1,838
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Plant-derived proteins as a sustainable source of bioactive peptides: recent research updates on emerging production methods, bioactivities, and potential application

ORCID Icon, , , , ORCID Icon & ORCID Icon

References

  • Agrawal, H., R. Joshi, and M. Gupta. 2016. Isolation, purification and characterization of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food Chemistry 204:365–72. doi: 10.1016/j.foodchem.2016.02.127.
  • Agrawal, H., R. Joshi, and M. Gupta. 2017. Isolation and characterisation of enzymatic hydrolysed peptides with antioxidant activities from green tender sorghum. Lwt 84:608–16. doi: 10.1016/j.lwt.2017.06.036.
  • Agrawal, H., R. Joshi, and M. Gupta. 2019. Purification, identification and characterization of two novel antioxidant peptides from finger millet (Eleusine coracana) protein hydrolysate. Food Research International 120:697–707. doi: 10.1016/j.foodres.2018.11.028.
  • Agyei, D., A. Tsopmo, and C. C. Udenigwe. 2018. Bioinformatics and peptidomics approaches to the discovery and analysis of food-derived bioactive peptides. Analytical and Bioanalytical Chemistry 410 (15):3463–72. doi: 10.1007/s00216-018-0974-1.
  • Akyüz, A., and S. Ersus. 2021. Optimization of enzyme assisted extraction of protein from the sugar beet (Beta vulgaris L.) leaves for alternative plant protein concentrate production. Food Chemistry 335:127673. doi: 10.1016/j.foodchem.2020.127673.
  • Al-Ruwaih, N., J. Ahmed, M. F. Mulla, and Y. A. Arfat. 2019. High-pressure assisted enzymatic proteolysis of kidney beans protein isolates and characterization of hydrolysates by functional, structural, rheological and antioxidant properties. Lwt 100:231–6. doi: 10.1016/j.lwt.2018.10.074.
  • Arise, R. O., J. J. Idi, I. M. Mic-Braimoh, E. Korode, R. N. Ahmed, and O. Osemwegie. 2019. In vitro Angiotesin-1-converting enzyme, α-amylase and α-glucosidase inhibitory and antioxidant activities of Luffa cylindrical (L.) M. Roem seed protein hydrolysate. Heliyon 5 (5):e01634. doi: 10.1016/j.heliyon.2019.e01634.
  • Awosika, T. O., and R. E. Aluko. 2019. Inhibition of the in vitro activities of α‐amylase, α‐glucosidase and pancreatic lipase by yellow field pea (Pisum sativum L.) protein hydrolysates. International Journal of Food Science & Technology 54 (6):2021–34. doi: 10.1111/ijfs.14087.
  • Ayyash, M., S. Q. Liu, A. Al Mheiri, M. Aldhaheri, B. Raeisi, A. Al-Nabulsi, T. Osaili, and A. Olaimat. 2019. In vitro investigation of health-promoting benefits of fermented camel sausage by novel probiotic Lactobacillus plantarum: A comparative study with beef sausages. Lwt 99:346–54. doi: 10.1016/j.lwt.2018.09.084.
  • Bocquet, A., C. Dupont, J.-P. Chouraqui, D. Darmaun, F. Feillet, M.-L. Frelut, J.-P. Girardet, R. Hankard, A. Lapillonne, J.-C. Rozé, et al. 2019. Efficacy and safety of hydrolyzed rice-protein formulas for the treatment of cow’s milk protein allergy. Archives de Pediatrie : organe Officiel de la Societe Francaise de Pediatrie 26 (4):238–46. doi: 10.1016/j.arcped.2019.03.001.
  • Boukil, A., S. Suwal, J. Chamberland, Y. Pouliot, and A. Doyen. 2018. Ultrafiltration performance and recovery of bioactive peptides after fractionation of tryptic hydrolysate generated from pressure-treated β-lactoglobulin. Journal of Membrane Science 556:42–53. doi: 10.1016/j.memsci.2018.03.079.
  • Brown, T. D., K. A. Whitehead, and S. Mitragotri. 2020. Materials for oral delivery of proteins and peptides. Nature Reviews Materials 5 (2):127–48. doi: 10.1038/s41578-019-0156-6.
  • Burger, T. G., and Y. Zhang. 2019. Recent progress in the utilization of pea protein as an emulsifier for food applications. Trends in Food Science & Technology 86:25–33. doi: 10.1016/j.tifs.2019.02.007.
  • Canistro, D., F. Vivarelli, L. Ugolini, C. Pinna, M. Grandi, I. C. Antonazzo, S. Cirillo, A. Sapone, S. Cinti, L. Lazzeri, et al. 2017. Digestibility, toxicity and metabolic effects of rapeseed and sunflower protein hydrolysates in mice. Italian Journal of Animal Science 16 (3):462–73. doi: 10.1080/1828051X.2017.1298410.
  • Capriotti, A. L., C. Cavaliere, S. Piovesana, R. Samperi, and A. Laganà. 2016. Recent trends in the analysis of bioactive peptides in milk and dairy products. Analytical and Bioanalytical Chemistry 408 (11):2677–85. doi: 10.1007/s00216-016-9303-8.
  • Chai, K. F., A. Y. H. Voo, and W. N. Chen. 2020. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Comprehensive Reviews in Food Science and Food Safety 19 (6):3825–85. doi: 10.1111/1541-4337.12651.
  • Chakrabarti, S., S. Guha, and K. Majumder. 2018. Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients 10 (11):1738. doi: 10.3390/nu10111738.
  • Chalamaiah, M.,S. Keskin Ulug,H. Hong, andJ. Wu. 2019. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. Journal of Functional Foods 58:123–9. doi:10.1016/j.jff.2019.04.050.
  • Chen, M. L., P. Ning, Y. Jiao, Z. Xu, and Y. H. Cheng. 2021. Extraction of antioxidant peptides from rice dreg protein hydrolysate via an angling method. Food Chemistry 337:128069. doi: 10.1016/j.foodchem.2020.128069.
  • Chen, Z., Y. Li, S. Lin, M. Wei, F. Du, and G. Ruan. 2014. Development of continuous microwave-assisted protein digestion with immobilized enzyme. Biochemical and Biophysical Research Communications 445 (2):491–6. doi: 10.1016/j.bbrc.2014.02.025.
  • Cheng, A. C., H. L. Lin, Y. L. Shiu, Y. C. Tyan, and C. H. Liu. 2017. Isolation and characterization of antimicrobial peptides derived from Bacillus subtilis E20-fermented soybean meal and its use for preventing Vibrio infection in shrimp aquaculture. Fish & Shellfish Immunology 67:270–9. doi: 10.1016/j.fsi.2017.06.006.
  • Cicero, A. F., F. Fogacci, and A. Colletti. 2017. Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review. British Journal of Pharmacology 174 (11):1378–94. doi: 10.1111/bph.13608.
  • Contreras, M. D. M., M. A. Sevilla, J. Monroy-Ruiz, L. Amigo, B. Gómez-Sala, E. Molina, M. Ramos, and I. Recio. 2011. Food-grade production of an antihypertensive casein hydrolysate and resistance of active peptides to drying and storage. International Dairy Journal 21 (7):470–6. doi: 10.1016/j.idairyj.2011.02.004.
  • Da Silva, R. R. 2017. Bacterial and fungal proteolytic enzymes: Production, catalysis and potential applications. Applied Biochemistry and Biotechnology 183 (1):1–19. doi: 10.1007/s12010-017-2427-2.
  • Ding, J., R. Liang, Y. Yang, N. Sun, and S. Lin. 2020. Optimization of pea protein hydrolysate preparation and purification of antioxidant peptides based on an in silico analytical approach. Lwt 123:109126. doi: 10.1016/j.lwt.2020.109126.
  • Elam, E., J. Feng, Y. M. Lv, Z. J. Ni, P. Sun, K. Thakur, J. G. Zhang, Y. L. Ma, and Z. J. Wei. 2021. Recent advances on bioactive food derived anti-diabetic hydrolysates and peptides from natural resources. Journal of Functional Foods 86:104674. doi: 10.1016/j.jff.2021.104674.
  • Ennaas, N., R. Hammami, L. Beaulieu, and I. Fliss. 2015. Purification and characterization of four antibacterial peptides from protamex hydrolysate of Atlantic mackerel (Scomber scombrus) by-products. Biochemical and Biophysical Research Communications 462 (3):195–200. doi: 10.1016/j.bbrc.2015.04.091.
  • Fasolin, L. H., R. N. Pereira, A. C. Pinheiro, J. T. Martins, C. C. P. Andrade, O. L. Ramos, and A. A. Vicente. 2019. Emergent food proteins - Towards sustainability, health and innovation. Food Research International (Ottawa, Ont.) 125:108586. doi: 10.1016/j.foodres.2019.108586.
  • Feng, Y. X., G. R. Ruan, F. Jin, J. Xu, and F. J. Wang. 2018. Purification, identification, and synthesis of five novel antioxidant peptides from Chinese chestnut (Castanea mollissima Blume) protein hydrolysates. Lwt 92:40–6. doi: 10.1016/j.lwt.2018.01.006.
  • Fetzer, A., K. Müller, M. Schmid, and P. Eisner. 2020. Rapeseed proteins for technical applications: Processing, isolation, modification and functional properties–A review. Industrial Crops and Products 158:112986. doi: 10.1016/j.indcrop.2020.112986.
  • Fu, Y.,W. Wu,M. Zhu, andZ. Xiao. 2016. In Silico Assessment of the Potential of Patatin as a Precursor of Bioactive Peptides. Journal of Food Biochemistry 40 (3):366–70. doi:10.1111/jfbc.12213.
  • Fu, Y.,W. Liu, andO. P. Soladoye. 2020. Towards potato protein utilisation: insights into separation, functionality and bioactivity of patatin. International Journal of Food Science & Technology 55 (6):2314–22. doi:10.1111/ijfs.14343.
  • Fu, Y.,A. M. Alashi,J. F. Young,M. Therkildsen, andR. E. Aluko. 2017. Enzyme inhibition kinetics and molecular interactions of patatin peptides with angiotensin I-converting enzyme and renin. International Journal of Biological Macromolecules 101:207–13. doi:10.1016/j.ijbiomac.2017.03.054.
  • Gao, J., T. Li, D. Chen, H. Gu, and X. Mao. 2021. Identification and molecular docking of antioxidant peptides from hemp seed protein hydrolysates. Lwt 147:111453. doi: 10.1016/j.lwt.2021.111453.
  • Garcia-Mora, P., E. Peñas, J. Frias, H. Zieliński, W. Wiczkowski, D. Zielińska, and C. Martínez-Villaluenga. 2016. High-pressure-assisted enzymatic release of peptides and phenolics increases angiotensin converting enzyme I inhibitory and antioxidant activities of pinto bean hydrolysates. Journal of Agricultural and Food Chemistry 64 (8):1730–40. doi: 10.1021/acs.jafc.5b06080.
  • García-Mora, P., M. Martín-Martínez, M. A. Bonache, R. González-Múniz, E. Peñas, J. Frias, and C. Martinez-Villaluenga. 2017. Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chemistry 221:464–72. doi: 10.1016/j.foodchem.2016.10.087.
  • Geng, X., G. Tian, W. Zhang, Y. Zhao, L. Zhao, H. Wang, and T. B. Ng. 2016. A Tricholoma matsutake peptide with angiotensin converting enzyme inhibitory and antioxidative activities and antihypertensive effects in spontaneously hypertensive rats. Scientific Reports 6 (1):24130–9. doi: 10.1038/srep24130.
  • Gianfranceschi, G. L., G. Gianfranceschi, L. Quassinti, and M. Bramucci. 2018. Biochemical requirements of bioactive peptides for nutraceutical efficacy. Journal of Functional Foods 47:252–63. doi: 10.1016/j.jff.2018.05.034.
  • Gleeson, J. P., D. J. Brayden, and S. M. Ryan. 2017. Evaluation of PepT1 transport of food-derived antihypertensive peptides, Ile-Pro-Pro and Leu-Lys-Pro using in vitro, ex vivo and in vivo transport models. European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 115:276–84. doi: 10.1016/j.ejpb.2017.03.007.
  • Gleeson, J. P., J. Heade, S. M. Ryan, and D. J. Brayden. 2015. Stability, toxicity and intestinal permeation enhancement of two food-derived antihypertensive tripeptides, Ile-Pro-Pro and Leu-Lys-Pro. Peptides 71:1–7. doi: 10.1016/j.peptides.2015.05.009.
  • González-Montoya, M., B. Hernández-Ledesma, J. M. Silván, R. Mora-Escobedo, and C. Martínez-Villaluenga. 2018. Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chemistry 242:75–82. doi: 10.1016/j.foodchem.2017.09.035.
  • Görgüç, A., E. Gençdağ, and F. M. Yılmaz. 2020. Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments–A review. Food Research International 136:109504. doi: 10.1016/j.foodres.2020.109504.
  • Görgüç, A., P. Özer, and F. M. Yilmaz. 2020. Simultaneous effect of vacuum and ultrasound assisted enzymatic extraction on the recovery of plant protein and bioactive compounds from sesame bran. Journal of Food Composition and Analysis 87:103424. doi: 10.1016/j.jfca.2020.103424.
  • Guan, H., X. Diao, F. Jiang, J. Han, and B. Kong. 2018. The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates. Food Chemistry 245:89–96. doi: 10.1016/j.foodchem.2017.08.081.
  • Guerra-Almonacid, C. M., J. G. Torruco-Uco, W. M. A. Jonh Jairo M´endez-Arteaga, and J. Rodríguez-Miranda. 2019. Effect of ultrasound pretreatment on the antioxidant capacity and antihypertensive activity of bioactive peptides obtained from the protein hydrolysates of Erythrina edulis. Emirates Journal of Food and Agriculture 31:288–96. doi: 10.1016/j.foodchem.2017.08.081.
  • Gupta, S., P. Kapoor, K. Chaudhary, A. Gautam, R. Kumar, and G. P. S. Raghava. 2013. In Silico approach for predicting toxicity of Peptides and Proteins. PLoS One. 8 (9):e73957. doi: 10.1371/journal.pone.0073957.
  • Habinshuti, I., T. H. Mu, and M. Zhang. 2020. Ultrasound microwave-assisted enzymatic production and characterisation of antioxidant peptides from sweet potato protein. Ultrasonics Sonochemistry 69:105262. doi: 10.1016/j.ultsonch.2020.105262.
  • Hall, F., and A. Liceaga. 2020. Effect of microwave-assisted enzymatic hydrolysis of cricket (Gryllodes sigillatus) protein on ACE and DPP-IV inhibition and tropomyosin-IgG binding. Journal of Functional Foods 64:103634. doi: 10.1016/j.jff.2019.103634.
  • Hernández-Corroto, E., M. L. Marina, and M. C. García. 2019. Extraction and identification by high resolution mass spectrometry of bioactive substances in different extracts obtained from pomegranate peel. Journal of Chromatography. A 1594:82–92. doi: 10.1016/j.chroma.2019.02.018.
  • Heymich, M. L., U. Friedlein, M. Trollmann, K. Schwaiger, R. A. Böckmann, and M. Pischetsrieder. 2021. Generation of antimicrobial peptides Leg1 and Leg2 from chickpea storage protein, active against food spoilage bacteria and foodborne pathogens. Food Chemistry 347:128917. doi: 10.1016/j.foodchem.2020.128917.
  • Hu, R., G. Chen, and Y. Li. 2020. Production and characterization of antioxidative hydrolysates and peptides from corn gluten meal using papain, ficin, and bromelain. Molecules 25 (18):4091. doi: 10.3390/molecules25184091.
  • Iwatani, S, andN. Yamamoto. 2019. Functional food products in Japan: A review. Food Science and Human Wellness 8 (2):96–101. doi:10.1016/j.fshw.2019.03.011.
  • Ji, D., C. C. Udenigwe, and D. Agyei. 2019. Antioxidant peptides encrypted in flaxseed proteome: An in silico assessment. Food Science and Human Wellness 8 (3):306–14. doi: 10.1016/j.fshw.2019.08.002.
  • Jin, J., I. C. Ohanenye, and C. C. Udenigwe. 2022. Buckwheat proteins: Functionality, safety, bioactivity, and prospects as alternative plant-based proteins in the food industry. Critical Reviews in Food Science and Nutrition 62 (7):1752–64. doi: 10.1080/10408398.2020.1847027.
  • Kamal, H., P. Mudgil, B. Bhaskar, A. F. Fisayo, C. Y. Gan, and S. Maqsood. 2021. Amaranth proteins as potential source of bioactive peptides with enhanced inhibition of enzymatic markers linked with hypertension and diabetes. Journal of Cereal Science 101:103308. doi: 10.1016/j.jcs.2021.103308.
  • Kang, N. J., H. S. Jin, S. E. Lee, H. J. Kim, H. Koh, and D. W. Lee. 2020. New approaches towards the discovery and evaluation of bioactive peptides from natural resources. Critical Reviews in Environmental Science and Technology 50 (1):72–103. doi: 10.1080/10643389.2019.1619376.
  • Karami, Z., S. H. Peighambardoust, J. Hesari, B. Akbari-Adergani, and D. Andreu. 2019. Antioxidant, anticancer and ACE-inhibitory activities of bioactive peptides from wheat germ protein hydrolysates. Food Bioscience 32:100450. doi: 10.1016/j.fbio.2019.100450.
  • Karkouch, I., O. Tabbene, D. Gharbi, M. A. B. Mlouka, S. Elkahoui, C. Rihouey, L. Coquet, P. Cosette, T. Jouenne, and F. Limam. 2017. Antioxidant, antityrosinase and antibiofilm activities of synthesized peptides derived from Vicia faba protein hydrolysate: A powerful agents in cosmetic application. Industrial Crops and Products 109:310–9. doi: 10.1016/j.indcrop.2017.08.025.
  • Kumar, L., R. Sehrawat, and Y. Kong. 2021. Oat proteins: A perspective on functional properties. Lwt 152:112307. doi: 10.1016/j.lwt.2021.112307.
  • Kumar, M., M. Tomar, J. Potkule, R. Verma, S. Punia, A. Mahapatra, T. Belwal, A. Dahuja, S. Joshi, M. K. Berwal, et al. 2021b. Advances in the plant protein extraction: Mechanism and recommendations. Food Hydrocolloids. 115:106595. doi: 10.1016/j.foodhyd.2021.106595.
  • Kumar, M., M. Tomar, J. Potkule, S. Punia, J. Dhakane, S. Singh, S. Dhumal, P. C. Pradhan, B. Bhushan, T. Anitha, et al. 2021a. Functional characterization of plant-based protein to determine its quality for food applications. Food Hydrocolloids 123:106986. doi: 10.1016/j.foodhyd.2021.106986.
  • Lafarga, T., F. G. Acién-Fernández, and M. Garcia-Vaquero. 2020. Bioactive peptides and carbohydrates from seaweed for food applications: Natural occurrence, isolation, purification, and identification. Algal Research 48:101909. doi: 10.1016/j.algal.2020.101909.
  • Lammi, C., G. Aiello, G. Boschin, and A. Arnoldi. 2019a. Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. Journal of Functional Foods 55:135–45. doi: 10.1016/j.jff.2019.02.016.
  • Li, H., K. Zhu, H. Zhou, W. Peng, and X. Guo. 2016. Comparative study of four physical approaches about allergenicity of soybean protein isolate for infant formula. Food and Agricultural Immunology 27 (5):604–23. doi: 10.1080/09540105.2015.1129602.
  • Li, H., N. Prairie, C. C. Udenigwe, A. P. Adebiyi, P. S. Tappia, H. M. Aukema, P. J. Jones, and R. E. Aluko. 2011. Blood pressure lowering effect of a pea protein hydrolysate in hypertensive rats and humans. Journal of Agricultural and Food Chemistry 59 (18):9854–60. doi: 10.1021/jf201911p.
  • Li, M., Y. Zhang, S. Xia, and X. Ding. 2019. Finding and isolation of novel peptides with anti-proliferation ability of hepatocellular carcinoma cells from mung bean protein hydrolysates. Journal of Functional Foods 62:103557. doi: 10.1016/j.jff.2019.103557.
  • Liang, Q., X. Ren, H. Ma, S. Li, K. Xu, and A. O. Oladejo. 2017. Effect of low-frequency ultrasonic-assisted enzymolysis on the physicochemical and antioxidant properties of corn protein hydrolysates. Journal of Food Quality 2017:1–10. doi: 10.1155/2017/2784146.
  • Li-Chan, E. C. 2015. Bioactive peptides and protein hydrolysates: Research trends and challenges for application as nutraceuticals and functional food ingredients. Current Opinion in Food Science 1:28–37. doi: 10.1016/j.cofs.2014.09.005.
  • Limón, R. I., E. Peñas, M. I. Torino, C. Martínez-Villaluenga, M. Dueñas, and J. Frias. 2015. Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chemistry 172:343–52. doi: 10.1016/j.foodchem.2014.09.084.
  • Lin, S., R. Liang, X. Li, J. Xing, and Y. Yuan. 2016. Effect of pulsed electric field (PEF) on structures and antioxidant activity of soybean source peptides-SHCMN. Food Chemistry 213:588–94. doi: 10.1016/j.foodchem.2016.07.017.
  • Lin, S., Y. Jin, M. Liu, Y. Yang, M. Zhang, Y. Guo, G. Jones, J. Liu, and Y. Yin. 2013. Research on the preparation of antioxidant peptides derived from egg white with assisting of high-intensity pulsed electric field. Food Chemistry 139 (1–4):300–6. doi: 10.1016/j.foodchem.2013.01.048.
  • Liu, C., D. Ren, J. Li, L. Fang, J. Wang, J. Liu, and W. Min. 2018. Cytoprotective effect and purification of novel antioxidant peptides from hazelnut (C. heterophylla Fisch) protein hydrolysates. Journal of Functional Foods 42:203–15. doi: 10.1016/j.jff.2017.12.003.
  • Liu, L., S. Li, J. Zheng, T. Bu, G. He, and J. Wu. 2020. Safety considerations on food protein-derived bioactive peptides. Trends in Food Science & Technology 96:199–207. doi: 10.1016/j.tifs.2019.12.022.
  • Liu, X., G. Li, H. Wang, N. Qin, L. Guo, X. Wang, and S. Shen. 2021. Identification, characterization and antihypertensive effect in vivo of a novel ace-inhibitory heptapeptide from defatted areca nut kernel globulin hydrolysates. Molecules 26 (11):3308. doi: 10.3390/molecules26113308.
  • Lo, B., S. Kasapis, and A. Farahnaky. 2021. Lupin protein: Isolation and techno-functional properties, a review. Food Hydrocolloids. 112:106318. doi: 10.1016/j.foodhyd.2020.106318.
  • Ma, F. F., H. Wang, C. K. Wei, K. Thakur, Z. J. Wei, and L. Jiang. 2019. Three novel ACE inhibitory peptides isolated from Ginkgo biloba seeds: Purification, inhibitory kinetic and mechanism. Frontiers in Pharmacology 9:1579. doi: 10.3389/fphar.2018.01579.
  • Maestri, E.,M. Marmiroli, andN. Marmiroli. 2016. Bioactive peptides in plant-derived foodstuffs. Journal of Proteomics 147:140–55. doi:10.1016/j.jprot.2016.03.048.
  • Ma, J. J., X. Y. Mao, Q. Wang, S. Yang, D. Zhang, S. W. Chen, and Y. H. Li. 2014. Effect of spray drying and freeze drying on the immunomodulatory activity, bitter taste and hygroscopicity of hydrolysate derived from whey protein concentrate. LWT - Food Science and Technology 56 (2):296–302. doi: 10.1016/j.lwt.2013.12.019.
  • Mala, T., M. B. Sadiq, and A. K. Anal. 2021. Comparative extraction of bromelain and bioactive peptides from pineapple byproducts by ultrasonic‐and microwave‐assisted extractions. Journal of Food Process Engineering 44 (6):e13709. doi: 10.1111/jfpe.13709.
  • Malaguti, M., G. Dinelli, E. Leoncini, V. Bregola, S. Bosi, A. F. Cicero, and S. Hrelia. 2014. Bioactive peptides in cereals and legumes: Agronomical, biochemical and clinical aspects. International Journal of Molecular Sciences 15 (11):21120–35. doi: 10.3390/ijms151121120.
  • Manzanares, P., M. Gandía, S. Garrigues, and J. F. Marcos. 2019. Improving health-promoting effects of food-derived bioactive peptides through rational design and oral delivery strategies. Nutrients 11 (10):2545. doi: 10.3390/nu11102545.
  • Marciniak, A., S. Suwal, N. Naderi, Y. Pouliot, and A. Doyen. 2018. Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science & Technology 80:187–98. doi: 10.1016/j.tifs.2018.08.013.
  • Mazorra-Manzano, M. A., J. C. Ramírez-Suarez, and R. Y. Yada. 2018. Plant proteases for bioactive peptides release: A review. Critical Reviews in Food Science and Nutrition 58 (13):2147–63. doi: 10.1080/10408398.2017.1308312.
  • McClements, D. J. 2018. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Advances in Colloid and Interface Science 253:1–22. doi: 10.1016/j.cis.2018.02.002.
  • Megías, C., J. Pedroche, M. M. Yust, J. Girón-Calle, M. Alaiz, F. Millán, and J. Vioque. 2008. Production of copper-chelating peptides after hydrolysis of sunflower proteins with pepsin and pancreatin. LWT - Food Science and Technology 41 (10):1973–7. doi: 10.1016/j.lwt.2007.11.010.
  • Miguel, M., M. A. Aleixandre, M. Ramos, and R. Lopez-Fandino. 2006. Effect of simulated gastrointestinal digestion on the antihypertensive properties of ACE-inhibitory peptides derived from ovalbumin. Journal of Agricultural and Food Chemistry 54 (3):726–31. doi: 10.1021/jf051101p.
  • Moayedi, A., L. Mora, M. C. Aristoy, M. Safari, M. Hashemi, and F. Toldrá. 2018. Peptidomic analysis of antioxidant and ACE-inhibitory peptides obtained from tomato waste proteins fermented using Bacillus subtilis. Food Chemistry 250:180–7. doi: 10.1016/j.foodchem.2018.01.033.
  • Mohanty, D. P., S. Mohapatra, S. Misra and, and P. S. Sahu. 2016. Milk derived bioactive peptides and their impact on human health - A review. Saudi Journal of Biological Sciences 23 (5):577–83. doi: 10.1016/j.sjbs.2015.06.005.
  • Mudgil, P., B. Baby, H. Kamal, Y.-Y. Ngoh, R. Vijayan, C. Y. Gan, and S. Maqsood. 2019. Molecular binding mechanism and identification of novel antihypertensive peptides from camel milk protein hydrolysates. LWT 112:108193. doi: 10.1016/j.lwt.2019.05.091.
  • Mudgil, P., B. P. Kilari, H. Kamal, O. A. Olalere, R. J. FitzGerald, C. Y. Gan, and S. Maqsood. 2020. Multifunctional bioactive peptides derived from quinoa protein hydrolysates: Inhibition of α-glucosidase, dipeptidyl peptidase-IV and angiotensin I converting enzymes. Journal of Cereal Science 96:103130. doi: 10.1016/j.jcs.2020.103130.
  • Mudgil, P., L. S. Omar, H. Kamal, B. P. Kilari, and S. Maqsood. 2019. Multi-functional bioactive properties of intact and enzymatically hydrolysed quinoa and amaranth proteins. LWT- Food Science and Technology 110:207–13. doi: 10.1016/j.lwt.2019.04.084.
  • Nongonierma, A. B., and R. J. FitzGerald. 2016. Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides. Trends in Food Science & Technology 50:26–43. doi: 10.1016/j.tifs.2016.01.022.
  • Nuchprapha, A., S. Paisansak, P. Sangtanoo, P. Srimongkol, T. Saisavoey, O. Reamtong, K. Choowongkomon, and A. Karnchanatat. 2020. Two novel ACE inhibitory peptides isolated from longan seeds: Purification, inhibitory kinetics and mechanisms. RSC Advances 10 (22):12711–20. doi: 10.1039/D0RA00093K.
  • O’Brien, P.. 2015. Regulation of functional foods in China: A framework in flux. Regulatory Rapporteur 12 (7):8.
  • Olivera‐Montenegro, L., I. Best, and A. Gil‐Saldarriaga. 2021. Effect of pretreatment by supercritical fluids on antioxidant activity of protein hydrolyzate from quinoa (Chenopodium quinoa Willd.). Food Science & Nutrition 9 (1):574–82. doi: 10.1002/fsn3.2027.
  • Orio, L. P., G. Boschin, T. Recca, C. F. Morelli, L. Ragona, P. Francescato, A. Arnoldi, and G. Speranza. 2017. New ACE-inhibitory peptides from hemp seed (Cannabis sativa L.) proteins. Journal of Agricultural and Food Chemistry 65 (48):10482–8. doi: 10.1021/acs.jafc.7b04522.
  • Oseguera-Toledo, M. E., E. G. de Mejia, and S. L. Amaya-Llano. 2015. Hard-to-cook bean (Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food Research International 76:839–51. doi: 10.1016/j.foodres.2015.07.046.
  • Ozuna, C., I. Paniagua-Martínez, E. Castaño-Tostado, L. Ozimek, and S. L. Amaya-Llano. 2015. Innovative applications of high-intensity ultrasound in the development of functional food ingredients: Production of protein hydrolysates and bioactive peptides. Food Research International 77:685–96. doi: 10.1016/j.foodres.2015.10.015.
  • Pal, G. K., and P. V. Suresh. 2017. Comparative assessment of physico-chemical characteristics and fibril formation capacity of thermostable carp scales collagen. Materials Science & Engineering. C, Materials for Biological Applications 70 (Pt 1):32–40. doi: 10.1016/j.msec.2016.08.047.
  • Patil, P. J.,M. Usman,C. Zhang,A. Mehmood,M. Zhou,C. Teng, andX. Li. 2022. An updated review on food‐derived bioactive peptides: Focus on the regulatory requirements, safety, and bioavailability. Comprehensive Reviews in Food Science and Food Safety 21 (2):1732–76. doi:10.1111/1541-4337.12911.
  • Perreault, V., L. Hénaux, L. Bazinet, and A. Doyen. 2017. Pretreatment of flaxseed protein isolate by high hydrostatic pressure: Impacts on protein structure, enzymatic hydrolysis and final hydrolysate antioxidant capacities. Food Chemistry 221:1805–12. doi: 10.1016/j.foodchem.2016.10.100.
  • Pham, L. B., B. Wang, B. Zisu, and B. Adhikari. 2019. Complexation between flaxseed protein isolate and phenolic compounds: Effects on interfacial, emulsifying and antioxidant properties of emulsions. Food Hydrocolloids. 94:20–9. doi: 10.1016/j.foodhyd.2019.03.007.
  • Piccolomini, A., M. Iskandar, L. Lands, and S. Kubow. 2012. High hydrostatic pressure pre-treatment of whey proteins enhances whey protein hydrolysate inhibition of oxidative stress and IL-8 secretion in intestinal epithelial cells. Food & Nutrition Research 56 (1):17549. doi: 10.3402/fnr.v56i0.17549.
  • Pihlanto, A., T. Johansson, and S. Mäkinen. 2012. Inhibition of angiotensin I-converting enzyme and lipid peroxidation by fermented rapeseed and flaxseed meal. Engineering in Life Sciences 12 (4):450–6. doi: 10.1002/elsc.201100137.
  • Pooja, K., S. Rani, and B. Prakash. 2017b. In silico approaches towards the exploration of rice bran proteins-derived angiotensin-I-converting enzyme inhibitory peptides. International Journal of Food Properties 20:1–2191. doi: 10.1080/10942912.2017.1368552.
  • Pooja, K., S. Rani, B. Kanwate, and G. K. Pal. 2017a. Physico-chemical, sensory and toxicity characteristics of dipeptidyl peptidase-IV inhibitory peptides from rice bran-derived globulin using computational approaches. International Journal of Peptide Research and Therapeutics 23 (4):519–29. doi: 10.1007/s10989-017-9586-4.
  • Ramachandraiah, K., B. B. Koh, M. Davaatseren, and G. P. Hong. 2017. Characterization of soy protein hydrolysates produced by varying subcritical water processing temperature. Innovative Food Science & Emerging Technologies 43:201–6. doi: 10.1016/j.ifset.2017.08.011.
  • Ramírez, K., K. V. Pineda-Hidalgo, and J. J. Rochín-Medina. 2021. Fermentation of spent coffee grounds by Bacillus clausii induces release of potentially bioactive peptides. Lwt 138:110685. doi: 10.1016/j.lwt.2020.110685.
  • Rani, S., K. Pooja, and G. K. Pal. 2018. Exploration of rice protein hydrolysates and peptides with special reference to antioxidant potential: Computational derived approaches for bio-activity determination. Trends in Food Science & Technology 80:61–70. doi: 10.1016/j.tifs.2018.07.013.
  • Raveschot, C., B. Cudennec, F. Coutte, C. Flahaut, M. Fremont, D. Drider, and P. Dhulster. 2018. Production of bioactive peptides by Lactobacillus species: From gene to application. Frontiers in Microbiology 9:2354. doi: 10.3389/fmicb.2018.02354.
  • Rizzello, C. G., D. Tagliazucchi, E. Babini, G. S. Rutella, D. L. T. Saa, and A. Gianotti. 2016. Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. Journal of Functional Foods 27:549–69. doi: 10.1016/j.jff.2016.09.023.
  • Rodrigues, I. M., J. F. Coelho, and M. G. V. Carvalho. 2012. Isolation and valorisation of vegetable proteins from oilseed plants: Methods, limitations and potential. Journal of Food Engineering 109 (3):337–46. doi: 10.1016/j.jfoodeng.2011.10.027.
  • Saavedra, L., E. M. Hebert, C. Minahk, and P. Ferranti. 2013. An overview of Bomic^ analytical methods applied in bioactive peptide studies. Food Research International 54 (1):925–34. doi: 10.1016/j.foodres.2013.02.034.
  • Sánchez-Zurano, A., A. Morillas-España, C. V. González-López, and T. Lafarga. 2020. Optimisation of protein recovery from Arthrospira platensis by ultrasound-assisted isoelectric solubilisation/precipitation. Processes 8 (12):1586. doi: 10.3390/pr8121586.
  • Santiago‐López, L., A. Hernández‐Mendoza, B. Vallejo‐Cordoba, V. Mata‐Haro, and A. F. González Córdova. ‐ 2016. Food‐derived immunomodulatory peptides. Journal of the Science of Food and Agriculture 96 (11):3631–41. doi: 10.1002/jsfa.7697.
  • Singh, B. P., and S. Vij. 2017. Growth and bioactive peptides production potential of Lactobacillus plantarum strain C2 in soy milk: A LC-MS/MS based revelation for peptides biofunctionality. Lwt 86:293–301. doi: 10.1016/j.lwt.2017.08.013.
  • Singh, B. P., and S. Vij. 2018. In vitro stability of bioactive peptides derived from fermented soy milk against heat treatment, pH and gastrointestinal enzymes. Lwt 91:303–7. doi: 10.1016/j.lwt.2018.01.066.
  • Singh, B. P., R. E. Aluko, S. Hati, and D. Solanki. 2021. Bioactive peptides in the management of lifestyle-related diseases: Current trends and future perspectives. Critical Reviews in Food Science and Nutrition :1–14. doi: 10.1080/10408398.2021.1877109.
  • Singh, B. P., S. Vij, and S. Hati. 2014. Functional significance of bioactive peptides derived from soybean. Peptides 54:171–9. doi: 10.1016/j.peptides.2014.01.022.
  • Sirtori, C. R., M. Triolo, R. Bosisio, A. Bondioli, L. Calabresi, V. De Vergori, M. Gomaraschi, G. Mombelli, F. Pazzucconi, C. Zacherl, et al. 2012. Hypocholesterolaemic effects of lupin protein and pea protein/fibre combinations in moderately hypercholesterolaemic individuals. British Journal of Nutrition 107 (8):1176–83. doi: 10.1017/S0007114511004120.
  • Sompinit, K., S. Lersiripong, O. Reamtong, W. Pattarayingsakul, N. Patikarnmonthon, and W. Panbangred. 2020. In vitro study on novel bioactive peptides with antioxidant and antihypertensive properties from edible rhizomes. Lwt 134:110227. doi: 10.1016/j.lwt.2020.110227.
  • Sun, L., S. Zhang, H. Ju, Z. Bao, and S. Lin. 2020. Tryptophan targeted pulsed electric field treatment for enhanced immune activity in pine nut peptides. Journal of Food Biochemistry 44 (6):e13224. doi: 10.1111/jfbc.13224.
  • Sutopo, C. C., A. Sutrisno, L. F. Wang, and J. L. Hsu. 2020. Identification of a potent angiotensin-I converting enzyme inhibitory peptide from black cumin seed hydrolysate using orthogonal bioassay-guided fractionations coupled with in silico screening. Process Biochemistry 95:204–13. doi: 10.1016/j.procbio.2020.02.010.
  • Tacias-Pascacio, V. G., R. Morellon-Sterling, E. H. Siar, O. Tavano, A. Berenguer-Murcia, and R. Fernandez-Lafuente. 2020. Use of Alcalase in the production of bioactive peptides: A review. International Journal of Biological Macromolecules 165 (Pt B):2143–96. doi: 10.1016/j.ijbiomac.2020.10.060.
  • Taghizadeh, M. S., A. Niazi, A. Moghadam, and A. R. Afsharifar. 2021. Novel bioactive peptides of Achillea eriophora show anticancer and antioxidant activities. Bioorganic Chemistry 110:104777. doi: 10.1016/j.bioorg.2021.104777.
  • Taniguchi, M., M. Kameda, T. Namae, A. Ochiai, E. Saitoh, and T. Tanaka. 2017. Identification and characterization of multifunctional cationic peptides derived from peptic hydrolysates of rice bran protein. Journal of Functional Foods 34:287–96. doi: 10.1016/j.jff.2017.04.046.
  • Tian, R., J. Feng, G. Huang, B. Tian, Y. Zhang, L. Jiang, and X. Sui. 2020. Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates. Ultrasonics Sonochemistry 68:105202. doi: 10.1016/j.ultsonch.2020.105202.
  • Tokede, O. A., T. A. Onabanjo, A. Yansane, J. M. Gaziano, and L. Djoussé. 2015. Soya products and serum lipids: A meta-analysis of randomised controlled trials. The British Journal of Nutrition 114 (6):831–43. doi: 10.1017/S0007114515002603.
  • Tonolo, F., L. Moretto, A. Folda, V. Scalcon, A. Bindoli, M. Bellamio, E. Feller, and M. P. Rigobello. 2019. Antioxidant properties of fermented soy during shelf life. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 74 (3):287–92. doi: 10.1007/s11130-019-00738-6.
  • Tsai, B. C. K., W. W. Kuo, C. H. Day, D. J. Y. Hsieh, C. H. Kuo, J. Daddam, R. J. Chen, V. V. Padma, G. Wang, and C. Y. Huang. 2020. The soybean bioactive peptide VHVV alleviates hypertension-induced renal damage in hypertensive rats via the SIRT1-PGC1α/Nrf2 pathway. Journal of Functional Foods 75:104255. doi: 10.1016/j.jff.2020.104255.
  • Tsumura, K., T. Saito, K. Tsuge, H. Ashida, W. Kugimiya, and K. Inouye. 2005. Functional properties of soy protein hydrolysates obtained by selective proteolysis. LWT - Food Science and Technology 38 (3):255–61. doi: 10.1016/j.lwt.2004.06.007.
  • Tu, M., S. Cheng, W. Lu, and M. Du. 2018. Advancement and prospects of bioinformatics analysis for studying bioactive peptides from food-derived protein: Sequence, structure, and functions. TrAC Trends in Analytical Chemistry 105:7–17. doi: 10.1016/j.trac.2018.04.005.
  • Udenigwe, C. C., R. O. Abioye, I. U. Okagu, and J. I. Obeme-Nmom. 2021. Bioaccessibility of bioactive peptides: Recent advances and perspectives. Current Opinion in Food Science 39:182–9. doi: 10.1016/j.cofs.2021.03.005.
  • Ulug, S. K., F. Jahandideh, and J. Wu. 2021. Novel technologies for the production of bioactive peptides. Trends in Food Science & Technology 108:27–39. doi: 10.1016/j.tifs.2020.12.002.
  • Uluko, H., H. Li, W. Cui, S. Zhang, L. Liu, J. Chen, Y. Sun, Y. Su, and J. Lv. 2013. Response surface optimization of angiotensin converting enzyme inhibition of milk protein concentrate hydrolysates in vitro after ultrasound pretreatment. Innovative Food Science & Emerging Technologies 20:133–9. doi: 10.1016/j.ifset.2013.08.012.
  • Uluko, H., S. Zhang, L. Liu, M. Tsakama, J. Lu, and J. Lv. 2015. Effects of thermal, microwave, and ultrasound pretreatments on antioxidative capacity of enzymatic milk protein concentrate hydrolysates. Journal of Functional Foods 18:1138–46. doi: 10.1016/j.jff.2014.11.024.
  • Valenta, R., H. Hochwallner, B. Linhart, and S. Pahr. 2015. Food allergies: The basics. Gastroenterology 148 (6):1120–31. doi: 10.1053/j.gastro.2015.02.006.
  • Velliquette, R. A., D. J. Fast, E. R. Maly, A. M. Alashi, and R. E. Aluko. 2020. Enzymatically derived sunflower protein hydrolysate and peptides inhibit NFκB and promote monocyte differentiation to a dendritic cell phenotype. Food Chemistry 319:126563. doi: 10.1016/j.foodchem.2020.126563.
  • Wali, A., H. Ma, M. Shahnawaz, K. Hayat, J. Xiaong, and L. Jing. 2017. Impact of power ultrasound on antihypertensive activity, functional properties, and thermal stability of rapeseed protein hydrolysates. Journal of Chemistry 2017:1–11. doi: 10.1155/2017/4373859.
  • Wali, A., H. Ma, R. M. Aadil, C. Zhou, M. T. Rashid, and X. Liu. 2017. Effects of multifrequency ultrasound pretreatment on the enzymolysis, ACE inhibitory activity, and the structure characterization of rapeseed protein. Journal of Food Processing and Preservation 41 (6):e13413. doi: 10.1111/jfpp.13413.
  • Wang, B., N. Xie, and B. Li. 2019. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review. Journal of Food Biochemistry 43 (1):e12571. doi: 10.1111/jfbc.12571.
  • Wang, J., C. Li, J. Xue, J. Yang, Q. Zhang, H. Zhang, and Chen, Y. 2015. Fermentation characteristics and angiotensin I-converting enzyme-inhibitory activity of Lactobacillus helveticus isolate H9 in cow milk, soy milk, and mare milk. Journal of Dairy Science 98 (6):3655–64. doi: 10.3168/jds.2015-9336.
  • Wang, J., T. Wu, L. Fang, C. Liu, X. Liu, H. Li, J. Shi, M. Li, and W. Min. 2020. Anti-diabetic effect by walnut (Juglans mandshurica Maxim.)-derived peptide LPLLR through inhibiting α-glucosidase and α-amylase, and alleviating insulin resistance of hepatic HepG2 cells. Journal of Functional Foods 69:103944. doi: 10.1016/j.jff.2020.103944.
  • Wang, K., M. Niu, D. Song, Y. Liu, Y. Wu, J. Zhao, S. Li, and B. Lu. 2020. Evaluation of biochemical and antioxidant dynamics during the co-fermentation of dehusked barley with Rhizopus oryzae and Lactobacillus plantarum. Journal of Food Biochemistry 44 (2):e13106. doi: 10.1111/jfbc.13106.
  • Wang, L., L. Ding, Z. Du, and J. Liu. 2020. Effects of hydrophobicity and molecular weight on the transport permeability of oligopeptides across Caco‐2 cell monolayers. Journal of Food Biochemistry 44 (5):e13188. doi: 10.1111/jfbc.13188.
  • Wang, T. Y., C. H. Hsieh, C. C. Hung, C. L. Jao, P. Y. Lin, Y. L. Hsieh, and K. C. Hsu. 2017. A study to evaluate the potential of an in silico approach for predicting dipeptidyl peptidase-IV inhibitory activity in vitro of protein hydrolysates. Food Chemistry 234:431–8. doi: 10.1016/j.foodchem.2017.05.035.
  • Wang, Y., and C. Selomulya. 2020. Spray drying strategy for encapsulation of bioactive peptide powders for food applications. Advanced Powder Technology 31 (1):409–15. doi: 10.1016/j.apt.2019.10.034.
  • World Bank. 2008. Agriculture for development. World Development Report. Washington, DC. Accessed March 10, 2020. www.worldbank.org
  • Wu, Q., X. Zhang, J. Jia, C. Kuang, and H. Yang. 2018. Effect of ultrasonic pretreatment on whey protein hydrolysis by alcalase: Thermodynamic parameters, physicochemical properties and bioactivities. Process Biochemistry 67:46–54. doi: 10.1016/j.procbio.2018.02.007.
  • Xu, Z., T. M. Mao, L. Huang, Z. C. Yu, B. Yin, M. L. Chen, and Y. H. Cheng. 2019. Purification and identification immunomodulatory peptide from rice protein hydrolysates. Food and Agricultural Immunology 30 (1):150–62. doi: 10.1080/09540105.2018.1553938.
  • Xue, L., R. Yin, K. Howell, and P. Zhang. 2021. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides . Comprehensive Reviews in Food Science and Food Safety 20 (2):1150–87. doi: 10.1111/1541-4337.12711.
  • Yang, Q., X. Cai, M. Huang, X. Chen, Y. Tian, G. Chen, M. Wang, S. Wang, and J. Xiao. 2020. Isolation, identification, and immunomodulatory effect of a peptide from Pseudostellaria heterophylla protein hydrolysate. Journal of Agricultural and Food Chemistry 68 (44):12259–70. doi: 10.1021/acs.jafc.0c04353.
  • Yang, R., X. Li, S. Lin, Z. Zhang, and F. Chen. 2017. Identification of novel peptides from 3 to 10 kDa pine nut (Pinus koraiensis) meal protein, with an exploration of the relationship between their antioxidant activities and secondary structure. Food Chemistry 219:311–20. doi: 10.1016/j.foodchem.2016.09.163.
  • Yu, D., Y. Sun, W. Wang, S. F. O’Keefe, A. P. Neilson, H. Feng, Z. Wang, and H. Huang. 2020. Recovery of protein hydrolysates from brewer’s spent grain using enzyme and ultrasonication. International Journal of Food Science & Technology 55 (1):357–68. doi: 10.1111/ijfs.14314.
  • Yu, T., S. Zhao, Z. Li, Y. Wang, B. Xu, D. Fang, F. Wang, Z. Zhang, L. He, X. Song, et al. 2016. Enhanced and extended anti-hypertensive effect of VP5 nanoparticles. International Journal of Molecular Sciences 17 (12):1977. doi: 10.3390/ijms17121977.
  • Zarei, M., A. Ebrahimpour, A. Abdul-Hamid, F. Anwar, F. A. Bakar, R. Philip, and N. Saari. 2014. Identification and characterization of papain-generated antioxidant peptides from palm kernel cake proteins. Food Research International 62:726–34. doi: 10.1016/j.foodres.2014.04.041.
  • Zhang, M., and T. H. Mu. 2017. Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure. Innovative Food Science & Emerging Technologies 43:92–101. doi: 10.1016/j.ifset.2017.08.001.
  • Zhang, P., C. Chang, H. Liu, B. Li, Q. Yan, and Z. Jiang. 2020. Identification of novel angiotensin I-converting enzyme (ACE) inhibitory peptides from wheat gluten hydrolysate by the protease of Pseudomonas aeruginosa. Journal of Functional Foods 65:103751. doi: 10.1016/j.jff.2019.103751.
  • Zhang, P., S. Roytrakul, and M. Sutheerawattananonda. 2017. Production and purification of glucosamine and angiotensin-I converting enzyme (ACE) inhibitory peptides from mushroom hydrolysates. Journal of Functional Foods 36:72–83. doi: 10.1016/j.jff.2017.06.049.
  • Zhang, S., L. Sun, H. Ju, Z. Bao, X. A. Zeng, and S. Lin. 2021. Research advances and application of pulsed electric field on proteins and peptides in food. Food Research International 139:109914. doi: 10.1016/j.foodres.2020.109914.
  • Zhang, S., M. Zhang, J. Xing, and S. Lin. 2019b. A possible mechanism for enhancing the antioxidant activity by pulsed electric field on pine nut peptide Glutamine‐Tryptophan‐Phenylalanine‐Histidine. Journal of Food Biochemistry 43 (3):e12714. doi: 10.1111/jfbc.12714.
  • Zhang, S., R. Liang, Y. Zhao, S. Zhang, and S. Lin. 2019a. Immunomodulatory activity improvement of pine nut peptides by a pulsed electric field and their structure–activity relationships. Journal of Agricultural and Food Chemistry 67 (13):3796–810. doi: 10.1021/acs.jafc.9b00760.
  • Zhang, T., B. Jiang, M. Miao, W. Mu, and Y. Li. 2012. Combined effects of high-pressure and enzymatic treatments on the hydrolysis of chickpea protein isolates and antioxidant activity of the hydrolysates. Food Chemistry 135 (3):904–12. doi: 10.1016/j.foodchem.2012.05.097.
  • Zhang, X., W. Shi, H. He, R. Cao, and T. Hou. 2020. Hypolipidemic effects and mechanisms of Val-Phe-Val-Arg-Asn in C57BL/6J mice and 3T3-L1 cell models. Journal of Functional Foods 73:104100. doi: 10.1016/j.jff.2020.104100.
  • Zhao, R. J., C. Y. Huo, Y. Qian, D. F. Ren, and J. Lu. 2017. Ultra-high-pressure processing improves proteolysis and release of bioactive peptides with activation activities on alcohol metabolic enzymes in vitro from mushroom foot protein. Food Chemistry 231:25–32. doi: 10.1016/j.foodchem.2017.03.058.
  • Zhou, P., C. Yang, Y. Ren, C. Wang, and F. Tian. 2013. What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach. Food Chemistry 141 (3):2967–73. doi: 10.1016/j.foodchem.2013.05.140.
  • Zhu, S., S. Wang, L. Wang, D. Huang, and S. Chen. 2021. Identification and characterization of an angiotensin-I converting enzyme inhibitory peptide from enzymatic hydrolysate of rape (Brassica napus L.) bee pollen. Lwt 147:111502. doi: 10.1016/j.lwt.2021.111502.
  • Zou, Z., M. Wang, Z. Wang, R. E. Aluko, and R. He. 2020. IdAntihypertensive and antioxidant activities of enzymatic wheat bran protein hydrolysates. Journal of Food Biochemistry 44 (1):e13090. doi: 10.1111/jfbc.13090.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.