doi: 10.1039/C4SM01024H.
  • Walczyk, W., P. M. Schön, and H. Schönherr. 2013. The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles. Journal of Physics. Condensed Matter: An Institute of Physics Journal 25 (18):184005. doi: 10.1088/0953-8984/25/18/184005.
  • Wang, Q., H. Zhao, N. Qi, Y. Qin, X. Zhang, and Y. Li. 2019. Generation and stability of size-Adjustable Bulk Nanobubbles Based on periodic pressure Change. Scientific Reports 9 (1):1–9. doi: 10.1038/s41598-018-38066-5.
  • Wang, S., L. Zhou, and Y. Gao. 2021. Can bulk nanobubbles be stabilized by electrostatic interaction? Physical Chemistry Chemical Physics : PCCP 23 (31):16501–5. doi: 10.1039/D1CP01279G.
  • Wilder, A. J. 2016. Evaluation of a novel commercial ground beef production system using a chlorinated nanobubble antimicrobial technology to control Shiga toxin-producing Escherichia coli and Salmonella spp. surrogates. Last Modified December 1, 2016. Accessed October 1, 2021. https://krex.k-state.edu/dspace/bitstream/handle/2097/34534/AmandaWilder2016.pdf?sequence=1
  • Wu, C., K. Nesset, J. Masliyah, and Z. Xu. 2012. Generation and characterization of submicron size bubbles. Advances in Colloid and Interface Science 179-182:123–32. doi: 10.1016/j.cis.2012.06.012.
  • Wu, Z., H. Chen, Y. Dong, H. Mao, J. Sun, S. Chen, V. S. Craig, and J. Hu. 2008. Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles. Journal of Colloid and Interface Science 328 (1):10–4. doi: 10.1016/j.jcis.2008.08.064.
  • Xiong, Y., and F. Peng. 2015. Optimization of cavitation venturi tube design for pico and nano bubbles generation. International Journal of Mining Science and Technology 25 (4):523–9. doi: 10.1016/j.ijmst.2015.05.002.
  • Yamasaki, K. K. Sakata, and K. Chuhjoh. 2010. Water treatment method and water treatment system. US Patent 7,662,288 filed September 28, 2006, and issued February 16, 2010.
  • Yang, C. W., Y. H. Lu, and S. Hwang. 2013. Imaging surface nanobubbles at graphite-water interfaces with different atomic force microscopy modes. Journal of Physics Condensed Matter: An Institute of Physics Journal 25 (18):184010. doi: 10.1088/0953-8984/25/18/184010.
  • Yang, S., and A. Duisterwinkel. 2011. Removal of nanoparticles from plain and patterned surfaces using nanobubbles. Langmuir: The ACS Journal of Surfaces and Colloids 27 (18):11430–5. doi: 10.1021/la2010776.
  • Yasuda, K., H. Matsushima, and Y. Asakura. 2019. Generation and reduction of bulk nanobubbles by ultrasonic irradiation. Chemical Engineering Science 195:455–61. doi: 10.1016/j.ces.2018.09.044.
  • Yasui, K., T. Tuziuti, and W. Kanematsu. 2018. Mysteries of bulk nanobubbles (ultrafine bubbles); stability and radical formation. Ultrasonics Sonochemistry 48:259–66. doi: 10.1016/j.ultsonch.2018.05.038.
  • Yoshida, A., O. Takahashi, Y. Ishii, Y. Sekimoto, and Y. Kurata. 2008. Water purification using the adsorption characteristics of microbubbles. Japanese Journal of Applied Physics 47 (8):6574–7. doi: 10.1143/JJAP.47.6574.
  • Zhang, F., J. Xi, J. J. Huang, and H. Y. Hu. 2013. Effect of inlet ozone concentration on the performance of a micro-bubble ozonation system for inactivation of Bacillus subtilis spores. Separation and Purification Technology 114:126–33. doi: 10.1016/j.seppur.2013.04.034.
  • Zhang, M., and J. R. Seddon. 2016. Nanobubble-Nanoparticle Interactions in Bulk Solutions. Langmuir: The ACS Journal of Surfaces and Colloids 32 (43):11280–6. doi: 10.1021/acs.langmuir.6b02419.
  • Zhang, X. H., N. Maeda, and V. S. Craig. 2006. Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions. Langmuir: The ACS Journal of Surfaces and Colloids 22 (11):5025–35. doi: 10.1021/la0601814.
  • Zhang, Z. H., S. Wang, L. Cheng, H. Ma, X. Gao, C. S. Brennan, and J. K. Yan. 2022. Micro-nano-bubble technology and its applications in food industry: A critical review. Food Reviews International :1–23. doi: 10.1080/87559129.2021.2023172.
  • Zhang, B. H., X. Xu, H. Lu, L. Wang, and Q. Yang. 2021. Removal of phoxim, chlorothalonil and Cr3+ from vegetable using bubble flow. Journal of Food Engineering 291:110217. doi: 10.1016/j.jfoodeng.2020.110217.
  • Zhou, Y., B. Zhou, F. Xu, T. Muhammad, and Y. Li. 2019. Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation. Agricultural Water Management 223:105713. doi: 10.1016/j.agwat.2019.105713.
  • Zhou, L., S. Wang, L. Zhang, and J. Hu. 2021. Generation and stability of bulk nanobubbles: A review and perspective. Current Opinion in Colloid & Interface Science 53:101439. doi: 10.1016/j.cocis.2021.101439.
  • Zhu, J., H. An, M. Alheshibri, L. Liu, P. M. Terpstra, G. Liu, and V. S. Craig. 2016. Cleaning with bulk nanobubbles. Langmuir : The ACS Journal of Surfaces and Colloids 32 (43):11203–11. doi: 10.1021/acs.langmuir.6b01004.
  • Zhu, Z., D. W. Sun, Z. Zhang, Y. Li, and L. Cheng. 2018. Effects of micro-nano bubbles on the nucleation and crystal growth of sucrose and maltodextrin solutions during ultrasound-assisted freezing process. LWT 92:404–11. doi: 10.1016/j.lwt.2018.02.053.
  • Zúñiga, R. N., and J. M. Aguilera. 2009. Structure–fracture relationships in gas-filled gelatin gels. Food Hydrocolloids 23 (5):1351–7. doi: 10.1016/j.foodhyd.2008.11.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.