730
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Valorization of olive processing by-products via drying technologies: a case study on the recovery of bioactive phenolic compounds from olive leaves, pomace, and wastewater

&

References

  • Abbas, M., F. Saeed, F. M. Anjum, M. Afzaal, T. Tufail, M. S. Bashir, A. Ishtiaq, S. Hussain, and H. A. R. Suleria. 2017. Natural polyphenols: An overview. International Journal of Food Properties 20 (8):1689–99. doi: 10.1080/10942912.2016.1220393.
  • Afaneh, I., H. Yateem, and F. Al-Rimawi. 2015. Effect of olive leaves drying on the content of oleuropein.
  • Ahmad-Qasem, M. H., B. H. Ahmad-Qasem, E. Barrajón-Catalán, V. Micol, J. A. Cárcel, and J. V. García-Pérez. 2016. Drying and storage of olive leaf extracts. Influence on polyphenols stability. Industrial Crops and Products 79:232–9. doi: 10.1016/j.indcrop.2015.11.006.
  • Ahmad-Qasem, M. H., E. Barrajon-Catalan, V. Micol, J. A. Cárcel, and J. V. Garcia-Perez. 2013a. Influence of air temperature on drying kinetics and antioxidant potential of olive pomace. Journal of Food Engineering 119 (3):516–24. doi: 10.1016/j.jfoodeng.2013.06.027.
  • Ahmad-Qasem, M. H., E. Barrajón-Catalán, V. Micol, A. Mulet, and J. V. García-Pérez. 2013b. Influence of freezing and dehydration of olive leaves (var. Serrana) on extract composition and antioxidant potential. Food Research International 50 (1):189–96. doi: 10.1016/j.foodres.2012.10.028.
  • Ahmad-Qasem, M. H., J. V. Santacatalina, E. Barrajón-Catalán, V. Micol, J. A. Cárcel, and J. V. García-Pérez. 2015. Influence of drying on the retention of olive leaf polyphenols infused into dried apple. Food and Bioprocess Technology 8 (1):120–33. doi: 10.1007/s11947-014-1387-6.
  • Akbarbaglu, Z., S. H. Peighambardoust, K. Sarabandi, and S. M. Jafari. 2021. Spray drying encapsulation of bioactive compounds within protein-based carriers; different options and applications. Food Chemistry 359:129965. doi: 10.1016/j.foodchem.2021.129965.
  • Akbaş, Ü. G., N. Uslu, F. A. Juhaimi, M. M. Özcan, K. Ghafoor, E. E. Babiker, F. G. Jamiu, and S. Hussain. 2018. The effect of drying on phenolic compound, antioxidant activity, and mineral contents of leaves of different olive varieties. Journal of Food Processing and Preservation 42 (5):e13606. doi: 10.1111/jfpp.13606.
  • Akcicek, A., F. Bozkurt, C. Akgül, and S. Karasu. 2021. Encapsulation of olive pomace extract in rocket seed gum and chia seed gum nanoparticles: Characterization, antioxidant activity and oxidative stability. Foods 10 (8):1735. doi: 10.3390/foods10081735.
  • Akgun, N. A., and I. Doymaz. 2005. Modelling of olive cake thin-layer drying process. Journal of Food Engineering 68 (4):455–61. doi: 10.1016/j.jfoodeng.2004.06.023.
  • Al Juhaimi, F., M. M. Özcan, N. Uslu, K. Ghafoor, E. E. Babiker, O. Q. Adiamo, and O. N. Alsawmahi. 2018. The effects of conventional heating on phenolic compounds and antioxidant activities of olive leaves. Journal of Food Science and Technology 55 (10):4204–11. doi: 10.1007/s13197-018-3356-y.
  • Aliakbarian, B., M. Paini, A. Casazza, and P. Perego. 2015. Effect of encapsulating agent on physical-chemical characteristics of olive pomace polyphenols-rich extracts. Chemical Engineering Transactions 43:97–102.
  • Aliakbarian, B., F. C. Sampaio, J. T. de Faria, C. G. Pitangui, F. Lovaglio, A. A. Casazza, A. Converti, and P. Perego. 2018. Optimization of spray drying microencapsulation of olive pomace polyphenols using response surface methodology and artificial neural network. LWT 93:220–8. doi: 10.1016/j.lwt.2018.03.048.
  • Aouidi, F., A. Okba, and M. Hamdi. 2017. Valorization of functional properties of extract and powder of olive leaves in raw and cooked minced beef meat. Journal of the Science of Food and Agriculture 97 (10):3195–203. doi: 10.1002/jsfa.8164.
  • Arjona, R., P. Ollero, and F. Vidal B. 2005. Automation of an olive waste industrial rotary dryer. Journal of Food Engineering 68 (2):239–47. doi: 10.1016/j.jfoodeng.2004.05.049.
  • Assadpour, E., and S. M. Jafari. 2019. Advances in spray-drying encapsulation of food bioactive ingredients: From microcapsules to nanocapsules. Annual Review of Food Science and Technology 10:103–31. doi: 10.1146/annurev-food-032818-121641.
  • Babu, A. K., G. Kumaresan, V. A. A. Raj, and R. Velraj. 2018. Review of leaf drying: Mechanism and influencing parameters, drying methods, nutrient preservation, and mathematical models. Renewable and Sustainable Energy Reviews 90:536–56. doi: 10.1016/j.rser.2018.04.002.
  • Bahloul, N., N. Boudhrioua, M. Kouhila, and N. Kechaou. 2009. Effect of convective solar drying on colour, total phenols and radical scavenging activity of olive leaves (Olea europaea L.). International Journal of Food Science & Technology 44 (12):2561–7. doi: 10.1111/j.1365-2621.2009.02084.x.
  • Bas-Bellver, C., C. Barrera, N. Betoret, and L. Seguí. 2020. Turning agri-food cooperative vegetable residues into functional powdered ingredients for the food industry. Sustainability 12 (4):1284. doi: 10.3390/su12041284.
  • Baysan, U., M. Koç, A. Güngör, and F. K. Ertekin. 2022. Investigation of drying conditions to valorize 2-phase olive pomace in further processing. Drying Technology 40 (1):65–76. doi: 10.1080/07373937.2020.1770279.
  • Baysan, U., M. Koç, A. Güngör, and F. Kaymak Ertekin. 2021. Pre-drying of 2-phase olive pomace by drum dryer to improve processability. Waste and Biomass Valorization 12 (5):2495–506. doi: 10.1007/s12649-020-01202-2.
  • Bellumori, M., L. De Marchi, F. Mainente, F. Zanoni, L. Cecchi, M. Innocenti, N. Mulinacci, and G. Zoccatelli. 2021. A by‐product from virgin olive oil production (pâté) encapsulated by fluid bed coating: Evaluation of the phenolic profile after shelf‐life test and in vitro gastrointestinal digestion. International Journal of Food Science & Technology 56 (8):3773–83. doi: 10.1111/ijfs.15068.
  • Benavente-Garcı́a, O., J. Castillo, J. Lorente, A. Ortuño, and J. A. Del Rio. 2000. Antioxidant activity of phenolics extracted from Olea europaea L. leaves. Food Chemistry 68 (4):457–62. doi: 10.1016/S0308-8146(99)00221-6.
  • Bouaziz, M., I. Feki, M. Ayadi, H. Jemai, and S. Sayadi. 2010. Stability of refined olive oil and olive‐pomace oil added by phenolic compounds from olive leaves. European Journal of Lipid Science and Technology 112 (8):894–905. doi: 10.1002/ejlt.200900166.
  • Bouaziz, M., H. Hammami, Z. Bouallagui, H. Jemai, and S. Sayadi. 2008. Production of antioxidants from olive processing by-products. EJEAFChe 7 (8):3231–6.
  • Boudhrioua, N., N. Bahloul, I. B. Slimen, and N. Kechaou. 2009. Comparison on the total phenol contents and the color of fresh and infrared dried olive leaves. Industrial Crops and Products 29 (2–3):412–9. doi: 10.1016/j.indcrop.2008.08.001.
  • Briante, R., M. Patumi, S. Terenziani, E. Bismuto, F. Febbraio, and R. Nucci. 2002. Olea europaea L. leaf extract and derivatives: Antioxidant properties. Journal of Agricultural and Food Chemistry 50 (17):4934–40. doi: 10.1021/jf025540p.
  • Canabarro, N. I., M. A. Mazutti, and M. do Carmo Ferreira. 2019. Drying of olive (Olea europaea L.) leaves on a conveyor belt for supercritical extraction of bioactive compounds: Mathematical modeling of drying/extraction operations and analysis of extracts. Industrial Crops and Products 136:140–51. doi: 10.1016/j.indcrop.2019.05.004.
  • Cao, H., O. Saroglu, A. Karadag, Z. Diaconeasa, G. Zoccatelli, C. A. Conte-Junior, G. A. Gonzalez-Aguilar, J. Ou, W. Bai, C. M. Zamarioli, et al. 2021. Available technologies on improving the stability of polyphenols in food processing. Food Frontiers 2 (2):109–39. doi: 10.1002/fft2.65.
  • Cárcel, J., R. I. Nogueira, J. García-Pérez, N. Sanjuán, and E. Riera. 2010. Ultrasound effects on the mass transfer processes during drying kinetic of olive leaves (Olea europea, var. Serrana). Defect and Diffusion Forum 297–301:1083–90. doi: 10.4028/www.scientific.net/DDF.297-301.1083.
  • Cavaca, L. A. I. M. López-Coca, G. Silvero, and C. A. Afonso. 2020. The olive-tree leaves as a source of high-added value molecules: Oleuropein. In Studies in natural products chemistry, vol. 64, 131–80. USA: Elsevier.
  • Cecchi, L., M. Bellumori, C. Cipriani, A. Mocali, M. Innocenti, N. Mulinacci, and L. Giovannelli. 2018a. A two-phase olive mill by-product (pâté) as a convenient source of phenolic compounds: Content, stability, and antiaging properties in cultured human fibroblasts. Journal of Functional Foods 40:751–9. doi: 10.1016/j.jff.2017.12.018.
  • Cecchi, L., M. Migliorini, B. Zanoni, C. Breschi, and N. Mulinacci. 2018b. An effective HPLC-based approach for the evaluation of the content of total phenolic compounds transferred from olives to virgin olive oil during the olive milling process. Journal of the Science of Food and Agriculture 98 (10):3636–43. doi: 10.1002/jsfa.8841.
  • Çelen, S., T. Aktaş, S. S. Karabeyoğlu, and A. Akyildiz. 2016. Drying behavior of prina (crude olive cake) using different types of dryers. Drying Technology 34 (7):843–53. doi: 10.1080/07373937.2015.1044009.
  • Chanioti, S., M. Katsouli, and C. Tzia. 2021. Novel processes for the extraction of phenolic compounds from olive pomace and their protection by encapsulation. Molecules 26 (6):1781. doi: 10.3390/molecules26061781.
  • Chanioti, S., P. Siamandoura, and C. Tzia. 2016. Evaluation of extracts prepared from olive oil by-products using microwave-assisted enzymatic extraction: Effect of encapsulation on the stability of final products. Waste and Biomass Valorization 7 (4):831–42. doi: 10.1007/s12649-016-9533-1.
  • Chanioti, S., and C. Tzia. 2019. Evaluation of ultrasound assisted and conventional methods for production of olive pomace oil enriched in sterols and squalene. LWT 99:209–16. doi: 10.1016/j.lwt.2018.09.068.
  • Chasekioglou, A. N., A. M. Goula, K. G. Adamopoulos, and H. N. Lazarides. 2017. An approach to turn olive mill wastewater into a valuable food by-product based on spray drying in dehumidified air using drying aids. Powder Technology 311:376–89. doi: 10.1016/j.powtec.2017.02.008.
  • Chen, Z.-G., X.-Y. Guo, and T. Wu. 2016. A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods. Ultrasonics Sonochemistry 30:28–34. doi: 10.1016/j.ultsonch.2015.11.026.
  • Ciriminna, R., F. Meneguzzo, A. Fidalgo, L. M. Ilharco, and M. Pagliaro. 2016. Extraction, benefits and valorization of olive polyphenols. European Journal of Lipid Science and Technology 118 (4):503–11. doi: 10.1002/ejlt.201500036.
  • de Moraes Pinheiro, S. M., A. Font, L. Soriano, M. M. Tashima, J. Monzó, M. V. Borrachero, and J. Payá. 2018. Olive-stone biomass ash (OBA): An alternative alkaline source for the blast furnace slag activation. Construction and Building Materials 178:327–38. doi: 10.1016/j.conbuildmat.2018.05.157.
  • Dermeche, S., M. Nadour, C. Larroche, F. Moulti-Mati, and P. Michaud. 2013. Olive mill wastes: Biochemical characterizations and valorization strategies. Process Biochemistry 48 (10):1532–52. doi: 10.1016/j.procbio.2013.07.010.
  • Dima, C., E. Assadpour, S. Dima, and S. M. Jafari. 2020. Bioavailability of nutraceuticals: Role of the food matrix, processing conditions, the gastrointestinal tract, and nanodelivery systems. Comprehensive Reviews in Food Science and Food Safety 19 (3):954–94. doi: 10.1111/1541-4337.12547.
  • Doymaz, I., O. Gorel, and N. A. Akgun. 2004. Drying characteristics of the solid by-product of olive oil extraction. Biosystems Engineering 88 (2):213–9. doi: 10.1016/j.biosystemseng.2004.03.003.
  • El, S. N., and S. Karakaya. 2009. Olive tree (Olea europaea) leaves: Potential beneficial effects on human health. Nutrition Reviews 67 (11):632–8. doi: 10.1111/j.1753-4887.2009.00248.x.
  • Elhussein, E. A. A., and S. Şahin. 2018. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods. Heat and Mass Transfer 54 (7):1901–11. doi: 10.1007/s00231-018-2278-6.
  • Elleuch, M., D. Bedigian, O. Roiseux, S. Besbes, C. Blecker, and H. Attia. 2011. Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry 124 (2):411–21. doi: 10.1016/j.foodchem.2010.06.077.
  • Erbay, Z., and F. Icier. 2009a. Optimization of drying of olive leaves in a pilot-scale heat pump dryer. Drying Technology 27 (3):416–27. doi: 10.1080/07373930802683021.
  • Erbay, Z., and F. Icier. 2009b. Optimization of hot air drying of olive leaves using response surface methodology. Journal of Food Engineering 91 (4):533–41. doi: 10.1016/j.jfoodeng.2008.10.004.
  • Erbay, Z., and F. Icier. 2010a. The importance and potential uses of olive leaves. Food Reviews International 26 (4):319–34. doi: 10.1080/87559129.2010.496021.
  • Erbay, Z., and F. Icier. 2010b. Thin‐layer drying behaviors of olive leaves (Olea europaea L.). Journal of Food Process Engineering 33 (2):287–308. doi: 10.1111/j.1745-4530.2008.00275.x.
  • Ferreira, M. S. L., M. C. P. Santos, T. M. A. Moro, G. J. Basto, R. M. S. Andrade, and É. C. B. A. Gonçalves. 2015. Formulation and characterization of functional foods based on fruit and vegetable residue flour. Journal of Food Science and Technology 52 (2):822–30. doi: 10.1007/s13197-013-1061-4.
  • Gamlı, Ö. F., Ö. Süfer, and T. Eker. 2018. Dehydration kinetics and infusion attributes of microwave dried olive leaves. Turkish Journal of Agriculture - Food Science and Technology 6 (8):963–70. doi: 10.24925/turjaf.v6i8.963-970.1596.
  • Garavand, F., M. Jalai-Jivan, E. Assadpour, and S. M. Jafari. 2021. Encapsulation of phenolic compounds within nano/microemulsion systems: A review. Food Chemistry 364:130376. doi: 10.1016/j.foodchem.2021.130376.
  • Ghanbari, R., F. Anwar, K. M. Alkharfy, A.-H. Gilani, and N. Saari. 2012. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.) - A review. International Journal of Molecular Sciences 13 (3):3291–340. doi: 10.3390/ijms13033291.
  • Gharsallaoui, A., G. Roudaut, O. Chambin, A. Voilley, and R. Saurel. 2007. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International 40 (9):1107–21. doi: 10.1016/j.foodres.2007.07.004.
  • Gögüs, F., and M. Maskan. 2001. Drying of olive pomace by a combined microwave-fan assisted convection oven. Nahrung/Food 45 (2):129–32. doi: 10.1002/1521-3803(20010401)45:2<129::AID-FOOD129>3.0.CO;2-T.
  • Göğüş, F., and M. Maskan. 2006. Air drying characteristics of solid waste (pomace) of olive oil processing. Journal of Food Engineering 72 (4):378–82. doi: 10.1016/j.jfoodeng.2004.12.018.
  • González-Ortega, R., M. Faieta, C. D. Di Mattia, L. Valbonetti, and P. Pittia. 2020. Microencapsulation of olive leaf extract by freeze-drying: Effect of carrier composition on process efficiency and technological properties of the powders. Journal of Food Engineering 285:110089. doi: 10.1016/j.jfoodeng.2020.110089.
  • González, E., A. M. Gómez-Caravaca, B. Giménez, R. Cebrián, M. Maqueda, A. Martínez-Férez, A. Segura-Carretero, and P. Robert. 2019. Evolution of the phenolic compounds profile of olive leaf extract encapsulated by spray-drying during in vitro gastrointestinal digestion. Food Chemistry 279:40–8. doi: 10.1016/j.foodchem.2018.11.127.
  • Goula, A. M., A. N. Chasekioglou, and H. N. Lazarides. 2015. Drying and shrinkage kinetics of solid waste of olive oil processing. Drying Technology 33 (14):1728–38. doi: 10.1080/07373937.2015.1026983.
  • Goula, A. M., and H. N. Lazarides. 2015. Integrated processes can turn industrial food waste into valuable food by-products and/or ingredients: The cases of olive mill and pomegranate wastes. Journal of Food Engineering 167:45–50. doi: 10.1016/j.jfoodeng.2015.01.003.
  • Gullón, P., B. Gullón, G. Astray, M. Carpena, M. Fraga-Corral, M. A. Prieto, and J. Simal-Gandara. 2020. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Research International (Ottawa, ON) 137:109683. doi: 10.1016/j.foodres.2020.109683.
  • Hamrouni-Sellami, I., F. Z. Rahali, I. B. Rebey, S. Bourgou, F. Limam, and B. Marzouk. 2013. Total phenolics, flavonoids, and antioxidant activity of sage (Salvia officinalis L.) plants as affected by different drying methods. Food and Bioprocess Technology 6 (3):806–17. doi: 10.1007/s11947-012-0877-7.
  • Helvaci, H. U., A. Menon, L. Y. Aydemir, F. Korel, and G. G. Akkurt. 2019. Drying of olive leaves in a geothermal dryer and determination of quality parameters of dried product. Energy Procedia. 161:108–14. doi: 10.1016/j.egypro.2019.02.065.
  • Hnin, K. K., M. Zhang, A. S. Mujumdar, and Y. Zhu. 2018. Emerging food drying technologies with energy-saving characteristics: A review. Drying Technology 37 (12):1465–1480.
  • International Olive Oil Council. 2021. World’s olive oil production has tripled. Accessed October 31, 2021. https://www.internationaloliveoil.org/worlds-olive-oil-production-has-tripled/.
  • Ishwarya, S. P., C. Anandharamakrishnan, and A. G. Stapley. 2015. Spray-freeze-drying: A novel process for the drying of foods and bioproducts. Trends in Food Science & Technology 41 (2):161–81. doi: 10.1016/j.tifs.2014.10.008.
  • Jafari, S. M. 2017. 1 - An overview of nanoencapsulation techniques and their classification. In Nanoencapsulation technologies for the food and nutraceutical industries, ed. S. M. Jafari, 1–34. London, England: Academic Press.
  • Jurmanović, S., M. Jug, T. Safner, K. Radić, A. Domijan, S. Pedisić, S. Šimić, J. Jablan, and D. V. Čepo. 2019. Utilization of olive pomace as a source of polyphenols: Optimization of microwave-assisted extraction and characterization of spray-dried extract. Journal of Food & Nutrition Research 60 (3):791–798.
  • Jurmanovj, S., M. Jug, T. Safner, K. Radj, A. M. Domijan, S. Pedisj, S. M. Simic, J. Jablan, and D. V. epo. 2019. Utilization of olive pomace as a source of polyphenols: Optimization of microwave-assisted extraction and characterization of spray-dried extract. Journal of Food and Nutrition Research 58:51–62.
  • Kamran, M., A. S. Hamlin, C. J. Scott, and H. K. Obied. 2015. Drying at high temperature for a short time maximizes the recovery of olive leaf biophenols. Industrial Crops and Products 78:29–38. doi: 10.1016/j.indcrop.2015.10.031.
  • Kiritsakis, K., A. M. Goula, K. G. Adamopoulos, and D. Gerasopoulos. 2018. Valorization of olive leaves: Spray drying of olive leaf extract. Waste and Biomass Valorization 9 (4):619–33. doi: 10.1007/s12649-017-0023-x.
  • Kosaraju, S. L., L. D’ath, and A. Lawrence. 2006. Preparation and characterisation of chitosan microspheres for antioxidant delivery. Carbohydrate Polymers 64 (2):163–7. doi: 10.1016/j.carbpol.2005.11.027.
  • Kreatsouli, K., Z. Fousteri, K. Zampakas, E. Kerasioti, A. S. Veskoukis, C. Mantas, P. Gkoutsidis, D. Ladas, K. Petrotos, D. Kouretas, et al. 2019. A polyphenolic extract from olive mill wastewaters encapsulated in whey protein and maltodextrin exerts antioxidant activity in endothelial cells. Antioxidants (Basel, Switzerland) 8 (8):280. doi: 10.3390/antiox8080280.
  • Kusch-Brandt, S. J. Mumme, O. Nashalian, F. Girotto, M. C. Lavagnolo, and C. Udenigwe. 2019. Valorization of residues from beverage production. Processing and sustainability of beverages, 451–94. Sawston, Cambridge: Elsevier.
  • Lama-Muñoz, A., M. del Mar Contreras, F. Espínola, M. Moya, A. de Torres, I. Romero, and E. Castro. 2019. Extraction of oleuropein and luteolin-7-O-glucoside from olive leaves: Optimization of technique and operating conditions. Food Chemistry 293:161–8. doi: 10.1016/j.foodchem.2019.04.075.
  • Mahdi Jafari, S., S. Masoudi, and A. Bahrami. 2019. A Taguchi approach production of spray-dried whey powder enriched with nanoencapsulated vitamin D3. Drying Technology 37 (16):2059–71. doi: 10.1080/07373937.2018.1552598.
  • Maisnam, D., P. Rasane, A. Dey, S. Kaur, and C. Sarma. 2017. Recent advances in conventional drying of foods. Journal of Food Technology and Preservation 1 (1):25–34.
  • Malekjani, N., and S. M. Jafari. 2021. Modeling the release of food bioactive ingredients from carriers/nanocarriers by the empirical, semiempirical, and mechanistic models. Comprehensive Reviews in Food Science and Food Safety 20 (1):3–47. doi: 10.1111/1541-4337.12660.
  • Malik, N. S., and J. M. Bradford. 2008. Recovery and stability of oleuropein and other phenolic compounds during extraction and processing of olive (Olea europaea L.) leaves.
  • Meziane, S. 2011. Drying kinetics of olive pomace in a fluidized bed dryer. Energy Conversion and Management 52 (3):1644–9. doi: 10.1016/j.enconman.2010.10.027.
  • Milczarek, R. R., A. A. Dai, C. G. Otoni, and T. H. McHugh. 2011. Effect of shrinkage on isothermal drying behavior of 2-phase olive mill waste. Journal of Food Engineering 103 (4):434–41. doi: 10.1016/j.jfoodeng.2010.11.013.
  • Mirabella, N., V. Castellani, and S. Sala. 2014. Current options for the valorization of food manufacturing waste: A review. Journal of Cleaner Production 65:28–41. doi: 10.1016/j.jclepro.2013.10.051.
  • Mujumdar, A. S. 2006. Handbook of industrial drying. Boca Raton, USA: CRC Press.
  • Navarro, M., A. Fiore, V. Fogliano, and F. J. Morales. 2015. Carbonyl trapping and antiglycative activities of olive oil mill wastewater. Food & Function 6 (2):574–83. doi: 10.1039/c4fo01049c.
  • Omar, S. H. 2010. Oleuropein in olive and its pharmacological effects. Scientia Pharmaceutica 78 (2):133–54.
  • Özcan, M. M., and B. Matthäus. 2017. A review: Benefit and bioactive properties of olive (Olea europaea L.) leaves. European Food Research and Technology 243 (1):89–99. doi: 10.1007/s00217-016-2726-9.
  • Ozkan, G., P. Franco, I. De Marco, J. Xiao, and E. Capanoglu. 2019. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry 272:494–506. doi: 10.1016/j.foodchem.2018.07.205.
  • Padilla-Rascón, C., E. Ruiz, I. Romero, E. Castro, J. Oliva, I. Ballesteros, and P. Manzanares. 2020. Valorisation of olive stone by-product for sugar production using a sequential acid/steam explosion pretreatment. Industrial Crops and Products 148:112279. doi: 10.1016/j.indcrop.2020.112279.
  • Paini, M., B. Aliakbarian, A. A. Casazza, A. Lagazzo, R. Botter, and P. Perego. 2015. Microencapsulation of phenolic compounds from olive pomace using spray drying: A study of operative parameters. LWT - Food Science and Technology 62 (1):177–86. doi: 10.1016/j.lwt.2015.01.022.
  • Paulo, F., and L. Santos. 2017. Design of experiments for microencapsulation applications: A review. Materials Science & Engineering, C: Materials for Biological Applications 77:1327–40. doi: 10.1016/j.msec.2017.03.219.
  • Petridis, A., I. Therios, G. Samouris, and C. Tananaki. 2012. Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environmental and Experimental Botany 79:37–43. doi: 10.1016/j.envexpbot.2012.01.007.
  • Plazzotta, S., S. Calligaris, and L. Manzocco. 2018. Application of different drying techniques to fresh-cut salad waste to obtain food ingredients rich in antioxidants and with high solvent loading capacity. LWT 89:276–83. doi: 10.1016/j.lwt.2017.10.056.
  • Rahmanian, N., S. M. Jafari, and C. M. Galanakis. 2014. Recovery and removal of phenolic compounds from olive mill wastewater. Journal of the American Oil Chemists’ Society 91 (1):1–18. doi: 10.1007/s11746-013-2350-9.
  • Rahmanian, N., S. M. Jafari, and T. A. Wani. 2015. Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends in Food Science & Technology 42 (2):150–72. doi: 10.1016/j.tifs.2014.12.009.
  • Ramírez-Pulido, B., C. Bas-Bellver, N. Betoret, C. Barrera, and L. Seguí. 2021. Valorization of vegetable fresh-processing residues as functional powdered ingredients. A review on the potential impact of pretreatments and drying methods on bioactive compounds and their bioaccessibility. Frontiers in Sustainable Food Systems 5 (82):3–5. doi: 10.3389/fsufs.2021.654313.
  • Rezvankhah, A., Z. Emam-Djomeh, and G. Askari. 2020. Encapsulation and delivery of bioactive compounds using spray and freeze-drying techniques: A review. Drying Technology 38 (1–2):235–58. doi: 10.1080/07373937.2019.1653906.
  • Rharrabti, Y., and M. Yamani. 2018. Olive mill wastewater: Treatment and valorization technologies. In Handbook of environmental materials management, 5:15.
  • Rodis, P. S., V. T. Karathanos, and A. Mantzavinou. 2002. Partitioning of olive oil antioxidants between oil and water phases. Journal of Agricultural and Food Chemistry 50 (3):596–601. doi: 10.1021/jf010864j.
  • Ruiz, E., J. M. Romero‐García, I. Romero, P. Manzanares, M. J. Negro, and E. Castro. 2017. Olive‐derived biomass as a source of energy and chemicals. Biofuels, Bioproducts and Biorefining 11 (6):1077–94. doi: 10.1002/bbb.1812.
  • Sabarez, H. 2016. Drying of food materials. Reference module in food sciences. USA: Elsevier.
  • Şahin, S., E. Elhussein, M. Bilgin, J. M. Lorenzo, F. J. Barba, and S. Roohinejad. 2018. Effect of drying method on oleuropein, total phenolic content, flavonoid content, and antioxidant activity of olive (Olea europaea) leaf. Journal of Food Processing and Preservation 42 (5):e13604. doi: 10.1111/jfpp.13604.
  • Sarabandi, K., P. Gharehbeglou, and S. M. Jafari. 2020. Spray-drying encapsulation of protein hydrolysates and bioactive peptides: Opportunities and challenges. Drying Technology 38 (5–6):577–95. doi: 10.1080/07373937.2019.1689399.
  • Sinrod, A. J. G., R. J. Avena-Bustillos, D. A. Olson, L. M. Crawford, S. C. Wang, and T. H. McHugh. 2019. Phenolics and antioxidant capacity of pitted olive pomace affected by three drying technologies. Journal of Food Science 84 (3):412–20. doi: 10.1111/1750-3841.14447.
  • Souilem, S., I. Fki, I. Kobayashi, N. Khalid, M. A. Neves, H. Isoda, S. Sayadi, and M. Nakajima. 2017. Emerging technologies for recovery of value-added components from olive leaves and their applications in food/feed industries. Food and Bioprocess Technology 10 (2):229–48. doi: 10.1007/s11947-016-1834-7.
  • Szumny, A., A. Figiel, A. Gutiérrez-Ortíz, and Á. A. Carbonell-Barrachina. 2010. Composition of rosemary essential oil (Rosmarinus officinalis) as affected by drying method. Journal of Food Engineering 97 (2):253–60. doi: 10.1016/j.jfoodeng.2009.10.019.
  • Taamalli, A., J. Lozano Sánchez, H. Jebabli, N. Trabelsi, L. Abaza, A. Segura Carretero, J. Youl Cho, and D. Arráez Román. 2019. Monitoring the bioactive compounds status in Olea europaea according to collecting period and drying conditions. Energies 12 (5):947. doi: 10.3390/en12050947.
  • Tarchoune, I., C. Sgherri, J. Eddouzi, A. Zinnai, M. F. Quartacci, and M. Zarrouk. 2019. Olive leaf addition increases olive oil nutraceutical properties. Molecules 24 (3):545. doi: 10.3390/molecules24030545.
  • Torrecilla, J. S., J. M. Aragón, and M. C. Palancar. 2005. Modeling the drying of a high-moisture solid with an artificial neural network. Industrial & Engineering Chemistry Research 44 (21):8057–66. doi: 10.1021/ie0490435.
  • Troise, A. D., A. Fiore, A. Colantuono, S. Kokkinidou, D. G. Peterson, and V. Fogliano. 2014. Effect of olive mill wastewater phenol compounds on reactive carbonyl species and Maillard reaction end-products in ultrahigh-temperature-treated milk. Journal of Agricultural and Food Chemistry 62 (41):10092–100. doi: 10.1021/jf503329d.
  • Urzúa, C., E. González, V. Dueik, P. Bouchon, B. Giménez, and P. Robert. 2017. Olive leaves extract encapsulated by spray-drying in vacuum fried starch–gluten doughs. Food and Bioproducts Processing 106:171–80. doi: 10.1016/j.fbp.2017.10.001.
  • Valta, K., E. Aggeli, C. Papadaskalopoulou, V. Panaretou, A. Sotiropoulos, D. Malamis, K. Moustakas, and K. J. Haralambous. 2015. Adding value to olive oil production through waste and wastewater treatment and valorisation: The case of Greece. Waste and Biomass Valorization 6 (5):913–25. doi: 10.1007/s12649-015-9373-4.
  • Vitali Čepo, D., K. Radić, S. Jurmanović, M. Jug, M. Grdić Rajković, S. Pedisić, T. Moslavac, and P. Albahari. 2018. Valorization of olive pomace-based nutraceuticals as antioxidants in chemical, food, and biological models. Molecules 23 (8):2070. doi: 10.3390/molecules23082070.
  • Wissam, Z., A. Ali, and H. Rama. 2016. Optimization of extraction conditions for the recovery of phenolic compounds and antioxidants from Syrian olive leaves. Journal of Pharmacognosy and Phytochemistry 5 (5):390.
  • World Health Organization. 2019. Sustainable healthy diets: Guiding principles. Amsterdam, Netherlands: Food & Agriculture Org.
  • Yanık, D. K. 2017. Alternative to traditional olive pomace oil extraction systems: Microwave-assisted solvent extraction of oil from wet olive pomace. LWT 77:45–51. doi: 10.1016/j.lwt.2016.11.020.
  • Zbakh, H., and A. El Abbassi. 2012. Potential use of olive mill wastewater in the preparation of functional beverages: A review. Journal of Functional Foods 4 (1):53–65. doi: 10.1016/j.jff.2012.01.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.