1,157
Views
17
CrossRef citations to date
0
Altmetric
Review Articles

Chemico-biological aspects of (−)-epigallocatechin-3-gallate (EGCG) to improve its stability, bioavailability and membrane permeability: Current status and future prospects

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 10382-10411 | Published online: 02 May 2022

References

  • Adachi, S., T. Nagao, H. I. Ingolfsson, F. R. Maxfield, O. S. Andersen, L. Kopelovich, and I. B. Weinstein. 2007. The inhibitory effect of (-)-epigallocatechin gallate on activation of the epidermal growth factor receptor is associated with altered lipid order in HT29 colon cancer cells. Cancer Research 67 (13):6493–501. doi: 10.1158/0008-5472.can-07-0411.
  • Adachi, S., T. Nagao, S. To, A. K. Joe, M. Shimizu, R. Matsushima-Nishiwaki, O. Kozawa, H. Moriwaki, F. R. Maxfield, and I. B. Weinstein. 2008. (−) (-)-Epigallocatechin gallate causes internalization of the epidermal growth factor receptor in human colon cancer cells. Carcinogenesis 29 (10):1986–93. doi: 10.1093/carcin/bgn128.
  • Adewunmi, Y., S. Namjilsuren, W. D. Walker, D. N. Amato, D. V. Amato, O. V. Mavrodi, D. L. Patton, and D. V. Mavrodi. 2020. Antimicrobial activity of, and cellular pathways targeted by, p-anisaldehyde and epigallocatechin gallate in the opportunistic human pathogen Pseudomonas aeruginosa. Applied and Environmental Microbiology 86 (4):e02482–19. doi: 10.1128/AEM.02482-19.
  • Aggarwal, V., H. S. Tuli, M. Tania, S. Srivastava, E. E. Ritzer, A. Pandey, D. Aggarwal, T. S. Barwal, A. Jain, G. Kaur, et al. 2022. Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Seminars in Cancer Biology 80:256–75. doi: 10.1016/j.semcancer.2020.05.011.
  • Ahn, H. Y., K. R. Hadizadeh, C. Seul, Y. P. Yun, H. Vetter, and A. Sachinidis. 1999. Epigallocathechin-3 gallate selectively inhibits the PDGF-BB-induced intracellular signaling transduction pathway in vascular smooth muscle cells and inhibits transformation of sis-transfected NIH 3T3 fibroblasts and human glioblastoma cells (A172). Molecular Biology of the Cell 10 (4):1093–104. doi: 10.1091/mbc.10.4.1093.
  • Akagawa, M., T. Shigemitsu, and K. Suyama. 2003. Production of hydrogen peroxide by polyphenols and polyphenol-rich beverages under quasi-physiological conditions. Bioscience, Biotechnology, and Biochemistry 67 (12):2632–40. doi: 10.1271/bbb.67.2632.
  • Alam, M., S. Ali, G. M. Ashraf, A. L. Bilgrami, D. K. Yadav, and M. I. Hassan. 2022. Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chemistry 379:132135. doi: 10.1016/j.foodchem.2022.132135.
  • Almatroodi, S. A., A. Almatroudi, A. A. Khan, F. A. Alhumaydhi, M. A. Alsahli, and A. H. Rahmani. 2020. Potential therapeutic targets of epigallocatechin gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules 25 (14):3146. doi: 10.3390/molecules25143146.
  • Arakawa, H., M. Maeda, S. Okubo, and T. Shimamura. 2004. Role of hydrogen peroxide in bactericidal action of catechin. Biological & Pharmaceutical Bulletin 27 (3):277–81. doi: 10.1248/bpb.27.277.
  • Bae, M. J., T. Ishii, K. Minoda, Y. Kawada, T. Ichikawa, T. Mori, M. Kamihira, and T. Nakayama. 2009. Albumin stabilizes (-)-epigallocatechin gallate in human serum: binding capacity and antioxidant property. Molecular Nutrition & Food Research 53 (6):709–15. doi: 10.1002/mnfr.200800274.
  • Balentine, D. A., S. A. Wiseman, and L. C. Bouwens. 1997. The chemistry of tea flavonoids. Critical Reviews in Food Science and Nutrition 37 (8):693–704. doi: 10.1080/10408399709527797.
  • Bansal, S., S. Vyas, S. Bhattacharya, and M. Sharma. 2013. Catechin prodrugs and analogs: A new array of chemical entities with improved pharmacological and pharmacokinetic properties. Natural Product Reports 30 (11):1438–54. doi: 10.1039/c3np70038k.
  • Basiricò, L., P. Morera, D. Dipasquale, R. Bernini, L. Santi, A. Romani, N. Lacetera, and U. Bernabucci. 2019. (-)-Epigallocatechin-3-gallate and hydroxytyrosol improved antioxidative and anti-inflammatory responses in bovine mammary epithelial cells. Anima : An International Journal of Animal Bioscience 13 (12):2847–56. doi: 10.1017/s1751731119001356.
  • Bedrood, Z., M. Rameshrad, and H. Hosseinzadeh. 2018. Toxicological effects of Camellia sinensis (green tea): A review. Phytotherapy Research: PTR 32 (7):1163–80. doi: 10.1002/ptr.6063.
  • Bettuzzi, S., M. Brausi, F. Rizzi, G. Castagnetti, G. Peracchia, and A. Corti. 2006. Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: A preliminary report from a one-year proof-of-principle study. Cancer Research 66 (2):1234–74. doi: 10.1158/0008-5472.CAN-05-1145.
  • Bhushani, J. A., P. Karthik, and C. Anandharamakrishnan. 2016. Nanoemulsion based delivery system for improved bioaccessibility and Caco-2 cell monolayer permeability of green tea catechins. Food Hydrocolloids. 56:372–82. doi: 10.1016/j.foodhyd.2015.12.035.
  • Bimonte, S., M. Cascella, A. Barbieri, C. Arra, and A. Cuomo. 2020. Current shreds of evidence on the anticancer role of EGCG in triple negative breast cancer: An update of the current state of knowledge. Infectious Agents and Cancer 15(1):1–6. doi: 10.1186/s13027-020-0270-5.
  • Braegelmann, C., D. Niebel, S. Ferring-Schmitt, T. Fetter, J. Landsberg, M. Hölzel, M. Effern, N. Glodde, S. Steinbuch, T. Bieber, et al. 2022. Epigallocatechin-3-gallate exhibits anti-inflammatory effects in a human interface dermatitis model-implications for therapy. Journal of the European Academy of Dermatology and Venereology: JEADV 36 (1):144–53. doi: 10.1111/jdv.17710.
  • Braicu, C., C. D. Gherman, A. Irimie, and I. Berindan-Neagoe. 2013. Epigallocatechin-3-gallate (EGCG) inhibits cell proliferation and migratory behaviour of triple negative breast cancer cells. Journal of Nanoscience and Nanotechnology 13 (1):632–7. doi: 10.1166/jnn.2013.6882.
  • Bu, L., T. Zheng, C. Mao, F. Wu, X. Mou, C. Xu, X. Luo, Q. Lu, L. Dong, and X. Wang. 2021. Autophagy inhibition contributes to epigallocatechin-3-gallate-mediated apoptosis in papillary thyroid cancer cells. Molecular & Cellular Toxicology 17 (4):533–42. doi: 10.1007/s13273-021-00164-3.
  • Cai, Y. Z., M. Sun, J. Xing, Q. Luo, and H. Corke. 2006. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sciences 78 (25):2872–88. doi: 10.1016/j.lfs.2005.11.004.
  • Cai, Z. Y., X. M. Li, J. P. Liang, L. P. Xiang, K. R. Wang, Y. L. Shi, R. Yang, M. Shi, J. H. Ye, J. L. Lu, et al. 2018. Bioavailability of tea catechins and its improvement. Molecules 23 (9):2346. doi: 10.3390/molecules23092346.
  • Calani, L., D. D. Rio, M. L. Callegari, L. Morelli, and F. Brighenti. 2012. Updated bioavailability and 48 h excretion profile of flavan-3-ols from green tea in humans. International Journal of Food Sciences and Nutrition 63 (5):513–21. doi: 10.3109/09637486.2011.640311.
  • Carneiro, B. M., M. N. Batista, A. C. S. Braga, M. L. Nogueira, and P. Rahal. 2016. The green tea molecule EGCG inhibits Zika virus entry. Virology 496:215–8. doi: 10.1016/j.virol.2016.06.012.
  • Carson, M., J. K. Keppler, G. Brackman, D. Dawood, M. Vandrovcova, K. Fawzy El-Sayed, T. Coenye, K. Schwarz, S. A. Clarke, A. G. Skirtach, et al. 2018. Whey protein complexes with green tea polyphenols: Antimicrobial, osteoblast-stimulatory, and antioxidant activities. Cells, Tissues, Organs 206 (1–2):106–17. doi: 10.1159/000494732.
  • Chakrawarti, L., R. Agrawal, S. Dang, S. Gupta, and R. Gabrani. 2016. Therapeutic effects of EGCG: A patent review. Expert Opinion on Therapeutic Patents 26 (8):907–16. doi: 10.1080/13543776.2016.1203419.
  • Chan, K. Y., L. Zhang, and Z. Zuo. 2007. Intestinal efflux transport kinetics of green tea catechins in Caco-2 monolayer model. The Journal of Pharmacy and Pharmacology 59 (3):395–400. doi: 10.1211/jpp.59.3.0009.
  • Chang, J. Z. C., W. H. Yang, Y. T. Deng, H. M. Chen, and M. Y. P. Kuo. 2013. EGCG blocks TGFβ1-induced CCN2 by suppressing JNK and p38 in buccal fibroblasts. Clinical Oral Investigations 17 (2):455–61. doi: 10.1007/s00784-012-0713-5.
  • Chang, L.-K., T.-T. Wei, Y.-F. Chiu, C.-P. Tung, J.-Y. Chuang, S.-K. Hung, C. Li, and S.-T. Liu. 2003. Inhibition of Epstein-Barr virus lytic cycle by (-)-epigallocatechin gallate. Biochemical and Biophysical Research Communications 301 (4):1062–8. doi: 10.1016/s0006-291x(03)00067-6.
  • Chen, B.-H., C.-H. Hsieh, S.-Y. Tsai, C.-Y. Wang, and C.-C. Wang. 2020. Anticancer effects of epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of AMP-activated protein kinase signaling pathway. Scientific Reports 10 (1):5163. doi: 10.1038/s41598-020-62136-2.
  • Chen, D., S. B. Wan, H. Yang, J. Yuan, T. H. Chan, and Q. P. Dou. 2011. EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Advances in Clinical Chemistry 53:155–77. doi: 10.1016/b978-0-12-385855-9.00007-2.
  • Chen, L., W. Wang, J. Zhang, H. Cui, D. Ni, and H. Jiang. 2021. Dual effects of ascorbic acid on the stability of EGCG by the oxidation product dehydroascorbic acid promoting the oxidation and inhibiting the hydrolysis pathway. Food Chemistry 337:127639. doi: 10.1016/j.foodchem.2020.127639.
  • Chen, X., B. Liu, R. Tong, S. Ding, J. Wu, Q. Lei, and W. Fang. 2021b. Improved stability and targeted cytotoxicity of epigallocatechin-3-gallate palmitate for anticancer therapy. Langmuir: The ACS Journal of Surfaces and Colloids 37 (2):969–77. doi: 10.1021/acs.langmuir.0c03449.
  • Chiou, W.-C., J.-C. Chen, Y.-T. Chen, J.-M. Yang, L.-H. Hwang, Y.-S. Lyu, H.-Y. Yang, and C. Huang. 2022. The inhibitory effects of PGG and EGCG against the SARS-CoV-2 3C-like protease. Biochemical and Biophysical Research Communications 591:130–6. doi: 10.1016/j.bbrc.2020.12.106.
  • Chiou, Y., N. Ma, S. Sang, C. Ho, Y. Wang, and M. Pan. 2012. Peracetylated (-)-epigallocatechin-3-gallate (AcEGCG) potently suppresses dextran sulfate sodium-induced colitis and colon tumorigenesis in mice. Journal of Agricultural and Food Chemistry 60 (13):3441–51. doi: 10.1021/jf300441p.
  • Chiou, Y.-S., S. Sang, K.-H. Cheng, C.-T. Ho, Y.-J. Wang, and M.-H. Pan. 2013. Peracetylated (-)-epigallocatechin-3-gallate (AcEGCG) potently prevents skin carcinogenesis by suppressing the PKD1-dependent signaling pathway in CD34+ skin stem cells and skin tumors. Carcinogenesis 34 (6):1315–22. doi: 10.1093/carcin/bgt042.
  • Chiu, Y. H., Y. W. Wu, J. I. Hung, and M. C. Chen. 2021. Epigallocatechin gallate/L-ascorbic acid–loaded poly-γ-glutamate microneedles with antioxidant, anti-inflammatory, and immunomodulatory effects for the treatment of atopic dermatitis. Acta Biomaterialia 130:223–33. doi: 10.1016/j.actbio.2021.05.032.
  • Chourasia, M., P. R. Koppula, A. Battu, M. M. Ouseph, and A. K. Singh. 2021. EGCG, a green tea catechin, as a potential therapeutic agent for symptomatic and asymptomatic SARS-CoV-2 infection. Molecules 26 (5):1200–17. doi: 10.3390/molecules26051200.
  • Chow, H. H. S., and I. A. Hakim. 2011. Pharmacokinetic and chemoprevention studies on tea in humans. Pharmacological Research 64 (2):105–12. doi: 10.1016/j.phrs.2011.05.007.
  • Ciesielski, O., M. Biesiekierska, and A. Balcerczyk. 2020. Epigallocatechin-3-gallate (EGCG) alters histone acetylation and methylation and impacts chromatin architecture profile in human endothelial cells. Molecules 25 (10):2326. doi: 10.3390/molecules25102326.
  • Cirillo, G., M. Curcio, O. Vittorio, F. Iemma, D. Restuccia, U. G. Spizzirri, F. Puoci, and N. Picci. 2016. Polyphenol conjugates and human health: A perspective review. Critical Reviews in Food Science and Nutrition 56 (2):326–37. doi: 10.1080/10408398.2012.752342.
  • Dag, D., and M. H. Oztop. 2017. Formation and characterization of green tea extract loaded liposomes. Journal of Food Science 82 (2):463–70. doi: 10.1111/1750-3841.13615.
  • Dai, W., C. Ruan, Y. Zhang, J. Wang, J. Han, Z. Shao, Y. Sun, and J. Liang. 2020. Bioavailability enhancement of EGCG by structural modification and nano-delivery: A review. Journal of Functional Foods 65:103732. doi: 10.1016/j.jff.2019.103732.
  • Dana, P. M., F. Sadoughi, Z. Asemi, and B. Yousefi. 2022. The role of polyphenols in overcoming cancer drug resistance: A comprehensive review. Cellular & Molecular Biology Letters 27 (1):1–26. doi: 10.1186/s11658-021-00301-9.
  • Deng, Y. T., and J. K. Lin. 2011. EGCG inhibits the invasion of highly invasive CL1-5 lung cancer cells through suppressing MMP-2 expression via JNK signaling and induces G2/M arrest. Journal of Agricultural and Food Chemistry 59 (24):13318–27. doi: 10.1021/jf204149c.
  • Dryden, G. W., A. Lam, K. Beatty, H. H. Qazzaz, and C. J. McClain. 2013. A pilot study to evaluate the safety and efficacy of an oral dose of (-)-Epigallocatechin-3-gallate-rich polyphenon E in patients with mild to moderate ulcerative colitis. Inflammatory Bowel Diseases 19 (9):1904–12. doi: 10.1097/mib.0b013e31828f5198.
  • Du, Y., H. Ding, K. Vanarsa, S. Soomro, S. Baig, J. Hicks, and C. Mohan. 2019. Low dose epigallocatechin gallate alleviates experimental colitis by subduing inflammatory cells and cytokines, and improving intestinal permeability. Nutrients 11 (8):1743. doi: 10.3390/nu11081743.
  • Dube, A., J. A. Nicolazzo, and I. Larson. 2011. Chitosan nanoparticles enhance the plasma exposure of (-)-epigallocatechin gallate in mice through an enhancement in intestinal stability. European Journal of Pharmaceutical Sciences 44 (3):422–6. doi: 10.1016/j.ejps.2011.09.004.
  • Dube, A., J. A. Nicolazzo, and I. Larson. 2010. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (-)-epigallocatechin gallate. European Journal of Pharmaceutical Sciences 41 (2):219–25. doi: 10.1016/j.ejps.2010.06.010.
  • Dube, A., N. Ken, A. N. Joseph, and L. Ian. 2010. Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution. Food Chemistry 122 (3):662–6. doi: 10.1016/j.foodchem.2010.03.027.
  • Dumka, D., P. Puri, N. Carayol, C. Lumby, H. Balachandran, K. Schuster, A. K. Verma, L. S. Terada, L. C. Platanias, and S. Parmar. 2009. Activation of the p38 Map kinase pathway is essential for the antileukemic effects of dasatinib. Leukemia & Lymphoma 50 (12):2017–29. doi: 10.3109/10428190903147637.
  • Eng, Q. Y., P. V. Thanikachalam, and S. Ramamurthy. 2018. Molecular understanding of epigallocatechin gallate (EGCG) in cardiovascular and metabolic diseases. Journal of Ethnopharmacology 210:296–310. doi: 10.1016/j.jep.2017.08.035.
  • Fangueiro, J. F., A. C. Calpena, B. Clares, T. Andreani, M. A. Egea, F. J. Veiga, M. L. Garcia, A. M. Silva, and E. B. Souto. 2016. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): In vivo, in vitro and ex vivo studies. International Journal of Pharmaceutics 502 (1–2):161–9. doi: 10.1016/j.ijpharm.2016.02.039.
  • Faralli, A., E. Shekarforoush, A. C. Mendes, and I. S. Chronakis. 2019. Enhanced transepithelial permeation of gallic acid and (-)-epigallocatechin gallate across human intestinal Caco-2 cells using electrospun xanthan nanofibers. Pharmaceutics 11 (4):155. doi: 10.3390/pharmaceutics11040155.
  • Farooqi, A. A., M. Pinheiro, A. Granja, F. Farabegoli, S. Reis, R. Attar, U. Y. Sabitaliyevich, B. Xu, and A. Ahmad. 2020. EGCG mediated targeting of deregulated signaling pathways and non-coding RNAs in different cancers: Focus on JAK/STAT, Wnt/β-catenin, TGF/SMAD, NOTCH, SHH/GLI, and TRAIL mediated signaling pathways. Cancers 12 (4):951. doi: 10.3390/cancers12040951.
  • Fassina, G., A. Buffa, R. Benelli, O. E. Varnier, D. M. Noonan, and A. Albini. 2002. Polyphenolic antioxidant (-)-epigallocatechin-3-gallate from green tea as a candidate anti-HIV agent. AIDS (London, England) 16 (6):939–41. doi: 10.1097/00002030-200204120-00020.
  • Fernández, V. A., L. A. Toledano, N. Pizarro, E. N. Tapia, M. D. G. Roig, R. D. L. Torre, and Ó. G. Algar. 2020. Bioavailability of epigallocatechin gallate administered with different nutritional strategies in healthy volunteers. Antioxidants 9 (5):440. doi: 10.3390/antiox9050440.
  • Ferrero-Miliani, L., O. H. Nielsen, P. S. Andersen, and S. E. Girardin. 2007. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1beta generation. Clinical and Experimental Immunology 147 (2):227–35. doi: 10.1111/j.1365-2249.2006.03261.x.
  • Figueira, I., G. Garcia, R. C. Pimpão, A. P. Terrasso, I. Costa, A. F. Almeida, L. Tavares, T. F. Pais, P. Pinto, M. R. Ventura, et al. 2017. Polyphenols journey through blood-brain barrier towards neuronal protection. Scientific Reports 7 (1):11456. doi: 10.1038/s41598-017-11512-6.
  • Fujiki, H., T. Watanabe, E. Sueoka, A. Rawangkan, and M. Suganuma. 2018. Cancer prevention with green tea and its principal constituent, EGCG: From early investigations to current focus on human cancer stem cells. Molecules and Cells 41 (2):73–82. doi: 10.14348/molcells.2018.2227.
  • Furukawa, A., S. Oikawa, M. Murata, Y. Hiraku, and S. Kawanishi. 2003. (-) (-)-Epigallocatechin gallate causes oxidative damage to isolated and cellular DNA. Biochemical Pharmacology 66 (9):1769–78. doi: 10.1016/S0006-2952(03)00541-0.
  • Gan, R.-Y., H.-B. Li, Z.-Q. Sui, and H. Corke. 2018. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): An updated review. Critical Reviews in Food Science and Nutrition 58 (6):924–41. doi: 10.1080/10408398.2016.1231168.
  • Gao, J., Y. Mao, C. Xiang, M. Cao, G. Ren, K. Wang, X. Ma, D. Wu, and H. Xie. 2021. Preparation of β-lactoglobulin/gum arabic complex nanoparticles for encapsulation and controlled release of EGCG in simulated gastrointestinal digestion model. Food Chemistry 354:129516. doi: 10.1016/j.foodchem.2021.129516.
  • García-Rodríguez, M. D. C., G. Serrano-Reyes, L. M. Hernández-Cortés, and M. Altamirano-Lozano. 2021. Antigenotoxic effects of (-)-epigallocatechin-3-gallate (EGCG) and its relationship with the endogenous antioxidant system, 8-hydroxydeoxyguanosine adduct repair (8-OHdG), and apoptosis in mice exposed to chromium(VI). Journal of Toxicology and Environmental Health. Part A 84 (8):331–44. doi: 10.1080/15287394.2020.1867275.
  • Giunta, B., D. Obregon, H. Hou, J. Zeng, N. Sun, V. Nikolic, J. Ehrhart, D. Shytle, F. Fernandez, and J. Tan. 2006. EGCG mitigates neurotoxicity mediated by HIV-1 proteins gp120 and Tat in the presence of IFN-gamma: role of JAK/STAT1 signaling and implications for HIV-associated dementia . Brain Research 1123 (1):216–25. doi: 10.1016/j.brainres.2006.09.057.
  • Glei, M., and B. L. Pool-Zobel. 2006. The main catechin of green tea, (-)-epigallocatechin-3-gallate (EGCG), reduces bleomycin-induced DNA damage in human leucocytes. Toxicology in Vitro: An International Journal Published in Association with BIBRA 20 (3):295–300. doi: 10.1016/j.tiv.2005.08.002.
  • Gonzalez-Alfonso, J. L., P. Peñalver, A. O. Ballesteros, J. C. Morales, and F. J. Plou. 2019. Effect of α-glucosylation on the stability, antioxidant properties, toxicity, and neuroprotective activity of (-)-Epigallocatechin Gallate. Frontiers in Nutrition 6:30. doi: 10.3389/fnut.2019.00030.
  • Gu, J.-J., K.-S. Qiao, P. Sun, P. Chen, and Q. Li. 2018. Study of EGCG induced apoptosis in lung cancer cells by inhibiting PI3K/Akt signaling pathway. European Review for Medical and Pharmacological Sciences 22 (14):4557–63. doi: 10.26355/eurrev_201807_15511.
  • Gu, J.-W., K. L. Makey, K. B. Tucker, E. Chinchar, X. Mao, I. Pei, E. Y. Thomas, and L. Miele. 2013. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression. Vascular Cell 5 (1):9–10. doi: 10.1186/2045-824X-5-9.
  • Hamilton-Miller, J. M. 1995. Antimicrobial properties of tea (Camellia sinensis L.). Antimicrobial Agents and Chemotherapy 39 (11):2375–7. doi: 10.1128/aac.39.11.2375.
  • Han, X., C. Peng, L. Huang, X. Luo, Q. Mao, S. Wu, and H. Zhang. 2022. EGCG prevents pressure overload-induced myocardial remodeling by downregulating overexpression of HDAC5 in mice. International Journal of Molecular Medicine 49 (1):11. doi: 10.3892/ijmm.2021.5066.
  • Han, Y. C., H.-F. Chiu, Y. T. Ho, K. Venkatakrishnan, and C.-K. Wang. 2020. Improved bioavailability of EGCG after complexation with royal jelly protein. Journal of Food Biochemistry 44 (9):e13372. doi: 10.1111/jfbc.13372.
  • Haratifar, S., K. A. Meckling, and M. Corredig. 2014. Antiproliferative activity of tea catechins associated with casein micelles, using HT29 colon cancer cells. Journal of Dairy Science 97 (2):672–8. doi: 10.3168/jds.2013-7263.
  • Hayakawa, S., K. Saito, N. Miyoshi, T. Ohishi, Y. Oishi, M. Miyoshi, and Y. Nakamura. 2016. Anti-cancer effects of green tea by either anti- or pro- oxidative mechanisms. Asian Pacific Journal of Cancer Prevention: APJCP17 (4):1649–54. doi: 10.7314/apjcp.2016.17.4.1649.
  • Hengge, R. 2019. Targeting bacterial biofilms by the green tea polyphenol EGCG. Molecules 24 (13):2403. doi: 10.3390/molecules24132403.
  • Henss, L., A. Auste, C. Schürmann, C. Schmidt, C. V. Rhein, M. D. Mühlebach, and B. S. Schnierle. 2021. The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection. Journal of General Virology 102 (4):001574. doi: 10.1099/jgv.0.001574.
  • Hodgson, A. B., R. K. Randell, and A. E. Jeukendrup. 2013. The effect of green tea extract on fat oxidation at rest and during exercise: Evidence of efficacy and proposed mechanisms. Advances in Nutrition 4 (2):129–40. doi: 10.3945/an.112.003269.
  • Hong, J., H. Lu, X. Meng, J. H. Ryu, Y. Hara, and C. S. Yang. 2002. Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (-)-epigallocatechin-3-gallate in ht-29 human colon adenocarcinoma cells. Cancer Research 62 (24):7241–6. PMID: 12499265
  • Hou, Z., S. Sang, H. You, M. J. Lee, J. Hong, K. V. Chin, and C. S. Yang. 2005. Mechanism of action of (-)-epigallocatechin-3-gallate: auto-oxidation-dependent inactivation of epidermal growth factor receptor and direct effects on growth inhibition in human esophageal cancer KYSE 150 cells. Cancer Research 65 (17):8049–56. doi: 10.1158/0008-5472.CAN-05-0480.
  • Hu, J., D. Webster, J. Cao, and A. Shao. 2018. The safety of green tea and green tea extract consumption in adults – Results of a systematic review. Regulatory Toxicology and Pharmacology: RTP 95:412–33. doi: 10.1016/j.yrtph.2018.03.019.
  • Huang, C.-C., J.-Y. Fang, W.-B. Wu, H.-S. Chiang, Y.-J. Wei, and C.-F. Hung. 2005. Protective effects of (-)-epicatechin-3-gallate on UVA-induced damage in HaCaT keratinocytes. Archives of Dermatological Research 296 (10):473–81. doi: 10.1007/s00403-005-0540-5.
  • Huang, C.-Y., Z. Han, X. Li, H.-H. Xie, and S.-S. Zhu. 2017. Mechanism of EGCG promoting apoptosis of MCF-7 cell line in human breast cancer. Oncology Letters 14 (3):3623–7. doi: 10.3892/ol.2017.6641.
  • Hung, Y. C., Y. H. Hsiao, and J. F. Hsieh. 2021. Catechin content and free radical scavenging activity of Camellia sinensis twig extracts. International Food Research Journal 28 (2):248–54.
  • Huo, C., S. B. Wan, W. H. Lam, L. Li, Z. Wang, K. R. Landis-Piwowar, D. Chen, Q. P. Dou, and T. H. Chan. 2008. The challenge of developing green tea polyphenols as therapeutic agents. Inflammopharmacology 16 (5):248–52. doi: 10.1007/s10787-008-8031-x.
  • Hurst, B. L., D. Dickinson, and S. Hsu. 2021. Epigallocatechin-3-gallate (EGCG) inhibits SARS-CoV-2 infection in primate epithelial cells: (a short communication). Microbiology and Infectious Diseases 5 (2):1–6. doi: 10.33425/2639-9458.1116.
  • Hwang, J.-T., J. Ha, I.-J. Park, S.-K. Lee, H. W. Baik, Y. M. Kim, and O. J. Park. 2007. Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Letters 247 (1):115–21. doi: 10.1016/j.canlet.2006.03.030.
  • Hwang, Y. S., K.-K. Park, and W.-Y. Chung. 2013. Epigallocatechin-3 gallate inhibits cancer invasion by repressing functional invadopodia formation in oral squamous cell carcinoma. European Journal of Pharmacology 715 (1-3):286–95. doi: 10.1016/j.ejphar.2013.05.008.
  • Imai, K., K. Suga, and K. Nakachi. 1997. Cancer-preventive effects of drinking green tea among a Japanese population. Preventive Medicine 26 (6):769–75. doi: 10.1006/pmed.1997.0242.
  • Irimie, A. I., C. Braicu, O. Zanoaga, V. Pileczki, C. Gherman, I. Berindan-Neagoe, and R. S. Campian. 2015. Epigallocatechin-3-gallate suppresses cell proliferation and promotes apoptosis and autophagy in oral cancer SSC-4 cells. OncoTargets and Therapy 8:461–70. doi: 10.2147/ott.s78358.
  • Ishii, S., H. Kitazawa, T. Mori, A. Kirino, S. Nakamura, N. Osaki, A. Shimotoyodome, and I. Tamai. 2019. Identification of the catechin uptake transporter responsible for intestinal absorption of epigallocatechin gallate in mice. Scientific Reports 9 (1):11014. doi: 10.1038/s41598-019-47214-4.
  • Ishii, T., T. Mori, T. Tanaka, D. Mizuno, R. Yamaji, S. Kumazawa, T. Nakayama, and M. Akagawa. 2008. Covalent modification of proteins by green tea polyphenol (-)-epigallocatechin-3-gallate through autoxidation. Free Radical Biology & Medicine 45 (10):1384–94. doi: 10.1016/j.freeradbiomed.2008.07.023.
  • Iwasaki, R., K. Ito, T. Ishida, M. Hamanoue, S. Adachi, T. Watanabe, and Y. Sato. 2009. Catechin, green tea component, causes caspase-independent necrosis-like cell death in chronic myelogenous leukemia. Cancer Science 100 (2):349–56. doi: 10.1111/j.1349-7006.2008.01046.x.
  • Jang, M., R. Park, Y.-I. Park, Y.-E. Cha, A. Yamamoto, J. I. Lee, and J. Park. 2021. EGCG, a green tea polyphenol, inhibits human coronavirus replication in vitro. Biochemical and Biophysical Research Communications 547:23–8. doi: 10.1016/j.bbrc.2021.02.016.
  • Jang, M., Y.-I. Park, Y.-E. Cha, R. Park, S. Namkoong, J. I. Lee, and J. Park. 2020. Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Evidence-Based Complementary and Alternative Medicine 16 (Article ID 5630838) doi: 10.1155/2020/5630838.
  • Jeon, J., J. H. Kim, C. K. Lee, C. H. Oh, and H. J. Song. 2014. The antimicrobial activity of (-)-epigallocatehin-3-gallate and green tea extracts against Pseudomonas aeruginosa and Escherichia coli isolated from skin wounds. Annals of Dermatology 26 (5):564–9. doi: 10.5021/ad.2014.26.5.564.
  • Jin, G., Y. Yang, K. Liu, J. Zhao, X. Chen, H. Liu, R. Bai, X. Li, Y. Jiang, X. Zhang, et al. 2017. Combination curcumin and (-)-epigallocatechin-3-gallate inhibits colorectal carcinoma microenvironment-induced angiogenesis by JAK/STAT3/IL-8 pathway. Oncogenesis 6 (10):e384. doi: 10.1038/oncsis.2017.84.
  • Jokar, M. H., S. Sedighi, and M. Moradzadeh. 2020. A comparative study of anti-leukemic effects of kaempferol and epigallocatechin-3-gallate (EGCG) on human leukemia HL-60 cells. Journal of Phytomedicine 11 (4):314–23. doi: 10.22038/ajp.2021.17604.
  • Jong, D., and P. Borm. 2008. Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine 3 (2):133–49. doi: 10.2147/IJN.S596.
  • Jung, J. H., M. Yun, E.-J. Choo, S.-H. Kim, M.-S. Jeong, D.-B. Jung, H. Lee, E.-O. Kim, N. Kato, B. Kim, et al. 2015. A derivative of epigallocatechin-3-gallate induces apoptosis via SHP-1-mediated suppression of BCR-ABL and STAT3 signalling in chronic myelogenous leukaemia. British Journal of Pharmacology 172 (14):3565–78. doi: 10.1111/bph.13146.
  • Kaihatsu, K., M. Yamabe, and Y. Ebara. 2018. Antiviral mechanism of action of epigallocatechin-3-o-gallate and its fatty acid esters. Molecules 23 (10):2475. doi: 10.3390/molecules23102475.
  • Khan, H. Y., H. Zubair, M. Faisal, M. F. Ullah, M. Farhan, F. H. Sarkar, A. Ahmad, and S. M. Hadi. 2014. Plant polyphenol induced cell death in human cancer cells involves mobilization of intracellular copper ions and reactive oxygen species generation: A mechanism for cancer chemopreventive action. Molecular Nutrition & Food Research 58 (3):437–46. doi: 10.1002/mnfr.201300417.
  • Khan, N., F. Afaq, and H. Mukhtar. 2008. Cancer chemoprevention through dietary antioxidants: Progress and promise. Antioxidants & Redox Signaling 10 (3):475–510. doi: 10.1089/ars.2007.1740.
  • Khan, N., D. J. Bharali, V. M. Adhami, I. A. Siddiqui, H. Cui, S. M. Shabana, S. A. Mousa, and H. Mukhtar. 2014. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis 35 (2):415–23. doi: 10.1093/carcin/bgt321.
  • Khan, N., and H. Mukhtar. 2007. Tea polyphenols for health promotion. Life Sciences 81 (7):519–33. doi: 10.1016/j.lfs.2007.06.011.
  • Khan, N., and H. Mukhtar. 2018. Tea polyphenols in promotion of human health. Nutrients 11 (1):39. doi: 10.3390/nu11010039.
  • Kim, H.-S., M. J. Quon, and J.-A. Kim. 2014. New insights into the mechanisms of polyphenols beyond antioxidant properties; lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biology 2 (1):187–95. doi: 10.1016/j.redox.2013.12.022.
  • Kim, H. S., M. H. Kim, M. Jeong, Y. S. Hwang, S. H. Lim, B. A. Shin, B. W. Ahn, and Y. D. Jung. 2004. egcg blocks tumor promoter-induced MMP-9 expression via suppression of MAPK and AP-1 activation in human gastric AGS cells. Anticancer Research 24 (2B):747–53. PMID: 15161022
  • Kim, K.-C., and C. Lee. 2014. Reversal of cisplatin resistance by epigallocatechin gallate is mediated by downregulation of axl and tyro 3 expression in human lung cancer cells. The Korean Journal of Physiology & Pharmacology 18 (1):61–6. doi: 10.4196/kjpp.2014.18.1.61.
  • Kim, S.-J., H.-J. Jeong, K.-M. Lee, N.-Y. Myung, N.-H. An, W. Mo Yang, S. Kyu Park, H.-J. Lee, S.-H. Hong, H.-M. Kim, et al. 2007. Epigallocatechin-3-gallate suppresses NF-κB activation and phosphorylation of p38 MAPK and JNK in human astrocytoma U373MG cells. The Journal of Nutritional Biochemistry 18 (9):587–96. doi: 10.1016/j.jnutbio.2006.11.001.
  • Kim, T. H., S.-K. Ku, and J.-S. Bae. 2012. Effects of (-)-epigallocatechin gallate on HMGB1 and interleukin-1β-mediated barrier disruption in human endothelial cells. Journal of the Korean Society for Applied Biological Chemistry 55 (2):165–73. doi: 10.1007/s13765-012-1041-9.
  • Kohri, T., F. Nanjo, M. Suzuki, R. Seto, N. Matsumoto, M. Yamakawa, H. Hojo, Y. Hara, D. Desai, S. Amin, et al. 2001. Synthesis of (-)-[4-3H]epigallocatechin gallate and its metabolic fate in rats after intravenous administration. Journal of Agricultural and Food Chemistry 49 (2):1042–8. doi: 10.1021/jf0011236.
  • Kon, M., T. Ishikawa, Y. Ohashi, H. Yamada, and M. Ogasawara. 2022. Epigallocatechin gallate stimulated histamine production and downregulated histamine H1 receptor in oral cancer cell lines expressing histidine decarboxylase. Journal of Oral Biosciences 64 (1):120–30. doi: 10.1016/j.job.2022.01.003.
  • Krishnamoorthy, S., and K. V. Honn. 2006. Inflammation and disease progression. Cancer Metastasis Reviews 25 (3):481–91. doi: 10.1007/s10555-006-9016-0.
  • Krupkova, O., S. J. Ferguson, and K. Wuertz-Kozak. 2016. Stability of (-)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. The Journal of Nutritional Biochemistry 37:1–12. doi: 10.1016/j.jnutbio.2016.01.002.
  • Kumar, B. N. P., N. Puvvada, S. Rajput, S. Sarkar, M. K. Mahto, M. M. Yallapu, A. Pathak, L. Emdad, S. K. Das, R. L. Reis, et al. 2018. Targeting of EGFR, VEGFR2, and Akt by engineered dual drug encapsulated mesoporous silica-gold nanoclusters sensitizes tamoxifen-resistant breast cancer. Molecular Pharmaceutics 15 (7):2698–713. doi: 10.1021/acs.molpharmaceut.8b00218.
  • Kumar, N. B., J. Pow-Sang, K. M. Egan, P. E. Spiess, S. Dickinson, R. Salup, M. Helal, J. Mclarty, C. R. Williams, F. Schreiber, et al. 2015. Randomized, placebo-controlled trial of green tea catechins for prostate cancer prevention. Cancer Prevention Research 8 (10):879–87. doi: 10.1158/1940-6207.CAPR-14-0324.
  • Kwak, T. W., S. B. Park, H.-J. Kim, Y. I. Jeong, and D. H. Kang. 2017. Anticancer activities of epigallocatechin-3-gallate against cholangiocarcinoma cells. OncoTargets and Therapy 10:137–44. doi: 10.2147/ott.s112364.
  • Lam, W. H., A. Kazi, D. J. Kuhn, L. M. C. Chow, A. S. C. Chan, Q. P. Dou, and T. H. Chan. 2004. A potential prodrug for a green tea polyphenol proteasome inhibitor: Evaluation of the peracetate ester of (-)-epigallocatechin gallate [(-)-EGCG]. Bioorganic & Medicinal Chemistry 12 (21):5587–93. doi: 10.1016/j.bmc.2004.08.002.
  • Lambert, J. D., J. Hong, D. H. Kim, V. M. Mishin, and C. S. Yang. 2004. Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice. The Journal of Nutrition 134 (8):1948–52. doi: 10.1093/jn/134.8.1948.
  • Lambert, J. D., M.-J. Lee, L. Diamond, J. Ju, J. Hong, M. Bose, H. L. Newmark, and C. S. Yang. 2006. Dose-dependent levels of epigallocatechin-3-gallate in human colon cancer cells and mouse plasma and tissues. Drug Metabolism and Disposition 34 (1):8–11. doi: 10.1124/dmd.104.003434.
  • Lambert, J. D., M.-J. Lee, H. Lu, X. Meng, J. J. J. Hong, D. N. Seril, M. G. Sturgill, and C. S. Yang. 2003. Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. The Journal of Nutrition 133 (12):4172–7. doi: 10.1093/jn/133.12.4172.
  • Lambert, J. D., S. Sang, J. Hong, S.-J. Kwon, M.-J. Lee, C.-T. Ho, and C. S. Yang. 2006. Peracetylation as a means of enhancing in vitro bioactivity and bioavailability of epigallocatechin-3-gallate. Drug Metabolism and Disposition 34 (12):2111–6. doi: 10.1124/dmd.106.011460.
  • Lambert, J. D., S. Sang, and C. S. Yang. 2007. Biotransformation of green tea polyphenols and the biological activities of those metabolites. Molecular Pharmaceutics 4 (6):819–25. doi: 10.1021/mp700075m.
  • Lambert, J. D., and R. J. Elias. 2010. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Archives of Biochemistry and Biophysics 501 (1):65–72. doi: 10.1016/j.abb.2010.06.013.
  • Landis-Piwowar, K., D. Chen, R. Foldes, T.-H. Chan, and Q. P. Dou. 2013. Novel epigallocatechin gallate analogs as potential anticancer agents: A patent review (2009 - present). Expert Opinion on Therapeutic Patents 23 (2):189–202. doi: 10.1517/13543776.2013.743993.
  • Landis-Piwowar, K. R., C. Huo, D. Chen, V. Milacic, G. Shi, T. H. Chan, and Q. P. Dou. 2007. A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Research 67 (9):4303–10. doi: 10.1158/0008-5472.can-06-4699.
  • Lee, M.-J., P. Maliakal, L. Chen, X. Meng, F. Y. Bondoc, S. Prabhu, G. Lambert, S. Mohr, and C. S. Yang. 2002. Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans: Formation of different metabolites and individual variability. Cancer Epidemiology Biomarkers and Prevention. 11 (10):1025–32. PMID: 12376503
  • Lee, S.-C., W.-K. Chan, T.-W. Lee, W.-H. Lam, X. Wang, T.-H. Chan, and Y.-C. Wong. 2008. Effect of a prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate on the growth of androgen-independent prostate cancer in vivo. Nutrition and Cancer 60 (4):483–91. doi: 10.1080/01635580801947674.
  • Legeay, S., M. Rodier, L. Fillon, S. Faure, and N. Clere. 2015. Epigallocatechin gallate: A review of its beneficial properties to prevent metabolic syndrome. Nutrients 7 (7):5443–68. doi: 10.3390/nu7075230.
  • Lestringant, P., A. Guri, I. Gülseren, P. Relkin, and M. Corredig. 2014. Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes. Journal of Agricultural and Food Chemistry 62 (33):8357–64. doi: 10.1021/jf5029834.
  • Li, F., C. Gao, P. Yan, M. Zhang, Y. Wang, Y. Hu, X. Wu, X. Wang, and J. Sheng. 2018. EGCG reduces obesity and white adipose tissue gain partly through AMPK activation in mice. Frontiers in Pharmacology 9:1366. doi: 10.3389/fphar.2018.01366.
  • Li, L., and T. H. Chan. 2001. Enantioselective synthesis of epigallocatechin-3-gallate (EGCG), the active polyphenol component from green tea. Organic Letters 3 (5):739–41. doi: 10.1021/ol000394z.
  • Li, Z. H., Z. Shi, S. Tang, H. P. Yao, X. Lin, and F. Wu. 2020. Epigallocatechin-3-gallate ameliorates LPS-induced inflammation by inhibiting the phosphorylation of Akt and ERK signaling molecules in rat H9c2 cells . Experimental and Therapeutic Medicine 20 (2):1621–9. doi: 10.3892/etm.2020.8827.
  • Li, Z., J. Ha, T. Zou, and L. Gu. 2014. Fabrication of coated bovine serum albumin (BSA)-epigallocatechin gallate (EGCG) nanoparticles and their transport across monolayers of human intestinal epithelial Caco-2 cells. Food & Function 5 (6):1278–85. doi: 10.1039/c3fo60500k.
  • Li, Q., S. Sadhukhan, J. M. Berthiaume, R. A. Ibarra, H. Tang, S. Deng, E. Hamilton, L. E. Nagy, G. P. Tochtrop, and G. F. Zhang. 2013. 4-Hydroxy-2(E)-nonenal (HNE) catabolism and formation of HNE adducts are modulated by β oxidation of fatty acids in the isolated rat heart. Free Radical Biology & Medicine 58:35–44. doi: 10.1016/j.freeradbiomed.2013.01.005.
  • Liang, R., L. Chen, W. Yokoyama, P. Williams, and F. Zhong. 2016. Niosomes consisting of tween-60 and cholesterol improve the chemical stability and antioxidant activity of (-)-epigallocatechin gallate under intestinal tract conditions. Journal of Agricultural and Food Chemistry 64 (48):9180–8. doi: 10.1021/acs.jafc.6B04147.
  • Liederer, B. M., and R. T. Borchardt. 2006. Enzymes involved in the bioconversion of ester-based prodrugs. Journal of Pharmaceutical Sciences 95 (6):1177–95. doi: 10.1002/jps.20542.
  • Lin, L., L. Zeng, A. Liu, D. Yuan, Y. Peng, S. Zhang, Y. Li, J. Chen, W. Xiao, and Z. Gong. 2021. Role of epigallocatechin gallate in glucose, lipid, and protein metabolism and l-theanine in the metabolism-regulatory effects of epigallocatechin gallate. Nutrients 13 (11):4120. doi: 10.3390/nu13114120.
  • Lin, S.-Y., L. Kang, C.-Z. Wang, H. H. Huang, T.-L. Cheng, H.-T. Huang, M.-J. Lee, Y.-S. Lin, M.-L. Ho, G.-J. Wang, et al. 2018. (−)-Epigallocatechin-3-gallate (EGCG) enhances osteogenic differentiation of human bone marrow mesenchymal stem cells. Molecules 23 (12):3221. doi: 10.3390/molecules23123221.
  • Liu, B., Z. Kang, and W. Yan. 2021. Synthesis, stability, and antidiabetic activity evaluation of (-)-epigallocatechin gallate (EGCG) palmitate derived from natural tea polyphenols. Molecules 26 (2):393. doi: 10.3390/molecules26020393.
  • Liu, B., and W. Yan. 2019. Lipophilization of EGCG and effects on antioxidant activities. Food Chemistry 272:663–9. doi: 10.1016/j.foodchem.2018.08.086.
  • Liu, S.-Y., W. Wang, J.-P. Ke, P. Zhang, G.-X. Chu, and G.-H. Bao. 2022. Discovery of Camellia sinensis catechins as SARS-CoV-2 3CL protease inhibitors through molecular docking, intra and extra cellular assays. Phytomedicine 96:153853. doi: 10.1016/j.phymed.2021.153853.
  • Liu, S., H. Li, M. Tang, and Y. Cao. 2017. (-)-Epigallocatechin-3-gallate inhibition of Epstein-Barr virus spontaneous lytic infection involves downregulation of latent membrane protein 1. Experimental and Therapeutic Medicine 15 (1):1105–12. doi: 10.3892/etm.2017.5495.
  • Llano, D. G. D., A. Esteban-Fernández, F. Sánchez-Patán, P. J. Martínlvarez, M. V. Moreno-Arribas, and B. Bartolomé. 2015. Anti-adhesive activity of cranberry phenolic compounds and their microbial-derived metabolites against uropathogenic Escherichia coli in bladder epithelial cell cultures. International Journal of Molecular Sciences 16 (12):12119–30. doi: 10.3390/ijms160612119.
  • Long, L. H., M. V. Clement, and B. Halliwell. 2000. Artifacts in cell culture: Rapid generation of hydrogen peroxide on addition of (-)-epigallocatechin, (-)-epigallocatechin gallate, (+)-catechin, and quercetin to commonly used cell culture media. Biochemical and Biophysical Research Communications 273 (1):50–3. doi: 10.1006/bbrc.2000.2895.
  • Lu, H., X. Meng, C. Li, S. Sang, C. Patten, S. Sheng, J. Hong, N. Bai, B. Winnik, C. T. Ho, et al. 2003. Glucuronides of tea catechins: Enzymology of biosynthesis and biological activities. Drug Metabolism and Disposition: The Biological Fate of Chemicals 31 (4):452–61. doi: 10.1124/dmd.31.4.452.
  • Lu, J.-W., P.-S. Hsieh, C.-C. Lin, S.-M. Hu, Y.-M. Huang, C.-Y. Wang, Z. Liang, Y.-J. Gong, and Ho, M.-K. 2017. Synergistic effects of combination treatment using EGCG and suramin against the chikungunya virus. Biochemical and Biophysical Research Communications 491 (3):595–602. doi: 10.1016/j.bbrc.2017.07.157.
  • Ma, J., M. Shi, G. Li, N. Wang, J. Wei, T. Wang, J. Ma, and Y. G. Wang. 2013. Regulation of Id1 expression by epigallocatechin‑3‑gallate and its effect on the proliferation and apoptosis of poorly differentiated AGS gastric cancer cells . International Journal of Oncology 43 (4):1052–8. doi: 10.3892/ijo.2013.2043.
  • Ma, Y.-C., C. Li, F. Gao, Y. Xu, Z.-B. Jiang, J.-X. Liu, and L.-Y. Jin. 2014. Epigallocatechin gallate inhibits the growth of human lung cancer by directly targeting the EGFR signaling pathway. Oncology Reports 31 (3):1343–9. doi: 10.3892/or.2013.2933.
  • Man, G. C. W., J. Wang, Y. Song, J. H. Wong, Y. Zhao, T. S. Lau, K. T. Leung, T. H. Chan, H. Wang, J. Kwong, et al. 2020. Therapeutic potential of a novel prodrug of green tea extract in induction of apoptosis via ERK/JNK and Akt signaling pathway in human endometrial cancer. BMC Cancer 20 (1):964. doi: 10.1186/s12885-020-07455-3.
  • Mao-Jung, L., P. Maliakal, L. Chen, X. Meng, F. Y. Bondoc, S. Prabhu, G. Lambert, S. Mohr, and C. S. Yang. 2002. Pharmacokinetics of tea catechins after ingestion of green tea and (-)-epigallocatechin-3-gallate by humans: Formation of different metabolites and individual variability. Cancer Epidemiology Biomarkers and Prevention 11:1025–32.
  • Maruyama, T., S. Murata, K. Nakayama, N. Sano, K. Ogawa, T. Nowatari, T. Tamura, R. Nozaki, K. Fukunaga, and N. Ohkohchi. 2014. (-)-Epigallocatechin-3-gallate suppresses liver metastasis of human colorectal cancer. Oncology Reports 31 (2):625–33. doi: 10.3892/or.2013.2925.
  • Masuda, M., M. Suzui, J. T. E. Lim, A. Deguchi, J. W. Soh, and I. B. Weinstein. 2002. Epigallocatechin-3-gallate decreases VEGF production in head and neck and breast carcinoma cells by inhibiting EGFR-related pathways of signal transduction. Journal of Experimental Therapeutics & Oncology 2 (6):350–9. doi: 10.1046/j.1359-4117.2002.01062.x.
  • Mata-Bilbao, M. D. L., C. Andrés-Lacueva, E. Roura, O. Jáuregui, E. Escribano, C. Torre, and R. M. Lamuela-Raventós. 2008. Absorption and pharmacokinetics of green tea catechins in beagles. The British Journal of Nutrition 100 (3):496–502. doi: 10.1017/S0007114507898692.
  • Matsumoto, Y., K. Kaihatsu, K. Nishino, M. Ogawa, N. Kato, and A. Yamaguchi. 2012. Antibacterial and antifungal activities of new acylated derivatives of epigallocatechin gallate. Frontiers in Microbiology 3:53. doi: 10.3389/fmicb.2012.00053.
  • Matsumura, K., K. Kaihatsu, S. Mori, H. H. Cho, N. Kato, and S. H. Hyon. 2008. Enhanced antitumor activities of (-)-epigallocatechin-3-O-gallate fatty acid monoester derivatives in vitro and in vivo. Biochemical and Biophysical Research Communications 377 (4):1118–22. doi: 10.1016/j.bbrc.2008.10.128.
  • Mazzanti, G., A. D. Sotto, and A. Vitalone. 2015. Hepatotoxicity of green tea: An update. Archives of Toxicology 89 (8):1175–91. doi: 10.1007/s00204-015-1521-x.
  • Mhatre, S., T. Srivastava, S. Naik, and V. Patravale. 2021a. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine 85:153286. doi: 10.1016/j.phymed.2020.153286.
  • Mekky, R. Y., N. El-Ekiaby, S. A. El Sobky, N. M. Elemam, R. A. Youness, M. El-Sayed, M. T. Hamza, G. Esmat, and A. I. Abdelaziz. 2019. Epigallocatechin gallate (EGCG) and miR-548m reduce HCV entry through repression of CD81 receptor in HCV cell models. Archives of Virology 164 (6):1587–95. doi: 10.1007/s00705-019-04232-x.
  • Mena, P., L. Bresciani, N. Brindani, I. A. Ludwig, G. Pereira-Caro, D. Angelino, R. Llorach, L. Calani, F. Brighenti, M. N. Clifford, et al. 2019. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: Synthesis, analysis, bioavailability, and bioactivity. Natural Product Reports 36 (5):714–52. doi: 10.1039/c8np00062j.
  • Meng, J., C. Chang, Y. Chen, F. Bi, C. Ji, and W. Liu. 2019. EGCG overcomes gefitinib resistance by inhibiting autophagy and augmenting cell death through targeting ERK phosphorylation in NSCLC. OncoTargets and Therapy 201926 (12):6033–43. doi: 10.2147/OTT.S209441.
  • Menon, D. R., Y. Li, T. Yamauchi, D. G. Osborne, P. K. Vaddi, M. F. Wempe, Z. Zhai, and M. Fujita. 2021. Egcg inhibits tumor growth in melanoma by targeting jak-stat signaling and its downstream pd-l1/pd-l2-pd1 axis in tumors and enhancing cytotoxic t-cell responses. Pharmaceuticals 14 (11):1081. doi: 10.3390/ph14111081.
  • Mereles, D., and W. Hunstein. 2011. Epigallocatechin-3-gallate (EGCG) for clinical trials: More Pitfalls than Promises? International Journal of Molecular Sciences 12 (9):5592–603. doi: 10.3390/ijms12095592.
  • Meselhy, R. M., N. Nakamura, and M. Hattori. 1997. Biotransformation of (-)-epicatechin 3-o-gallate by human intestinal bacteria. Chemical & Pharmaceutical Bulletin 45 (5):888–93. doi: 10.1248/cpb.45.888.
  • Mhatre, S., S. Naik, and V. Patravale. 2021b. A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2. Computers in Biology and Medicine 129:104137. doi: 10.1016/j.compbiomed.2020.104137.
  • Min, K., and T. K. Kwon. 2014. Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integrative Medicine Research 3 (1):16–24. doi: 10.1016/j.imr.2013.12.001.
  • Minnelli, C., L. Cianfruglia, E. Laudadio, M. Giovanna, R. Galeazzi, and T. Armeni. 2021. Effect of epigallocatechin-3-gallate on egfr signaling and migration in non-small cell lung cancer. International Journal of Molecular Sciences 22 (21):11833. doi: 10.3390/ijms222111833.
  • Minnelli, C., E. Laudadio, G. Mobbili, and R. Galeazzi. 2020. Conformational insight on WT-and mutated-EGFR receptor activation and inhibition by epigallocatechin-3-gallate: Over a rational basis for the design of selective non-small-cell lung anticancer agents. International Journal of Molecular Sciences 21 (5):1721. doi: 10.3390/ijms21051721.
  • Mittal, A., M. S. Pate, R. C. Wylie, T. O. Tollefsbol, and S. K. Katiyar. 2004. EGCG down-regulates telomerase in human breast carcinoma MCF-7 cells, leading to suppression of cell viability and induction of apoptosis. International Journal of Oncology 24 (3):703–10. doi: 10.3892/ijo.24.3.703
  • Monagas, M., M. Urpi-Sarda, F. Sánchez-Patán, R. Llorach, I. Garrido, C. Gómez-Cordovés, C. Andres-Lacuevab, and B. Bartoloméa. 2010. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food & Function 1 (3):233–53. doi: 10.1039/c0fo00132e.
  • Moradzadeh, M., A. Hosseini, S. Erfanian, and H. Rezaei. 2017. Epigallocatechin-3-gallate promotes apoptosis in human breast cancer T47D cells through down-regulation of PI3K/AKT and Telomerase. Pharmacological Reports 69 (5):924–8. doi: 10.1016/j.pharep.2017.04.008.
  • Mori, S., S. Miyake, T. Kobe, T. Nakaya, S. D. Fuller, N. Kato, and K. Kaihatsu. 2008. Enhanced anti-influenza A virus activity of (-)-epigallocatechin-3-O-gallate fatty acid monoester derivatives: Effect of alkyl chain length. Bioorganic & Medicinal Chemistry Letters 18 (14):4249–52. doi: 10.1016/j.bmcl.2008.02.020.
  • Nagle, D. G., D. Ferreira, and Y.-D. Zhou. 2006. Epigallocatechin-3-gallate (EGCG): Chemical and biomedical perspectives. Phytochemistry 67 (17):1849–55. doi: 10.1016/j.phytochem.2006.06.020.
  • Nair, S., A. Barve, T.-O. Khor, G.-X. Shen, W. Lin, J. Y. Chan, L. Cai, and A.-N. Kong. 2010. Regulation of Nrf2- and AP-1-mediated gene expression by epigallocatechin-3-gallate and sulforaphane in prostate of Nrf2-knockout or C57BL/6J mice and PC-3 AP-1 human prostate cancer cells . Acta Pharmacologica Sinica 31 (9):1223–40. doi: 10.1038/aps.2010.147.
  • Nakachi, K., S. Matsuyama, S. Miyake, M. Suganuma, and K. Imai. 2000. Preventive effects of drinking green tea on cancer and cardiovascular disease: Epidemiological evidence for multiple targeting prevention. BioFactors 13 (1–4):49–54. doi: 10.1002/biof.5520130109.
  • Nakagawa, H., K. Hasumi, J.-T. Woo, K. Nagai, and M. Wachi. 2004. Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate. Carcinogenesis 25 (9):1567–74. doi: 10.1093/carcin/bgh168.
  • Nakayama, M., N. Shigemune, T. Tsugukuni, H. Tokuda, and T. Miyamoto. 2011. Difference of EGCg adhesion on cell surface between Staphylococcus aureus and Escherichia coli visualized by electron microscopy after novel indirect staining with cerium chloride. Journal of Microbiological Methods 86 (1):97–103. doi: 10.1016/j.mimet.2011.04.010.
  • Naujokat, C., and D. L. McKee. 2021. The “big five” phytochemicals targeting cancer stem cells: Curcumin, EGCG, sulforaphane, resveratrol and Genistein. Current Medicinal Chemistry 28 (22):4321–42. doi: 10.2174/0929867327666200228110738.
  • NavaneethaKrishnan, S., J. L. Rosales, and K. Y. Lee. 2019. ROS-mediated cancer cell killing through dietary phytochemicals. Oxidative Medicine and Cellular Longevity 2019:9051542. doi: 10.1155/2019/9051542.
  • Nesran, Z. N. M., N. H. Shafie, A. H. Ishak, N. M. Esa, A. Ismail, and S. F. M. Tohid. 2019. Induction of endoplasmic reticulum stress pathway by green tea epigallocatechin-3-gallate (EGCG) in colorectal cancer cells: Activation of PERK/p-eIF2α/ATF4 and IRE1α. BioMed Research International 2019:3480569. doi: 10.1155/2019/3480569.
  • Noguchi, A., M. Inohara-Ochiai, N. Ishibashi, H. Fukami, T. Nakayama, and M. Nakao. 2008. A novel glucosylation enzyme: Molecular cloning, expression, and characterization of Trichoderma viride JCM22452 alpha-amylase and enzymatic synthesis of some flavonoid monoglucosides and oligoglucosides . Journal of Agricultural and Food Chemistry 56 (24):12016–24. doi: 10.1021/jf801712g.
  • Ohishi, T., S. Goto, P. Monira, M. Isemura, and Y. Nakamura. 2016. Anti-inflammatory Action of Green Tea. Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry 15 (2):74–90. doi: 10.2174/1871523015666160915154443.
  • Oketch-Rabah, H. A., A. L. Roe, C. V. Rider, H. L. Bonkovsky, G. I. Giancaspro, V. Navarro, M. F. Paine, J. M. Betz, R. J. Marles, S. Casper, et al. 2020. United States Pharmacopeia (USP) comprehensive review of the hepatotoxicity of green tea extracts. Toxicology Reports 7:386–402. doi: 10.1016/j.toxrep.2020.02.008.
  • Oliveira, A. D., S. D. Adams, L. H. Lee, S. R. Murray, S. D. Hsu, J. R. Hammond, D. Dickinson, P. Chen, and T.-C. Chu. 2013. Inhibition of herpes simplex virus type 1 with the modified green tea polyphenol palmitoyl-epigallocatechin gallate. Food and Chemical Toxicology 52:207–15. doi: 10.1016/j.fct.2012.11.006.
  • Oliveira, M. R. D., S. F. Nabavi, M. Daglia, L. Rastrelli, and S. M. Nabavi. 2016. Epigallocatechin gallate and mitochondria-A story of life and death. Pharmacological Research 104:70–85. doi: 10.1016/j.phrs.2015.12.027.
  • Oritani, Y., Y. Setoguchi, R. Ito, H. Maruki-Uchida, T. Ichiyanagi, and T. Ito. 2013. Comparison of (-)-epigallocatechin-3-O-gallate (EGCG) and O-methyl EGCG bioavailability in rats. Biological & Pharmaceutical Bulletin 36 (10):1577–82. doi: 10.1248/bpb.b13-00349.
  • Ouyang, J., K. Zhu, Z. Liu, and J. Huang. 2020. Prooxidant effects of epigallocatechin-3-gallate in health benefits and potential adverse effect. Oxidative Medicine and Cellular Longevity 2020:9723686. doi: 10.1155/2020/9723686.
  • Özduran, G., E. Becer, H. S. Vatansever, and S. Yücecan. 2022. Neuroprotective effects of catechins in an experimental Parkinson’s disease model and SK-N-AS cells: Evaluation of cell viability, anti-inflammatory and anti-apoptotic effects. Neurological Research :1–13. doi: 10.1080/01616412.2021.2024715.
  • Paonessa, R., M. Nardi, M. L. Di Gioia, F. Olivito, M. Oliverio, and A. Procopio. 2018. Eco-friendly synthesis of lipophilic EGCG derivatives and antitumor and antioxidant evaluation. Natural Product Communications 13 (9):1117–22. doi: 10.1177/1934578X1801300905.
  • Parmar, S., E. Katsoulidis, A. Verma, Y. Li, A. Sassano, L. Lal, B. Majchrzak, F. Ravandi, M. S. Tallman, E. N. Fish, et al. 2004. Role of the p38 mitogen-activated protein kinase pathway in the generation of the effects of imatinib mesylate (STI571) in BCR-ABL-expressing cells. The Journal of Biological Chemistry 279 (24):25345–52. doi: 10.1074/jbc.M400590200.
  • Parvez, M. A. K., K. Saha, J. Rahman, R. A. Munmun, M. A. Rahman, S. K. Dey, M. S. Rahman, S. Islam, and M. H. Shariare. 2019. Antibacterial activities of green tea crude extracts and synergistic effects of epigallocatechingallate (EGCG) with gentamicin against MDR pathogens. Heliyon 5 (7):e02126. doi: 10.1016/j.heliyon.2019.e02126.
  • Pasrija, D., and C. Anandharamakrishnan. 2015. Techniques for extraction of green tea polyphenols: A review. Food and Bioprocess Technology 8 (5):935–50. doi: 10.1007/s11947-015-1479-y.
  • Perez-Moral, N., P. W. Needs, C. W. A. Moyle, and P. A. Kroon. 2019. Hydrophobic interactions drive binding between vascular endothelial growth factor-A (VEGFA) and polyphenolic inhibitors. Molecules 24 (15):2785. doi: 10.3390/molecules24152785.
  • Pervin, M., K. Unno, A. Nakagawa, Y. Takahashi, K. Iguchi, H. Yamamoto, M. Hoshino, A. Hara, A. Takagaki, F. Nanjo, et al. 2017. Blood brain barrier permeability of (-)-epigallocatechin gallate, its proliferation-enhancing activity of human neuroblastoma SH-SY5Y cells, and its preventive effect on age-related cognitive dysfunction in mice . Biochemistry and Biophysics Reports 9:180–6. doi: 10.1016/j.bbrep.2016.12.012.
  • Pervin, M., K. Unno, A. Takagaki, M. Isemura, and Y. Nakamura. 2019. Function of green tea catechins in the brain: Epigallocatechin gallate and its metabolites. International Journal of Molecular Sciences 20 (15):3630. doi: 10.3390/ijms20153630.
  • Peter, B., S. Bosze, and R. Horvath. 2017. Biophysical characteristics of proteins and living cells exposed to the green tea polyphenol epigallocatechin-3-gallate (EGCg): review of recent advances from molecular mechanisms to nanomedicine and clinical trials. European Biophysics Journal 46 (1):1–24. doi: 10.1007/s00249-016-1141-2.
  • Potenza, M. A., D. Iacobazzi, L. Sgarra, and M. Montagnani. 2020. The intrinsic virtues of EGCG, an extremely good cell guardian, on prevention and treatment of diabesity complications. Molecules 25 (13):3061. doi: 10.3390/molecules25133061.
  • Qanungo, S., M. Das, S. Haldar, and A. Basu. 2005. Epigallocatechin-3-gallate induces mitochondrial membrane depolarization and caspase-dependent apoptosis in pancreatic cancer cells. Carcinogenesis 26 (5):958–67. doi: 10.1093/carcin/bgi040.
  • Qin, J., M. Fu, J. Wang, F. Huang, H. Liu, M. Huangfu, D. Yu, H. Liu, X. Li, X. Guan, et al. 2020. PTEN/AKT/mTOR signaling mediates anticancer effects of epigallocatechin‑3‑gallate in ovarian cancer. Oncology Reports 43 (6):1885–96. doi: 10.3892/or.2020.7571.
  • Rajagopal, C., M. B. Lankadasari, J. M. Aranjani, and K. B. Harikumar. 2018. Targeting oncogenic transcription factors by polyphenols: A novel approach for cancer therapy. Pharmacological Research 130:273–91. doi: 10.1016/j.phrs.2017.12.034.
  • Ramesh, N., and A. K. A. Mandal. 2019. Pharmacokinetic, toxicokinetic, and bioavailability studies of epigallocatechin-3-gallate loaded solid lipid nanoparticle in rat model. Drug Development and Industrial Pharmacy 45 (9):1506–14. doi: 10.1080/03639045.2019.1634091.
  • Reid, S. P., A. C. Shurtleff, J. A. Costantino, S. R. Tritsch, C. Retterer, K. B. Spurgers, and S. Bavari. 2014. HSPA5 is an essential host factor for Ebola virus infection. Antiviral Research 109 (1):171–4. doi: 10.1016/j.antiviral.2014.07.004.
  • Relat, J., A. Blancafort, G. Oliveras, S. Cufí, D. Haro, P. F. Marrero, and T. Puig. 2012. Different fatty acid metabolism effects of (-)-epigallocatechin-3-gallate and C75 in adenocarcinoma lung cancer. BMC Cancer 12 (1):280. doi: 10.1186/1471-2407-12-280.
  • Reygaert, W. C. 2018. Green tea catechins: Their use in treating and preventing infectious diseases. BioMed Research International 2018:9105261. doi: 10.1155/2018/9105261.
  • Riegsecker, S., D. Wiczynski, M. J. Kaplan, and S. Ahmed. 2013. Potential benefits of green tea polyphenol EGCG in the prevention and treatment of vascular inflammation in rheumatoid arthritis. Life Sciences 93 (8):307–12. doi: 10.1016/j.lfs.2013.07.006.
  • Rodriguez-Mateos, A., R. P. Feliciano, A. Boeres, T. Weber, C. N. D. Santos, M. R. Ventura, and C. Heiss. 2016. Cranberry (poly)phenol metabolites correlate with improvements in vascular function: A double-blind, randomized, controlled, dose-response, crossover study. Molecular Nutrition & Food Research 60 (10):2130–40. doi: 10.1002/mnfr.201600250.
  • Romano, A., and F. Martel. 2021. The role of EGCG in breast cancer prevention and therapy. Mini Reviews in Medicinal Chemistry 21 (7):883–98. doi: 10.2174/1389557520999201211194445.
  • Roowi, S., A. Stalmach, W. Mullen, M. E. J. Lean, C. A. Edwards, and A. Crozier. 2010. Green tea flavan-3-ols: Colonic degradation and urinary excretion of catabolites by humans. Journal of Agricultural and Food Chemistry 58 (2):1296–304. doi: 10.1021/jf9032975.
  • Ruotsalainen, J., D. Lopez-Ramos, M. Rogava, N. Shridhar, N. Glodde, E. Gaffal, M. Hölzel, T. Bald, and T. Tüting. 2021. The myeloid cell type I IFN system promotes antitumor immunity over pro-tumoral inflammation in cancer T-cell therapy. Clinical & Translational Immunology 10 (4):e1276. doi: 10.1002/cti2.1276.
  • Saadh, M. J., and S. M. Aldalaen. 2021. Inhibitory effects of epigallocatechin gallate (EGCG) combined with zinc sulfate and silver nanoparticles on avian influenza A virus subtype H5N1. European Review for Medical and Pharmacological Sciences 25 (6):2630–6. doi: 10.26355/eurrev_202103_25427.
  • Sabouri, S., J. Geng, and M. Corredig. 2015. Tea polyphenols association to caseinate-stabilized oil–water interfaces. Food Hydrocolloids. 51:95–100. doi: 10.1016/j.foodhyd.2015.04.034.
  • Sabouri, S., A. J. Wright, and M. Corredig. 2017. In vitro digestion of sodium caseinate emulsions loaded with epigallocatechin gallate. Food Hydrocolloids. 69:350–8. doi: 10.1016/j.foodhyd.2017.02.008.
  • Sadhukhan, S., Y. Han, G.-F. Zhang, H. Brunengraber, and G. P. Tochtrop. 2010. Using isotopic tools to dissect and quantitate parallel metabolic pathways. Journal of the American Chemical Society 132 (18):6309–11. doi: 10.1021/ja100399m.
  • Sadhukhan, S., Y. Han, Z. Jin, G. P. Tochtrop, and G.-F. Zhang. 2014. Glutathionylated 4-hydroxy-2-(E)-alkenal enantiomers in rat organs and their contributions toward the disposal of 4-hydroxy-2-(E)-nonenal in rat liver. Free Radical Biology and Medicine 70:78–85. doi: 10.1016/j.freeradbiomed.2014.02.008.
  • Saffari, Y., and S. M. H. Sadrzadeh. 2004. Green tea metabolite EGCG protects membranes against oxidative damage in vitro. Life Sciences 74 (12):1513–8. doi: 10.1016/j.lfs.2003.08.019.
  • Sang, S., J. D. Lambert, and C. S. Yang. 2006. Bioavailability and stability issues in understanding the cancer preventive effects of tea polyphenols. Journal of the Science of Food and Agriculture 86 (14):2256–65. doi: 10.1002/jsfa.2660.
  • Sang, S., M.-J. Lee, Z. Hou, A. C.-T. Ho, and C. S. Yang. 2005. Stability of Tea Polyphenol (-)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions . Journal of Agricultural and Food Chemistry 53 (24):9478–84. doi: 10.1021/jf0519055.
  • Schantz, M., T. Erk, and E. Richling. 2010. Metabolism of green tea catechins by the human small intestine. Biotechnology Journal 5 (10):1050–9. doi: 10.1002/biot.201000214.
  • Senggunprai, L., V. Kukongviriyapan, A. Prawan, and U. Kukongviriyapan. 2014. Quercetin and EGCG exhibit chemopreventive effects in cholangiocarcinoma cells via suppression of JAK/STAT signaling pathway. Phytotherapy Research 28 (6):841–8. doi: 10.1002/ptr.5061.
  • Severino, J. F., B. A. Goodman, C. W. M. Kay, K. Stolze, D. Tunega, T. G. Reichenauer, and K. F. Pirker. 2009. Free radicals generated during oxidation of green tea polyphenols: Electron paramagnetic resonance spectroscopy combined with density functional theory calculations. Free Radical Biology & Medicine 46 (8):1076–88. doi: 10.1016/j.freeradbiomed.2009.01.004.
  • Shankar, S., G. Suthakar, and R. K. Srivastava. 2007. Epigallocatechin-3-gallate inhibits cell cycle and induces apoptosis in pancreatic cancer. Frontiers in Bioscience 12:5039–51. doi: 10.2741/2446.
  • Shi, W., L. Li, Y. Ding, K. Yang, Z. Chen, X. Fan, S. Jiang, Y. Guan, Z. Liu, D. Xu, et al. 2018. The critical role of epigallocatechin gallate in regulating mitochondrial metabolism. Future Medicinal Chemistry 10 (7):795–809. doi: 10.4155/fmc-2017-0204.
  • Shimizu, M., A. Deguchi, Y. Hara, H. Moriwaki, and I. B. Weinstein. 2005. EGCG inhibits activation of the insulin-like growth factor-1 receptor in human colon cancer cells. Biochemical and Biophysical Research Communications 334 (3):947–53. doi: 10.1016/j.bbrc.2005.06.182.
  • Shimizu, M., Y. Shirakami, H. Sakai, H. Tatebe, T. Nakagawa, Y. Hara, I. B. Weinstein, and H. Moriwaki. 2008. EGCG inhibits activation of the insulin-like growth factor (IGF)/IGF-1 receptor axis in human hepatocellular carcinoma cells. Cancer Letters 262 (1):10–8. doi: 10.1016/j.canlet.2007.11.026.
  • Shimizu, M., Y. Shirakami, H. Sakai, Y. Yasuda, M. Kubota, S. Adachi, H. Tsurumi, Y. Hara, and H. Moriwaki. 2010. (-)-Epigallocatechin gallate inhibits growth and activation of the VEGF/VEGFR axis in human colorectal cancer cells. Chemico-Biological Interactions 185 (3):247–52. doi: 10.1016/j.cbi.2010.03.036.
  • Shin, C. M., D. H. Lee, A. Y. Seo, H. J. Lee, S. B. Kim, W. C. Son, Y. K. Kim, S. J. Lee, S. H. Park, N. Kim, et al. 2018. Green tea extracts for the prevention of metachronous colorectal polyps among patients who underwent endoscopic removal of colorectal adenomas: A randomized clinical trial. Clinical Nutrition 37 (2):452–8. doi: 10.1016/j.clnu.2017.01.014.
  • Shinde, S., L. H. Lee, and T. Chu. 2021. Inhibition of biofilm formation by the synergistic action of EGCG-S and antibiotics. Antibiotics 10 (2):102. doi: 10.3390/antibiotics10020102.
  • Shpigelman, A., Y. Cohen, and Y. D. Livney. 2012. Thermally-induced β-lactoglobulin-EGCG nanovehicles: Loading, stability, sensory and digestive-release study. Food Hydrocolloids. 29 (1):57–67. doi: 10.1016/j.foodhyd.2012.01.016.
  • Siddiqui, I. A., V. M. Adhami, D. J. Bharali, B. B. Hafeez, M. Asim, S. I. Khwaja, N. Ahmad, H. Cui, S. A. Mousa, and H. Mukhtar. 2009. Introducing nanochemoprevention as a novel approach for cancer control: Proof of principle with green tea polyphenol epigallocatechin-3-gallate. Cancer Research 69 (5):1712–6. doi: 10.1158/0008-5472.can-08-3978.
  • Singh, B. N., S. Shankar, and R. K. Srivastava. 2011. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochemical Pharmacology 82 (12):1807–21. doi: 10.1016/j.bcp.2011.07.093.
  • Singh, S., M. F. Sk, A. Sonawane, P. Kar, and S. Sadhukhan. 2021. Plant-derived natural polyphenols as potential antiviral drugs against SARS-CoV-2 via RNA-dependent RNA polymerase (RdRp) inhibition: an in-silico analysis . Journal of Biomolecular Structure & Dynamics 39 (16):6249–64. doi: 10.1080/07391102.2020.1796810.
  • Slika, H., H. Mansour, N. Wehbe, S. A. Nasser, R. Iratni, G. Nasrallah, A. Shaito, T. Ghaddar, F. Kobeissy, and A. H. Eid. 2022. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomedicine & Pharmacotherapy 146:112442. doi: 10.1016/j.biopha.2021.112442.
  • Smith, A., B. Giunta, P. C. Bickford, M. Fountain, J. Tan, and R. D. Shytle. 2010. Nanolipidic particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. International Journal of Pharmaceutics 389 (1-2):207–12. doi: 10.1016/j.ijpharm.2010.01.012.
  • Smith, A. J., P. Kavuru, K. K. Arora, S. Kesani, J. Tan, M. J. Zaworotko, and R. D. Shytle. 2013. Crystal engineering of green tea epigallocatechin-3-gallate (EGCG) cocrystals and pharmacokinetic modulation in rats. Molecular Pharmaceutics 10 (8):2948–61. doi: 10.1021/mp4000794.
  • Song, J.-M., K.-H. Lee, and B.-L. Seong. 2005. Antiviral effect of catechins in green tea on influenza virus. Antiviral Research 68 (2):66–74. doi: 10.1016/j.antiviral.2005.06.010.
  • Sonoda, J.-I., R. Ikeda, Y. Baba, K. Narumi, A. Kawachi, E. Tomishige, K. Nishihara, Y. Takeda, K. Yamada, K. Sato, et al. 2014. Green tea catechin, epigallocatechin-3-gallate, attenuates the cell viability of human non-small-cell lung cancer A549 cells via reducing Bcl-xL expression. Experimental and Therapeutic Medicine 8 (1):59–63. doi: 10.3892/etm.2014.1719.
  • Squillaro, T., C. Schettino, S. Sampaolo, U. Galderisi, G. D. Iorio, A. Giordano, and M. A. B. Melone. 2018. Adult-onset brain tumors and neurodegeneration: Are polyphenols protective? Journal of Cellular Physiology 233 (5):3955–67. doi: 10.1002/jcp.26170.
  • Stalmach, A., W. Mullen, H. Steiling, G. Williamson, M. E. J. Lean, and A. Crozier. 2010. Absorption, metabolism, and excretion of green tea flavan-3-ols in humans with an ileostomy. Molecular Nutrition & Food Research 54 (3):323–34. doi: 10.1002/mnfr.200900194.
  • Steinmann, J., J. Buer, T. Pietschmann, and E. Steinmann. 2013. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. British Journal of Pharmacology 168 (5):1059–73. doi: 10.1111/bph.12009.
  • Stoupi, S., G. Williamson, J. W. Drynan, D. Barron, and M. N. Clifford. 2010. A comparison of the in vitro biotransformation of (-)-epicatechin and procyanidin B2 by human faecal microbiota. Molecular Nutrition & Food Research 54 (6):747–59. doi: 10.1002/mnfr.200900123.
  • Tachibana, H., K. Koga, Y. Fujimura, and K. Yamada. 2004. A receptor for green tea polyphenol EGCG. Nature Structural & Molecular Biology 11 (4):380–1. doi: 10.1038/nsmb743.
  • Takagaki, A., and F. Nanjo. 2015. Effects of metabolites produced from (-)-epigallocatechin gallate by rat intestinal bacteria on angiotensin I-converting enzyme activity and blood pressure in spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry 63 (37):8262–6. doi: 10.1021/acs.jafc.5b03676.
  • Talebi, M., M. Talebi, T. Farkhondeh, G. Mishra, S. İlgün, and S. Samarghandian. 2021. New insights into the role of the Nrf2 signaling pathway in green tea catechin applications. Phytotherapy Research: PTR 35 (6):3078–112. doi: 10.1002/ptr.7033.
  • Tanaka, H., A. Chino, and T. Takahashi. 2012. Reagent-controlled stereoselective synthesis of (±)-gallo- and (±)-epigallo-catechin gallates. Tetrahedron Letters 53 (20):2493–5. doi: 10.1016/j.tetlet.2012.02.065.
  • Tanaka, Y., and M. Tsuneoka. 2021. Gallic acid derivatives propyl gallate and epigallocatechin gallate reduce rRNA transcription via induction of KDM2A activation. Biomolecules 12 (1):30. doi: 10.3390/biom12010030.
  • Tang, G., Y. Xu, C. Zhang, N. Wang, H. Li, and Y. Feng. 2021. Green tea and epigallocatechin gallate (EGCG) for the management of nonalcoholic fatty liver diseases (NAFLD): Insights into the role of oxidative stress and antioxidant mechanism. Antioxidants 10 (7):1076. doi: 10.3390/antiox10071076.
  • Tang, S.-N., J. Fu, S. Shankar, and R. K. Srivastava. 2012. EGCG enhances the therapeutic potential of gemcitabine and CP690550 by inhibiting STAT3 signaling pathway in human pancreatic cancer. PloS One 7 (2):e31067. doi: 10.1371/journal.pone.0031067.
  • Taylor, P. W., J. M. T. Hamilton-Miller, and P. D. Stapleton. 2005. Antimicrobial properties of green tea catechins. Food Science and Technology Bulletin 2 (7):71–81. doi: 10.1616/1476-2137.14184.
  • Tu, C., F. Wang, and J. Wan. 2018. MicroRNA-381 inhibits cell proliferation and invasion in endometrial carcinoma by targeting the IGF-1R. Molecular Medicine Reports 17 (3):4090–8. doi: 10.3892/mmr.2017.8288.
  • Tu, Q., Q. Jiang, M. Xu, Y. Jiao, H. He, S. He, and W. Zheng. 2021. EGCG decreases myocardial infarction in both I/R and MIRI rats through reducing intracellular Ca2+ and increasing TnT levels in cardiomyocytes. Advances in Clinical and Experimental Medicine 30 (6):607–16. doi: 10.17219/acem/134021.
  • Umeda, D., S. Yano, K. Yamada, and H. Tachibana. 2008. Green tea polyphenol epigallocatechin-3-gallate signaling pathway through 67-kDa laminin receptor. The Journal of Biological Chemistry 283 (6):3050–8. doi: 10.1074/jbc.M707892200.
  • Unno, K., M. Pervin, A. Nakagawa, K. Iguchi, A. Hara, A. Takagaki, F. Nanjo, A. Minami, and Y. Nakamura. 2017. Blood–brain barrier permeability of green tea catechin metabolites and their neuritogenic activity in human neuroblastoma SH-SY5Y cells. Molecular Nutrition & Food Research 61 (12):1700294. doi: 10.1002/mnfr.201700294.
  • Vaidyanathan, J. B., and T. Walle. 2003. Cellular uptake and efflux of the tea flavonoid (-)epicatechin-3-gallate in the human intestinal cell line Caco-2 . The Journal of Pharmacology and Experimental Therapeutics 307 (2):745–52. doi: 10.1124/jpet.103.054296.
  • Van’t Slot, G., and H.-U. Humpf. 2009. Degradation and metabolism of catechin, epigallocatechin-3-gallate (EGCG), and related compounds by the intestinal microbiota in the pig cecum model. Journal of Agricultural and Food Chemistry 57 (17):8041–8. doi: 10.1021/jf900458e.
  • Vega-Villa, K. R., J. K. Takemoto, J. A. Yáñez, C. M. Remsberg, M. L. Forrest, and N. M. Davies. 2008. Clinical toxicities of nanocarrier systems. Advanced Drug Delivery Reviews 60 (8):929–38. doi: 10.1016/j.addr.2007.11.007.
  • Verma, A., M. Mohindru, D. K. Deb, A. Sassano, S. Kambhampati, F. Ravandi, S. Minucci, D. V. Kalvakolanu, and L. C. Platanias. 2002. Activation of Rac1 and the p38 mitogen-activated protein kinase pathway in response to arsenic trioxide. The Journal of Biological Chemistry 277 (47):44988–95. doi: 10.1074/jbc.M207176200.
  • Vishnoi, H., R. B. Bodla, and R. Kant. 2018. Green tea (Camellia sinensis) and its antioxidant property: A review. International Journal of Pharmaceutical Sciences and Research 9 (5):1723–36. doi: 10.13040/ijpsr.0975-8232.9(5).1723-36.
  • Vuong, Q. V., J. B. Golding, C. E. Stathopoulos, and P. D. Roach. 2013. Effects of aqueous brewing solution pH on the extraction of the major green tea constituents. Food Research International 53 (2):713–9. doi: 10.1016/j.foodres.2012.09.017.
  • Wang, H., H. Zhou, and C. S. Yang. 2013. Cancer prevention with green tea polyphenols. Evidence-Based Anticancer Complementary and Alternative Medicine 5:91–119. doi: 10.1007/978-94-007-6443-9_4.
  • Wang, J., Y. Xie, Y. Feng, L. Zhang, X. Huang, X. Shen, and X. Luo. 2015. (-)-Epigallocatechingallate induces apoptosis in B lymphoma cells via caspase-dependent pathway and Bcl-2 family protein modulation. International Journal of Oncology 46 (4):1507–15. doi: 10.3892/ijo.2015.2869.
  • Wang, R., W. Zhou, and X. Jiang. 2008. Reaction kinetics of degradation and epimerization of epigallocatechin gallate (EGCG) in aqueous system over a wide temperature range. Journal of Agricultural and Food Chemistry 56 (8):2694–701. doi: 10.1021/jf0730338.
  • Wang, S., R. Jin, R. Wang, Y. Hu, X. Dong, and A. e. Xu. 2016. The design, synthesis and biological evaluation of pro-EGCG derivatives as novel anti-vitiligo agents. RSC Advances 6 (108):106308–15. doi: 10.1039/C6RA23172A.
  • Wang, X., M.-W. Hao, K. Dong, F. Lin, J.-H. Ren, and H.-Z. Zhang. 2009. Apoptosis induction effects of EGCG in laryngeal squamous cell carcinoma cells through telomerase repression. Archives of Pharmacal Research 32 (9):1263–9. doi: 10.1007/s12272-009-1912-8.
  • Wang, Y. Q., Q. S. Li, X. Q. Zheng, J. L. Lu, and Y. R. Liang. 2021. Antiviral effects of green tea EGCG and its potential application against COVID-19. Molecules 26 (13):3962. doi: 10.3390/molecules26133962.
  • Wang, Y., X.-J. Shen, F.-W. Su, Y.-R. Xie, L.-X. Wang, N. Zhang, Y.-L. Wu, Y. Niu, D.-Y. Zhang, C.-T. Zi, et al. 2021. Novel perbutyrylated glucose derivatives of (–) -epigallocatechin-3-gallate inhibit cancer cells proliferation by decreasing phosphorylation of the EGFR: Synthesis cytotoxicity and molecular docking. Molecules 26 (14):4361. doi: 10.3390/molecules26144361.
  • Weber, C., K. Sliva, C. V. Rhein, B. M. Kümmerer, and B. S. Schnierle. 2015. The green tea catechin, epigallocatechin gallate inhibits chikungunya virus infection. Antiviral Research 113:1–3. doi: 10.1016/j.antiviral.2014.11.001.
  • Wei, B.-B., M.-Y. Liu, X. Zhong, W.-F. Yao, and M.-J. Wei. 2019. Increased BBB permeability contributes to EGCG-caused cognitive function improvement in natural aging rats: Pharmacokinetic and distribution analyses. Acta Pharmacologica Sinica 40 (11):1490–500. doi: 10.1038/s41401-019-0243-7.
  • Wei, H., Q. Ge, L.-Y. Zhang, J. Xie, R.-H. Gan, Y.-G. Lu, and D.-L. Zheng. 2022. EGCG inhibits growth of tumoral lesions on lip and tongue of K-Ras transgenic mice through the Notch pathway. The Journal of Nutritional Biochemistry 99:108843. doi: 10.1016/j.jnutbio.2021.108843.
  • Wei, R., J. Wirkus, Z. Yang, J. Machuca, Y. Esparza, and G. G. Mackenzie. 2020. EGCG sensitizes chemotherapeutic-induced cytotoxicity by targeting the ERK pathway in multiple cancer cell lines. Archives of Biochemistry and Biophysics 692:108546. doi: 10.1016/j.abb.2020.108546.
  • Wei, Y., P. Chen, T. Ling, Y. Wang, R. Dong, C. Zhang, L. Zhang, M. Han, D. Wang, X. Wan, et al. 2016. Certain (-)-epigallocatechin-3-gallate (EGCG) auto-oxidation products (EAOPs) retain the cytotoxic activities of EGCG. Food Chemistry 204:218–26. doi: 10.1016/j.foodchem.2016.02.134.
  • Weng, L. X., G. H. Wang, H. Yao, M. F. Yu, and J. Lin. 2017. Epigallocatechin gallate inhibits the growth of salivary adenoid cystic carcinoma cells via the EGFR/Erk signal transduction pathway and the mitochondria apoptosis pathway. Neoplasma 64 (4):563–70. doi: 10.4149/neo_2017_410.
  • Wolfram, S. 2007. Effects of green tea and EGCG on cardiovascular and metabolic health. Journal of the American College of Nutrition 26 (4):373S–88S. doi: 10.1080/07315724.2007.10719626.
  • Wright, J. S., E. R. Johnson, and G. A. DiLabio. 2001. Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society 123 (6):1173–83. doi: 10.1021/ja002455u.
  • Wu, Y. R., H. J. Choi, Y. G. Kang, J. K. Kim, and J. W. Shin. 2017. In vitro study on anti-inflammatory effects of epigallocatechin-3-gallate-loaded nano- and microscale particles. International Journal of Nanomedicine 12:7007–13. doi: 10.2147/ijn.s146296.
  • Xiao, X., K. Jiang, Y. Xu, H. Peng, Z. Wang, S. Liu, and G. Zhang. 2019. ( (-)-Epigallocatechin-3-gallate induces cell apoptosis in chronic myeloid leukaemia by regulating Bcr/Abl-mediated p38-MAPK/JNK and JAK2/STAT3/AKT signalling pathways. Clinical and Experimental Pharmacology & Physiology 46 (2):126–36. doi: 10.1111/1440-1681.13037.
  • Xin, X., C. Cheng, C. Bei-Yu, L. Hong-Shan, T. Hua-Jie, W. Xin, A. Zi-Ming, S. Qin-Mei, H. Yi-Yang, and F. Qin. 2021. Caffeine and EGCG alleviate high-trans fatty acid and high-carbohydrate diet-induced NASH in mice: Commonality and specificity. Frontiers in Nutrition 8:784354. doi: 10.3389/fnut.2021.784354.
  • Xu, F.-W., Y.-L. Lv, Y.-F. Zhong, Y.-N. Xue, Y. Wang, L.-Y. Zhang, X. Hu, and W.-Q. Tan. 2021. Beneficial effects of green tea EGCG on skin wound healing: A comprehensive review. Molecules 26 (20):6123. doi: 10.3390/molecules26206123.
  • Yamabe, N., T. Yokozawa, T. Oya, and M. Kim. 2006. Therapeutic potential of (-)-epigallocatechin 3-O-gallate on renal damage in diabetic nephropathy model rats. The Journal of Pharmacology and Experimental Therapeutics 319 (1):228–36. doi: 10.1124/jpet.106.107029.
  • Yamaguchi, K., M. Honda, H. Ikigai, Y. Hara, and T. Shimamura. 2002. Inhibitory effects of (-)-epigallocatechin gallate on the life cycle of human immunodeficiency virus type 1 (HIV-1). Antiviral Research 53 (1):19–34. doi: 10.1016/S0166-3542(01)00189-9.
  • Yamamoto, T., S. Hsu, J. Lewis, J. Wataha, D. Dickinson, B. Singh, W. B. Bollag, P. Lockwood, E. Ueta, T. Osaki, et al. 2003. Green tea polyphenol causes differential oxidative environments in tumor versus normal epithelial cells. The Journal of Pharmacology and Experimental Therapeutics 307 (1):230–6. doi: 10.1124/jpet.103.054676.
  • Yan, C., J. Yang, L. Shen, and X. Chen. 2012. Inhibitory effect of epigallocatechin gallate on ovarian cancer cell proliferation associated with aquaporin 5 expression. Gynecologic Oncology 285 (2):459–67. doi: 10.1007/s00404-011-1942-6.
  • Yang, C. S., L. Chen, M. J. Lee, D. Balentine, M. C. Kuo, and S. P. Schantz. 1998. Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiology Biomarkers and Prevention 7 (4):351–4. PMID: 9568793
  • Yang, C. S., X. Wang, G. Lu, and S. C. Picinich. 2009. Cancer prevention by tea: animal studies, molecular mechanisms and human n relevance. Nature Reviews. Cancer 9 (6):429–39. doi: 10.1038/nrc2641.
  • Yang, C. S., J. Zhang, L. Zhang, J. Huang, and Y. Wang. 2016. Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Molecular Nutrition & Food Research 60 (1):160–74. doi: 10.1002/mnfr.201500428.
  • Yang, G. Y., J. Liao, K. Kim, E. J. Yurkow, and C. S. Yang. 1998. Inhibition of growth and induction of apoptosis in human cancer cell lines by tea polyphenols. Carcinogenesis 19 (4):611–6. doi: 10.1093/carcin/19.4.611.
  • Yang, W., Y. Yang, L. Zhang, H. Xu, X. Guo, X. Yang, B. Dong, and Y. Cao. 2017. Improved thermostability of an acidic xylanase from Aspergillus sulphureus by combined disulphide bridge introduction and proline residue substitution. Scientific Reports 7 (1):1587. doi: 10.1038/s41598-017-01758-5.
  • Yasuda, Y., M. Shimizu, H. Sakai, J. Iwasa, M. Kubota, S. Adachi, Y. Osawa, H. Tsurumi, Y. Hara, and H. Moriwaki. 2009. (-) (-)-Epigallocatechin gallate prevents carbon tetrachloride-induced rat hepatic fibrosis by inhibiting the expression of the PDGFRbeta and IGF-1R . Chemico-Biological Interactions 182 (2-3):159–64. doi: 10.1016/j.cbi.2009.07.015.
  • Ye, F., G.-H. Zhang, B.-X. Guan, and X.-C. Xu. 2012. Suppression of esophageal cancer cell growth using curcumin, (-)-epigallocatechin-3-gallate and lovastatin. World Journal of Gastroenterology 18 (2):126–35. doi: 10.3748/wjg.v18.i2.126.
  • Yoda, Y., Z.-Q. Hu, W.-H. Zhao, and T. Shimamura. 2004. Different susceptibilities of Staphylococcus and Gram-negative rods to epigallocatechin gallate. Journal of Infection and Chemotherapy10 (1):55–8. doi: 10.1007/s10156-003-0284-0.
  • Yu, C., Y. Jiao, J. Xue, Q. Zhang, H. Yang, L. Xing, G. Chen, J. Wu, S. Zhang, W. Zhu, et al. 2017. Metformin sensitizes non-small cell lung cancer cells to an epigallocatechin-3-gallate (EGCG) treatment by suppressing the Nrf2/HO-1 signaling pathway. International Journal of Biological Sciences 13 (12):1560–9. doi: 10.7150/ijbs.18830.
  • Zagury, Y., M. Kazir, and Y. D. Livney. 2019. Improved antioxidant activity, bioaccessibility and bioavailability of EGCG by delivery in β-lactoglobulin particles. Journal of Functional Foods 52:121–30. doi: 10.1016/j.jff.2018.10.025.
  • Zan, L., Q. Chen, L. Zhang, and X. Li. 2019. Epigallocatechin gallate (EGCG) suppresses growth and tumorigenicity in breast cancer cells by downregulation of miR-25. Bioengineered 10 (1):374–82. doi: 10.1080/21655979.2019.1657327.
  • Zarubin, T., and J. Han. 2005. Activation and signaling of the p38 MAP kinase pathway. Cell Research 15 (1):11–8. doi: 10.1038/sj.cr.7290257.
  • Zaveri, N. T. 2001. Synthesis of a 3,4,5-trimethoxybenzoyl ester analogue of epigallocatechin-3-gallate (EGCG): A potential route to the natural product green tea catechin, EGCG. Organic Letters 3 (6):843–6. doi: 10.1021/ol007000o.
  • Zaveri, N. T. 2006. Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sciences 78 (18):2073–80. doi: 10.1016/j.lfs.2005.12.006.
  • Zeferino, A. S., A. R. Mira, M. Delgadinho, M. Brito, T. Ponte, and E. Ribeiro. 2022. Drug resistance and epigenetic modulatory potential of epigallocatechin-3-gallate against Staphylococcus aureus. Current Microbiology 79 (5):149. doi: 10.1007/s00284-022-02841-5.
  • Zeng, L., J. Yan, L. Luo, M. Ma, and H. Zhu. 2017. Preparation and characterization of (-)-Epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on human breast cancer MCF-7 cells. Scientific Reports 7:45521. doi: 10.1038/srep45521.
  • Zhai, K., A. Mazurakova, L. Koklesova, P. Kubatka, and D. Büsselberg. 2021. Flavonoids synergistically enhance the anti-glioblastoma effects of chemotherapeutic drugs. Biomolecules 11 (12):1841. doi: 10.3390/biom11121841.
  • Zhang, G., and J. Zhang. 2018. Enhanced oral bioavailability of EGCG using pH-sensitive polymeric nanoparticles: Characterization and in vivo investigation on nephrotic syndrome rats. Drug Design, Development and Therapy 12:2509–18. doi: 10.2147/DDDT.S172919.
  • Zhang, L., Y. Zheng, M. S. S. Chow, and Z. Zuo. 2004. Investigation of intestinal absorption and disposition of green tea catechins by Caco-2 monolayer model. International Journal of Pharmaceutics 287 (1-2):1–12. doi: 10.1016/j.ijpharm.2004.08.020.
  • Zhang, H., D. Cao, W. Cui, M. Ji, X. Qian, and L. Zhong. 2010. Molecular bases of thioredoxin and thioredoxin reductase-mediated prooxidant actions of (-)-epigallocatechin-3-gallate. Free Radical Biology & Medicine 49 (12):2010–8. doi: 10.1016/j.freeradbiomed.2010.09.031.
  • Zhang, L., J. Xie, R. Gan, Z. Wu, H. Luo, X. Chen, Y. Lu, L. Wu, and D. Zheng. 2019a. Synergistic inhibition of lung cancer cells by EGCG and NF-κB inhibitor BAY11-7082. Journal of Cancer 10 (26):6543–56. doi: 10.7150/jca.34285.
  • Zhang, Q., Y. Wu, Y. Guan, F. Ling, Y. Li, and Y. Niu. 2019b. Epigallocatechin gallate prevents senescence by alleviating oxidative stress and inflammation in WI-38 human embryonic fibroblasts. RSC Advances 9 (46):26787–98. doi: 10.1039/C9RA03313K.
  • Zhang, X., J. Wang, J.-M. Hu, Y.-W. Huang, X.-Y. Wu, C.-T. Zi, X.-J. Wang, and J. Sheng. 2016. Synthesis and biological testing of novel glucosylated epigallocatechin gallate (EGCG) derivatives. Molecules 21 (5):620. doi: 10.3390/molecules21050620.
  • Zhang, Y., N.-D. Yang, F. Zhou, T. Shen, T. Duan, J. Zhou, Y. Shi, X.-Q. Zhu, and H.-M. Shen. 2012. (-)-Epigallocatechin-3-gallate induces non-apoptotic cell death in human cancer cells via ROS-mediated lysosomal membrane permeabilization. PloS One 7 (10):e46749. doi: 10.1371/journal.pone.0046749.
  • Zhang, Z., X. Zhang, K. Bi, Y. He, W. Yan, C. S. Yang, and J. Zhang. 2021. Potential protective mechanisms of green tea polyphenol EGCG against COVID-19. Trends in Food Science & Technology 114:11–24. doi: 10.1016/j.tifs.2021.05.023.
  • Zhang, Y., H. Lin, C. Liu, J. Huang, and Z. Liu. 2020. A review for physiological activities of EGCG and the role in improving fertility in humans/mammals. Biomedicine & Pharmacotherapy 127:110186. doi: 10.1016/j.biopha.2020.110186.
  • Zhang, G.-F., R. S. Kombu, T. Kasumov, Y. Han, S. Sadhukhan, J. Zhang, L. M. Sayre, D. Ray, K. M. Gibson, V. A. Anderson, et al. 2009. Catabolism of 4-hydroxyacids and 4-hydroxynonenal via 4-hydroxy-4-phosphoacyl-CoAs. The Journal of Biological Chemistry 284 (48):33521–34. doi: 10.1074/jbc.M109.055665.
  • Zhao, C., S. Liu, C. Li, L. Yang, and Y. Zu. 2014. In vitro evaluation of the antiviral activity of the synthetic epigallocatechin gallate analog-epigallocatechin gallate (EGCG) palmitate against porcine reproductive and respiratory syndrome virus. Viruses 6 (2):938–50. doi: 10.3390/v6020938.
  • Zhao, J., A. Blayney, X. Liu, L. Gandy, W. Jin, L. Yan, J.-H. Ha, A. J. Canning, M. Connelly, C. Yang, et al. 2021. EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction. Nature Communications 12 (1):986. doi: 10.1038/s41467-021-21258-5.
  • Zhao, W., Z. Liu, X. Liang, S. Wang, J. Ding, Z. Li, L. Wang, and Y. Jiang. 2022. Preparation and characterization of epigallocatechin-3-gallate loaded melanin nanocomposite (EGCG @MNPs) for improved thermal stability, antioxidant and antibacterial activity. LWT 154:112599. doi: 10.1016/j.lwt.2021.112599.
  • Zhong, Y., C.-M. Ma, and F. Shahidi. 2012. Antioxidant and antiviral activities of lipophilic epigallocatechin gallate (EGCG) derivatives. Journal of Functional Foods 4 (1):87–93. doi: 10.1016/j.jff.2011.08.003.
  • Zhong, Y., and F. Shahidi. 2011. Lipophilized epigallocatechin gallate (EGCG) derivatives as novel antioxidants. Journal of Agricultural and Food Chemistry 59 (12):6526–33. doi: 10.1021/jf201050j.
  • Zhong, Y., and F. Shahidi. 2012. Lipophilised epigallocatechin gallate (EGCG) derivatives and their antioxidant potential in food and biological systems. Food Chemistry 131 (1):22–30. doi: 10.1016/j.foodchem.2011.07.089.
  • Zhou, F., H. Zhou, T. Wang, Y. Mu, B. Wu, D.-L. Guo, X.-M. Zhang, and Y. Wu. 2012. Epigallocatechin-3-gallate inhibits proliferation and migration of human colon cancer SW620 cells in vitro. Acta Pharmacologica Sinica 33 (1):120–6. doi: 10.1038/aps.2011.139.
  • Zhu, K., and W. Wang. 2016. Green tea polyphenol EGCG suppresses osteosarcoma cell growth through upregulating miR-1. Tumour Biology 37 (4):4373–82. doi: 10.1007/s13277-015-4187-3.
  • Zhu, Q. Y., A. Zhang, D. Tsang, Y. Huang, and Z.-Y. Chen. 1997. Stability of green tea catechins. Journal of Agricultural and Food Chemistry 45 (12):4624–8. doi: 10.1021/jf9706080.
  • Zhu, S., Y. Li, Z. Li, C. Ma, Z. Lou, W. Yokoyama, and H. Wang. 2014. Lipase-catalyzed synthesis of acetylated EGCG and antioxidant properties of the acetylated derivatives. Food Research International 56:279–86. doi: 10.1016/j.foodres.2013.10.026.
  • Zhu, S., N. Meng, Y. Li, S. Chen, and Y. Xia. 2021. Antioxidant activities of lipophilic (−)-epigallocatechin gallate derivatives in vitro and in lipid-based food systems. Food Bioscience 42:101055. doi: 10.1016/j.fbio.2021.101055.
  • Zhu, Y., X. Gu, M. Zhang, X. Lv, C. Zhang, J. Li, Z. Hu, Q. Wu, R. Zhang, J. Wei, et al. 2021. Epigallocatechin-3-gallate exhibits antiviral effects against the duck Tembusu virus via blocking virus entry and upregulating type I interferons. Poultry Science 100 (4):100989. doi: 10.1016/j.psj.2021.01.012.
  • Zou, L., S. Peng, W. Liu, X. Chen, and C. Liu. 2015. A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives-based nanoliposome: Capacity to improve in vitro digestion stability of (-)-epigallocatechin gallate. Food Research International 69 (1):114–20. doi: 10.1016/j.foodres.2014.12.015.
  • Zou, L.-Q., W. Liu, W.-L. Liu, R.-H. Liang, T. Li, C.-M. Liu, Y.-L. Cao, J. Niu, and Z. Liu. 2014. Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization. Journal of Agricultural and Food Chemistry 62 (4):934–41. doi: 10.1021/jf402886s.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.