2,759
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

The future of 3D food printing: Opportunities for space applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 10079-10092 | Published online: 01 Jun 2022

References

  • 3D Systems. Brill 3D Culinary Studio. www.brill3dculinarystudio.com.
  • Additive Manufacturing Research Group | Loughborough University. AMRG Group Accessed: June 2021. https://www.lboro.ac.uk/research/amrg/.
  • Cahill, T., and G. Hardiman. 2020. Nutritional challenges and countermeasures for space travel. Nutrition Bulletin 45 (1):98–105. doi: 10.1111/nbu.12422.
  • Calignano, F., D. Manfredi, E. P. Ambrosio, S. Biamino, M. Lombardi, E. Atzeni, A. Salmi, P. Minetola, L. Iuliano, and P. Fino. 2017. Overview on additive manufacturing technologies. Proceedings of the IEEE 105 (4):593–612. doi: 10.1109/JPROC.2016.2625098.
  • Chen, Z. 2016. Research on the impact of 3D printing on the international supply chain. Advances in Materials Science and Engineering 2016:1–16. doi: 10.1155/2016/4173873.
  • Cohu, C. M., E. Lombardi, W. W. Adams, and B. Demmig-Adams. 2014. Increased nutritional quality of plants for long-duration spaceflight missions through choice of plant variety and manipulation of growth conditions. Acta Astronautica 94 (2):799–806. doi: 10.1016/j.actaastro.2013.10.009.
  • Dankar, I., A. Haddarah, F. E. Omar, F. Sepulcre, and M. Pujolà. 2018. 3D printing technology: The new era for food customization and elaboration. Trends in Food Science and Technology 75:231–42. doi: 10.1016/j.tifs.2018.03.018.
  • Dankar, I., M. Pujolà, F. El Omar, F. Sepulcre, and A. Haddarah. 2018. Impact of mechanical and microstructural properties of potato puree-food additive complexes on extrusion-based 3D printing. Food and Bioprocess Technology 11 (11):2021–31. doi: 10.1007/s11947-018-2159-5.
  • Dassault Système. 2018. Introduction to 3D printing—Additive processes. 3DEXPERIENCE Make: Marketplace for Manufacturing on Demand. https://make.3dexperience.3ds.com/processes/introduction-to-additive-processes.
  • Derossi, A., R. Caporizzi, D. Azzollini, and C. Severini. 2018. Application of 3D printing for customized food. A case on the development of a fruit-based snack for children. Journal of Food Engineering 220:65–75. doi: 10.1016/j.jfoodeng.2017.05.015.
  • Devlieger, D., and K. Gombas. “FSPCA Preventative Controls for Human Food Participant Manual.” 1st ed. 2016. Illinois Institute of Technology. Accessed June 2021. https://www.ifsh.iit.edu/fspca/fspca-preventive-controls-human-food.
  • Erickson, M. M., E. S. Richardson, N. M. Hernandez, D. W. Bobbert, K. Gall, andP. Fearis. 2020. Helmet Modification to PPE With 3D Printing During the COVID-19 Pandemic at Duke University Medical Center: A Novel Technique. The Journal of Arthroplasty 35 (7S):S23–7. doi:10.1016/j.arth.2020.04.035. PMID:32354536
  • Escursell, S., P. Llorach-Massana, and M. B. Roncero. 2021. Sustainability in e-commerce packaging: A review. Journal of Cleaner Production 280:124314. doi: 10.1016/j.jclepro.2020.124314.
  • Feng, C., M. Zhang, and B. Bhandari. 2019. Materials properties of printable edible inks and printing parameters optimization during 3D printing: A review. Critical Reviews in Food Science and Nutrition 59 (19):3074–81. doi: 10.1080/10408398.2018.1481823.
  • Finetto, C., C. Lobascio, and A. Rapisarda. 2010. Concept of a lunar FARM: Food and revitalization module. Acta Astronautica 66 (9-10):1329–40. doi: 10.1016/j.actaastro.2009.10.027.
  • FoodJet. 2020. Accessed July 28 2021. https://www.foodjet.com/.
  • Formlabs. 2020. 3D printing technology comparison: FDM vs. SLA vs SLA. SLS. https://formlabs.com/blog/fdm-vs-sla-vs-sls-how-to-choose-the-right-3d-printing-technology/#CompareFDM%2C%2CandSLS3DPrintingTechnologies.
  • Galdeano, J. A. L. 2015. 3D printing food: The sustainable future. Kaunas University of Technology. https://core.ac.uk/reader/41817540.
  • Gibson, I. D. Rosen, and B. Stucker. 2015. Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing. 2nd ed. New York: Springer
  • Godoi, F. C., S. Prakash, and B. R. Bhandari. 2016. 3D printing technologies applied for food design: Status and prospects. Journal of Food Engineering 179:44–54. doi: 10.1016/j.jfoodeng.2016.01.025.
  • Gu, Z., J. Fu, H. Lin, and Y. He. 2020. Development of 3D bioprinting: From printing methods to biomedical applications. Asian Journal of Pharmaceutical Sciences 15 (5):529–57. doi: 10.1016/j.ajps.2019.11.003.
  • Hamilton, C. A., G. Alici, and M. i. h. Panhuis. 2018. 3D printing vegemite and marmite: Redefining ‘breadboards’. Journal of Food Engineering 220:83–8. doi: 10.1016/j.jfoodeng.2017.01.008.
  • Handral, H. K., S. Hua Tay, W. Wan Chan, and D. Choudhury. 2020. 3D printing of cultured meat products. Critical Reviews in Food Science and Nutrition 62 (1):272–10. doi: 10.1080/10408398.2020.1815172.
  • Holland, S., T. Foster, W. MacNaughtan, and C. Tuck. 2018. Design and characterisation of food grade powders and inks for microstructure control using 3D printing. Journal of Food Engineering 220:12–9. doi: 10.1016/j.jfoodeng.2017.06.008.
  • Irvin, D. J., and M. D. Prouty. 2013. NASA SBIR/STTR technologies firm contact work plan.
  • Jeon, W. Y., J. Y. Yu, H. W. Kim, and H. J. Park. 2021. Production of customized food through the insertion of a formulated nanoemulsion using coaxial 3D food printing. Journal of Food Engineering 311:110689. doi: 10.1016/j.jfoodeng.2021.110689.
  • Jia, F., X. Wang, N. Mustafee, and L. Hao. 2016. Investigating the feasibility of supply chain-centric business models in 3D chocolate printing: A simulation study. Technological Forecasting and Social Change 102:202–13. doi: 10.1016/j.techfore.2015.07.026.
  • Jiang, J., M. Zhang, B. Bhandari, and P. Cao. 2019. Current processing and packing technology for space foods: A review. Critical Reviews in Food Science and Nutrition 60 (21):3573–88. doi: 10.1080/10408398.2019.1700348.
  • Johnson, M. 2019. Solving the challenges of long duration space flight with 3D printing. https://www.nasa.gov/mission_pages/station/research/news/3d-printing-in-space-long-duration-spaceflight-applications.
  • Joshi, S. C., and A. A. Sheikh, 2015. 3D printing in aerospace and its long-term sustainability. Virtual and Physical Prototyping 10 (4):175–85. [ Mismatch] doi: 10.1080/17452759.2015.1111519.
  • Keerthana, K., T. Anukiruthika, J. A. Moses, and C. Anandharamakrishnan. 2020. Development of fiber-enriched 3D printed snacks from alternative foods: A study on button mushroom. Journal of Food Engineering 287:110116. doi: 10.1016/j.jfoodeng.2020.110116.
  • Kim, H. W., H. Bae, and H. J. Park. 2017. Classification of the printability of selected food for 3D printing: Development of an assessment method using hydrocolloids as reference material. Journal of Food Engineering 215:23–32. doi: 10.1016/j.jfoodeng.2017.07.017.
  • Kim, S. M., H. W. Kim, and H. J. Park. 2021. Preparation and characterization of surimi-based imitation crab meat using coaxial extrusion three-dimensional food printing. Innovative Food Science & Emerging Technologies 71:102711. doi: 10.1016/j.ifset.2021.102711.
  • Ko, H. J., Y. Wen, J. H. Choi, B. R. Park, H. W. Kim, and H. J. Park. 2021. Meat analog production through artificial muscle fiber insertion using coaxial nozzle-assisted three-dimensional food printing. Food Hydrocolloids. 120:106898. doi: 10.1016/j.foodhyd.2021.106898.
  • Lanaro, M., M. R. Desselle, and M. A. Woodruff. 2018. 3D printing chocolate: Properties of formulations for extrusion, sintering, binding and ink jetting. Fundamentals of 3D Food Printing and Applications, 2019:151–73. doi: 10.1016/B978-0-12-814564-7.00006-7.
  • Lanaro, M., D. P. Forrestal, S. Scheurer, D. J. Slinger, S. Liao, S. K. Powell, and M. A. Woodruff. 2017. 3D printing complex chocolate objects: Platform design, optimization and evaluation. Journal of Food Engineering 215:13–22. doi: 10.1016/j.jfoodeng.2017.06.029.
  • Lansard, M. 2020. Food 3D printing: 10 food 3D printers available in 2020 (under 6K). https://www.aniwaa.com/buyers-guide/3d-printers/food-3d-printers/.
  • Le Tohic, C., J. J. O’Sullivan, K. P. Drapala, V. Chartrin, T. Chan, A. P. Morrison, J. P. Kerry, and A. L. Kelly. 2018. Effect of 3D printing on the structure and textural properties of processed cheese. Journal of Food Engineering 220:56–64. doi: 10.1016/j.jfoodeng.2017.02.003.
  • Lille, M., A. Nurmela, E. Nordlund, S. Metsä-Kortelainen, and N. Sozer. 2018. Applicability of protein and fiber-rich food materials in extrusion-based 3D printing. Journal of Food Engineering 220:20–7. doi: 10.1016/j.jfoodeng.2017.04.034.
  • Lipton, J. I. 2010. Multi-material food printing with complex internal structure suitable for conventional post-processing. no. January 2010.
  • Liu, Z., M. Zhang, B. Bhandari, and Y. Wang. 2017. 3D printing: Printing precision and application in food sector. Trends in Food Science and Technology 69:83–94. doi: 10.1016/j.tifs.2017.08.018.
  • Liu, Z., M. Zhang, B. Bhandari, and C. Yang. 2018. Impact of rheological properties of mashed potatoes on 3D printing. Journal of Food Engineering 220:76–82. doi: 10.1016/j.jfoodeng.2017.04.017.
  • Loughborough University. 2019. Sheet Lamination | Additive Manufacturing Research Group. https://www.lboro.ac.uk/research/amrg/about/the7categoriesofadditivemanufacturing/sheetlamination/.
  • Menezes, A. A., J. Cumbers, J. A. Hogan, and A. P. Arkin. 2015. Towards synthetic biological approaches to resource utilization on space missions. Journal of the Royal Society Interface 12 (102):20140715. doi: 10.1098/rsif.2014.0715.
  • Molitch-Hou, M. 2020. Chocolate 3D printing with mass customization around the corner, says FoodJet. 3DPrint.Com, May. https://3dprint.com/267732/chocolate-3d-printing-with-mass-customization-around-the-corner-says-foodjet/.
  • NASA. 2019. Deep-space food science research improves 3D-printing capabilities. NASA. https://spinoff.nasa.gov/Spinoff2019/ip_2.html.
  • Natural Machines. 2021. Foodini. Accessed: July 28, 2021. https://www.naturalmachines.com/.
  • Oskay, W., and L. Edman. 2009. CandyFab. https://candyfab.org/.
  • Papargyropoulou, E., R. Lozano, J. K. Steinberger, N. Wright, and Z. B. Ujang. 2014. The food waste hierarchy as a framework for the management of food surplus and food waste. Journal of Cleaner Production 76:106–15. doi: 10.1016/j.jclepro.2014.04.020.
  • Perchonok, M., and C. Bourland. 2002. NASA food systems: Past, present, and future. Nutrition 18 (10):913–20. doi: 10.1016/S0899-9007(02)00910-3.
  • Pérez, B., H. Nykvist, A. F. Brøgger, M. B. Larsen, and M. F. Falkeborg. 2019. Impact of macronutrients printability and 3D-printer parameters on 3D-food printing: A review. Food Chemistry 287:249–57. doi: 10.1016/j.foodchem.2019.02.090.
  • Portanguen, S., P. Tournayre, J. Sicard, T. Astruc, and P. Sylvain Mirade. 2019. Toward the design of functional foods and biobased products by 3D printing: A review. Trends in Food Science & Technology 86:188–98. doi: 10.1016/j.tifs.2019.02.023.
  • Rapisarda, M., G. Valenti, D. C. Carbone, P. Rizzarelli, G. Recca, S. La Carta, R. Paradisi, and S. Fincchiaro. 2018. Strength, fracture and compression properties of gelatins by a new 3D printed tool. Journal of Food Engineering 220:38–48. doi: 10.1016/j.jfoodeng.2017.05.016.
  • Sacco, E., and S. K. Moon. 2019. Additive manufacturing for space: Status and promises. The International Journal of Advanced Manufacturing Technology 105 (10):4123–46. doi: 10.1007/s00170-019-03786-z.
  • Severini, C., D. Azzollini, M. Albenzio, and A. Derossi. 2018. On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Research International 106:666–76. doi: 10.1016/j.foodres.2018.01.034.
  • Severini, C., A. Derossi, I. Ricci, R. Caporizzi, and A. Fiore. 2018. Printing a blend of fruit and vegetables. New advances on critical variables and shelf life of 3D edible objects. Journal of Food Engineering 220:89–100. doi: 10.1016/j.jfoodeng.2017.08.025.
  • Sirmons, T. A., P. G. Roma, A. M. Whitmire, S. M. Smith, S. R. Zwart, M. Young, and G. L. Douglas. 2020. Meal replacement in isolated and confined mission environments: Consumption, acceptability, and implications for physical and behavioral health. Physiology & Behavior, 219:112829. doi: 10.1016/j.physbeh.2020.112829.
  • Sources of greenhouse gas emissions. United States Environmental Protection Agency. 2020. https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions.
  • Sun, J., Z. Peng, L. Yan, J. Y. Fuh, and G. S. Hong. 2015. 3D food printing—An innovative way of mass customization in food fabrication. International Journal of Bioprinting 1 (1):27–38. doi: 10.18063/IJB.2015.01.006.
  • Sun, J., Z. Peng, W. Zhou, J. Y. Fuh, G. S. Hong, and A. Chiu. 2015. A review on 3D printing for customized food fabrication. Procedia Manufacturing 1:308–19. doi: 10.1016/j.promfg.2015.09.057.
  • Sun, J., W. Zhou, L. Yan, D. Huang, and L. ya Lin. 2018. Extrusion-based food printing for digitalized food design and nutrition control. Journal of Food Engineering 220:1–11. doi: 10.1016/j.jfoodeng.2017.02.028.
  • The Sugar Labs. 2021. Accessed: June 2021 https://sugarlab3d.com/.
  • Tino, R., R. Moore, S. Antoline, P. Ravi, N. Wake, C. N. Ionita, J. M. Morris, S. J. Decker, A. Sheikh, F. J. Rybicki, et al. 2020. COVID-19 and the role of 3D printing in medicine. 3D Printing in Medicine 6 (1-8). doi: 10.1186/s41205-020-00064-7.
  • Torrez, C., G. L. Douglas, and D. J. Irvin. 2013. Organizational responsibility Space Technology Mission Directorate (STMD) project management technology maturity (TRL) 3D printed food system for long duration space missions, phase I. https://techport.nasa.gov/file/14685.
  • Wang, L., M. Zhang, B. Bhandari, and C. Yang. 2018. Investigation on fish surimi gel as promising food material for 3D printing. Journal of Food Engineering 220:101–8. doi: 10.1016/j.jfoodeng.2017.02.029.
  • Wesemann, C., S. Pieralli, T. Fretwurst, J. Nold, K. Nelson, R. Schmelzeisen, E. Hellwig, and B. C. Spies. 2020. 3-D printed protective equipment during COVID-19 pandemic. Materials 13 (8):1997. doi: 10.3390/MA1308:1997.
  • Yang, F., M. Zhang, and B. Bhandari. 2017. Recent development in 3D food printing. Critical Reviews in Food Science and Nutrition 57 (14):3145–53. doi: 10.1080/10408398.2015.1094732.
  • Yang, F., M. Zhang, S. Prakash, and Y. Liu. 2018. Physical properties of 3D printed baking dough as affected by different compositions. Innovative Food Science and Emerging Technologies 49:202–10. doi: 10.1016/j.ifset.2018.01.001.
  • Zhang, J. Y., J. K. Pandya, D. J. McClements, J. Lu, and A. J. Kinchla. 2021. Advancements in 3D food printing: A comprehensive overview of properties and opportunities. Critical Reviews in Food Science and Nutrition, 1–18. doi: 10.1080/10408398.2021.1878103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.