1,076
Views
12
CrossRef citations to date
0
Altmetric
Review Articles

A comprehensive review on the prevention and regulation of Alzheimer’s disease by tea and its active ingredients

, ORCID Icon, &
Pages 10560-10584 | Published online: 01 Jun 2022

References

  • Abe, A., A. Nozawa, T. Kakuda, and Y. Yoneda. 2007. Action of theanine on neuronal cell. Nihon Nnougeikagaku Kai 302 (0 16.
  • Akagawa, M., M. Nakano, and K. Ikemoto. 2016. Recent progress in studies on the health benefits of pyrroloquinoline quinone. Bioscience, Biotechnology, and Biochemistry 80 (1):13–22. doi: 10.1080/09168451.2015.1062715.
  • Akbarialiabad, H., M. D. Dahroud, M. M. Khazaei, S. Razmeh, and M. M. Zarshenas. 2021. Green tea, a medicinal food with promising neurological benefits. Current Neuropharmacology 19 (3): 349–59. doi: 10.2174/1570159X18666200529152625.
  • Alharbi, K. S., O. Afzal, W. H. Almalki, I. Kazmi, M. A. Javed Shaikh, L. Thangavelu, M. Gulati, S. K. Singh, N. K. Jha, P. K. Gupta, et al. 2022. Nuclear factor-kappa B (NF-ΚB) inhibition as a therapeutic target for plant nutraceuticals in mitigating inflammatory lung diseases. Chemico-Biological Interactions 354:109842. doi: 10.1016/j.cbi.2022.109842.
  • Almeida, T., R. J. Rodrigues, A. De Mendonça, J. A. Ribeiro, and R. A. Cunha. 2003. Purinergic P2 receptors trigger adenosine release leading to adenosine A2A receptor activation and facilitation of long-term potentiation in rat hippocampal slices. Neuroscience 122 (1):111–21. doi: 10.1016/S0306-4522(03)00523-2.
  • Alzheimer’s Disease International. 2021. World Alzheimer report 2021. https://www.alzint.org/resource/world-alzheimer-report-2021/.
  • Anand, A., A. A. Patience, N. Sharma, and N. Khurana. 2017. The present and future of pharmacotherapy of Alzheimer’s disease: A comprehensive review. European Journal of Pharmacology 815:364–75. doi: 10.1016/j.ejphar.2017.09.043.
  • Anand, R., K. D. Gill, and A. A. Mahdi. 2014. Therapeutics of Alzheimer’s disease: Past, present and future. Neuropharmacology 76 (PART A):27–50. doi: 10.1016/j.neuropharm.2013.07.004.
  • Aranda, J. V., J. M. Collinge, R. Zinman, and G. Watters. 1979. Maturation of caffeine elimination in infancy. Archives of Disease in Childhood 54 (12):946–9. doi: 10.1136/ADC.54.12.946.
  • Arendash, G. W., W. Schleif, K. Rezai-Zadeh, E. K. Jackson, L. C. Zacharia, J. R. Cracchiolo, D. Shippy, and J. Tan. 2006. Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142 (4):941–52. doi: 10.1016/J.NEUROSCIENCE.2006.07.021.
  • Arendash, G. W., T. Mori, C. Cao, M. Mamcarz, M. Runfeldt, A. Dickson, K. Rezai-Zadeh, J. Tane, B. A. Citron, X. Lin, et al. 2009. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer’s disease mice. Journal of Alzheimer’s Disease: JAD 17 (3):661–80. doi: 10.3233/JAD-2009-1087.
  • Arnaud, M. J. 1987. The pharmacology of caffeine. In Progress in Drug Research/Fortschritte Der Arzneimittelforschung/Progrès Des Recherches Pharmaceutiques, edited by Ernst Jucker and Urs Meyer, 273–313. Basel: Birkhäuser Basel. doi: 10.1007/978-3-0348-9289-6_9.
  • Bansal, S., S. Choudhary, M. Sharma, S. S. Kumar, S. Lohan, V. Bhardwaj, N. Syan, and S. Jyoti. 2013. Tea: A native source of antimicrobial agents. Food Research International 53 (2):568–84. doi: 10.1016/j.foodres.2013.01.032.
  • Bao, J., W. Liu, H. Zhou, Y. Gui, Y. Yang, M. Wu, Y. Xiao, J. Shang, G. Long, and X. Shu. 2020. Epigallocatechin-3-gallate alleviates cognitive deficits in APP/PS1 mice. Current Medical Science 40 (1):18–27. doi: 10.1007/s11596-020-2142-z.
  • Bars, P., M. Kieser, and K. Z. Itil. 2000. A 26-week analysis of a double-blind, placebo-controlled trial of the ginkgo biloba extract egb 761 in dementia. Dementia & Geriatric Cognitive Disorders, 11(4):230–7.
  • Ben, P., Z. Zhang, Y. Zhu, A. Xiong, Y. Gao, J. Mu, Z. Yin, and L. Luo. 2016. L-Theanine attenuates cadmium-induced neurotoxicity through the inhibition of oxidative damage and tau hyperphosphorylation. Neurotoxicology 57:95–103. doi: 10.1016/j.neuro.2016.09.010.
  • Biasibetti, R., A. C. Tramontina, A. P. Costa, M. F. Dutra, A. Quincozes-Santos, P. Nardin, C. L. Bernardi, K. M. Wartchow, P. S. Lunardi, and C. A. Gonçalves. 2013. Green tea (-)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin-induced model of dementia. Behavioural Brain Research 236 (1):186–93. doi: 10.1016/j.bbr.2012.08.039.
  • Block, M. L., and J.-S. Hong. 2005. Microglia and inflammation-mediated neurodegeneration: Multiple triggers with a common mechanism. Progress in Neurobiology 76 (2):77–98. doi: 10.1016/j.pneurobio.2005.06.004.
  • Bokelmann, J. M. 2022. 24 - Aloe (Aloe Vera, Aloe Barbardensis): leaf and leaf pulp. Vol. 24. In Medicinal Herbs in Primary Care Bokelmann, ed. M. B. T. Jean, 179–87. Elsevier. doi: 10.1016/B978-0-323-84676-9.00024-6.
  • Bond and Derbyshire . 2019. Tea Compounds and the Gut Microbiome: Findings from Trials and Mechanistic Studies. Nutrients 11 (10):2364. doi:10.3390/nu11102364.
  • Bonfili, L., V. Cecarini, S. Berardi, S. Scarpona, J. S. Suchodolski, C. Nasuti, D. Fiorini, M. C. Boarelli, G. Rossi, and A. M. Eleuteri. 2017. Microbiota modulation counteracts Alzheimer’s disease progression influencing neuronal proteolysis and gut hormones plasma levels. Scientific Reports 7 (1):2426. doi: 10.1038/s41598-017-02587-2.
  • Borzelleca, J. F., D. Peters, and W. Hall. 2006. A 13-week dietary toxicity and toxicokinetic study with L-theanine in rats. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 44 (7):1158–66. doi: 10.1016/j.fct.2006.03.014.
  • Bostanciklioğlu, M. 2019. The role of gut microbiota in pathogenesis of Alzheimer’s disease. Journal of Applied Microbiology 127 (4):954–67. doi: 10.1111/jam.14264.
  • Bowery, N. G., and T. G. Smart. 2006. GABA and glycine as neurotransmitters: A brief history. British Journal of Pharmacology 147 (S1):S109–S19. doi: 10.1038/sj.bjp.0706443.
  • Broom, G. M., I. C. Shaw, and J. J. Rucklidge. 2019. The ketogenic diet as a potential treatment and prevention strategy for Alzheimer’s disease. Nutrition (Burbank, Los Angeles County, CA) 60:118–21. doi: 10.1016/j.nut.2018.10.003.
  • Browne, S. E., and M. F. Beal. 1994. Oxidative damage and mitochondrial dysfunction in neurodegenerative diseases. Biochemical Society Transactions 22 (4):1002–6. doi: 10.1042/bst0221002.
  • Dragicevic, N., V. Delic, C. Cao, N. Copes, X. Lin, M. Mamcarz, L. Wang, G. W. Arendash, and P. C. Bradshaw. 2012. Caffeine increases mitochondrial function and blocks melatonin signaling to mitochondria in Alzheimer’s mice and cells. Neuropharmacology 63 (8):1368–79. doi: 10.1016/j.neuropharm.2012.08.018.
  • Cao, C., J. R. Cirrito, X. Lin, L. Wang, D. K. Verges, A. Dickson, M. Mamcarz, et al. 2009. Caffeine suppresses amyloid-β levels in plasma and brain of Alzheimer’s disease transgenic mice. Journal of Alzheimer’s Disease 17:681–97. doi: 10.3233/JAD-2009-1071.
  • Cao, C., L. Wang, X. Lin, M. Mamcarz, C. Zhang, G. Bai, J. Nong, S. Sussman, and G. Arendash. 2011. Caffeine synergizes with another coffee component to increase plasma GCSF: linkage to cognitive benefits in Alzheimer’s mice. Journal of Alzheimer’s Disease 25: 323–35. doi: 10.3233/JAD-2011-110110.
  • Carver, K. A., D. Lourim, A. K. Tryba, and D. R. Harder. 2014. Rhythmic expression of cytochrome P450 epoxygenases CYP4x1 and CYP2c11 in the rat brain and vasculature. American Journal of Physiology. Cell Physiology 307 (11):C989–98. doi: 10.1152/ajpcell.00401.2013.
  • Carmichael, O. T., S. Pillai, P. Shankapal, A. McLellan, D. G. Kay, B. T. Gold, and J. N. Keller. 2018. A combination of essential fatty acids, panax ginseng extract, and green tea catechins modifies brain FMRI signals in healthy older adults. The Journal of Nutrition, Health & Aging 22 (7):837–46. doi: 10.1007/s12603-018-1028-2.
  • Cattaneo, A., N. Cattane, S. Galluzzi, S. Provasi, N. Lopizzo, C. Festari, C. Ferrari, U. P. Guerra, B. Paghera, C. Muscio, et al. 2017. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiology of Aging 49:60–8. doi: 10.1016/j.neurobiolaging.2016.08.019.
  • Cen, Y., X. Zou, Q. Zhong, Y. Chen, Y. Lin, Q. Feng, X. Wang, and S. Zheng. 2022. The TIAR-mediated Nrf2 response to oxidative stress is mediated through the Nrf2 noncoding 3’untranslated region in Spodoptera litura. Free Radical Biology and Medicine 184:17–29. doi: 10.1016/j.freeradbiomed.2022.03.016.
  • Chang, X., C. Rong, Y. Chen, C. Yang, Q. Hu, Y. Mo, C. Zhang, X. Gu, L. Zhang, W. He, et al. 2015. (-)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer’s disease model mice by upregulating neprilysin expression. Experimental Cell Research 334 (1):136–45. doi: 10.1016/j.yexcr.2015.04.004.
  • Chen, S.-Q., Z.-S. Wang, Y.-X. Ma, W. Zhang, J.-L. Lu, Y.-R. Liang, and X.-Q. Zheng. 2018. Neuroprotective effects and mechanisms of tea bioactive components in neurodegenerative diseases. Molecules 23 (3):512. doi: 10.3390/molecules23030.
  • Chen, Q., J. Shi, B. Mu, Z. Chen, W. Dai, and Z. Lin. 2020. Metabolomics combined with proteomics provides a novel interpretation of the changes in nonvolatile compounds during white tea processing. Food Chemistry 332:127412. doi: 10.1016/j.foodchem.2020.127412.
  • Chen, T., and C. Yang. 2020. Biological fates of tea polyphenols and their interactions with microbiota in the gastrointestinal tract: Implications on health effects. Critical Reviews in Food Science and Nutrition 60 (16):2691–19. doi: 10.1080/10408398.2019.1654430.
  • Chen, T., Y. Yang, S. Zhu, Y. Lu, L. Zhu, Y. Wang, and X. Wang. 2020. Inhibition of Aβ aggregates in Alzheimer’s disease by epigallocatechin and epicatechin-3-gallate from green tea. Bioorganic Chemistry 105 (December):104382. doi: 10.1016/J.BIOORG.2020.104382.
  • Chhatwal, J. P., S. A. Schultz, E. McDade, A. P. Schultz, L. Liu, B. J. Hanseeuw, N. Joseph-Mathurin, R. Feldman, C. D. Fitzpatrick, K. P. Sparks, et al. 2022. Variant-dependent heterogeneity in amyloid β burden in autosomal dominant Alzheimer’s disease: Cross-sectional and longitudinal analyses of an observational study. The Lancet Neurology 21 (2):140–52. doi: 10.1016/S1474-4422(21)00375-6.
  • Choi, Y. T., C. H. Jung, S. R. Lee, J. H. Bae, W. K. Baek, M. H. Suh, J. Park, C. W. Park, and S. Il Suh. 2001. The green tea polyphenol (-)-epigallocatechin gallate attenuates β-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sciences 70 (5):603–14. doi: 10.1016/S0024-3205(01)01438-2.
  • Chu, Y.-F., W.-H. Chang, R. M. Black, J.-R. Liu, P. Sompol, Y. Chen, H. Wei, Q. Zhao, and I. H. Cheng. 2012. Crude caffeine reduces memory impairment and amyloid Β1–42 levels in an Alzheimer’s mouse model. Food Chemistry 135 (3):2095–102. doi: 10.1016/j.foodchem.2012.04.148.
  • Chu, C.-Q., L. Yu, G. Qi, Y.-S. Mi, W.-Q. Wu, Y. Lee, Q.-X. Zhai, F.-W. Tian, and W. Chen. 2022. Can dietary patterns prevent cognitive impairment and reduce Alzheimer’s disease risk: Exploring the underlying mechanisms of effects. Neuroscience and Biobehavioral Reviews 135:104556. doi: 10.1016/j.neubiorev.2022.104556.
  • Cicero, A. F. G., F. Fogacci, and M. Banach. 2018. Botanicals and phytochemicals active on cognitive decline: The clinical evidence. Pharmacological Research 130:204–12. doi: 10.1016/j.phrs.2017.12.029.
  • Cunha, R. A., P. Correia-de-Sá, A. M. Sebastião, and J. A. Ribeiro. 1996. Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides. British Journal of Pharmacology 119 (2):253–60. doi: 10.1111/J.1476-5381.1996.TB15979.X.
  • Deng, W. W., S. Ogita, and H. Ashihara. 2010. Distribution and biosynthesis of theanine in Theaceae plants. Plant Physiology and Biochemistry 48 (1):70–2. doi: 10.1016/j.plaphy.2009.09.009.
  • Di, X., J. Yan, Y. Zhao, J. Zhang, Z. Shi, Y. Chang, and B. Zhao. 2010. L-Theanine protects the APP (Swedish mutation) transgenic SH-SY5Y cell against glutamate-induced excitotoxicity via inhibition of the NMDA receptor pathway. Neuroscience 168 (3):778–86. doi: 10.1016/j.neuroscience.2010.04.019.
  • Dias, R. B., D. M. Rombo, J. A. Ribeiro, J. M. Henley, and A. M. Sebastião. 2013. Adenosine: Setting the stage for plasticity. Trends in Neurosciences 36 (4):248–57. doi: 10.1016/J.TINS.2012.12.003.
  • Du, K., M. Liu, X. Zhong, W. Yao, Q. Xiao, Q. Wen, B. Yang, and M. Wei. 2018. Epigallocatechin gallate reduces amyloid β-induced neurotoxicity via inhibiting endoplasmic reticulum stress-mediated apoptosis. Molecular Nutrition & Food Research 62 (8):e1700890. doi: 10.1002/mnfr.201700890.
  • Du, X., X. Wang, and M. Geng. 2018. Alzheimer’s disease hypothesis and related therapies. Translational Neurodegeneration 7 (1):2. doi: 10.1186/s40035-018-0107-y.
  • Edwards, F. A. 2019. A unifying hypothesis for Alzheimer’s disease: From plaques to neurodegeneration. Trends in Neurosciences 42 (5):310–22. doi: 10.1016/j.tins.2019.03.003.
  • Einöther, S. J. L., V. E. G. Martens, J. A. Rycroft, and E. A. De Bruin. 2010. L-Theanine and caffeine improve task switching but not intersensory attention or subjective alertness. Appetite 54 (2):406–9. doi: 10.1016/j.appet.2010.01.003.
  • Eskelinen, M. H., T. Ngandu, J. Tuomilehto, H. Soininen, and M. Kivipelto. 2009. Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. Journal of Alzheimer’s Disease 16:85–91. doi: 10.3233/JAD-2009-0920.
  • Feng, L., X. Gwee, E.-H. Kua, and T.-P. Ng. 2010. Cognitive function and tea consumption in community dwelling older Chinese in Singapore. The Journal of Nutrition, Health & Aging 14 (6):433–8. doi: 10.1007/s12603-010-0095-9.
  • Feng, L., T.-P. Ng, M. Niti, E. H. Kua, and K.-B. Yap. 2008. P4-020: Tea consumption and cognitive impairment and decline. Alzheimer’s & Dementia 4 (4S_Part_21):T673–T673. doi: 10.1016/j.jalz.2008.05.2084.
  • Fine, A., C. Hoyle, C. J. Maclean, T. L. LeVatte, H. F. Baker, and R. M. Ridley. 1997. Learning impairments following injection of a selective cholinergic immunotoxin, ME20.4 IgG-Saporin, into the basal nucleus of Meynert in monkeys. Neuroscience 81 (2):331–43. doi: 10.1016/S0306-4522(97)00208-X.
  • Fischer, K., D. Melo van Lent, S. Wolfsgruber, L. Weinhold, L. Kleineidam, H. Bickel, M. Scherer, et al. 2018. Prospective associations between single foods, Alzheimer’s dementia and memory decline in the elderly. Nutrients, 10(7), 852. doi: 10.3390/nu10070852.
  • Fredholm, B. B., K. Bättig, J. Holmén, A. Nehlig, and E. E. Zvartau. 1999. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacological Reviews 51 (1):83–133. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0345561561&partnerID=40&md5=e1a4efd15f07f5f09093965990387797.
  • Fuhrer, T. E., T. H. Palpagama, H. J. Waldvogel, B. J. L. Synek, C. Turner, R. L. Faull, and A. Kwakowsky. 2017. Impaired expression of GABA transporters in the human Alzheimer’s disease hippocampus, subiculum, entorhinal cortex and superior temporal gyrus. Neuroscience 351:108–18. doi: 10.1016/j.neuroscience.2017.03.041.
  • Fung, T. C., C. A. Olson, and E. Y. Hsiao. 2017. Interactions between the microbiota, immune and nervous systems in health and disease. Nature Neuroscience 20 (2):145–55. doi: 10.1038/nn.4476.
  • Gao, H.-R., Z.-X. Huang and H.-M. Li. 2016. Comparative study on the content of tea polyphenols of sixteen kinds of China tea. Food Research and Development, CHINA 37 (7):33–6. doi: 10.3969/j.issn.1005-6521.2016.07.008.
  • Gao, Y., Y. Xu, and J. Yin. 2020. Black tea benefits short-chain fatty acid producers but inhibits genus Lactobacillus in the gut of healthy Sprague–Dawley Rats. Journal of the Science of Food and Agriculture 100 (15):5466–75. doi: 10.1002/jsfa.10598.
  • Gelder, B. M. v., B. Buijsse, M. Tijhuis, S. Kalmijn, S. Giampaoli, A. Nissinen, and D. Kromhout. 2007. Coffee consumption is inversely associated with cognitive decline in elderly European men: The FINE study. European Journal of Clinical Nutrition 61 (2):226–32. doi: 10.1038/sj.ejcn.1602495.
  • Goehler, L. E., R. P. A. Gaykema, N. Opitz, R. Reddaway, N. Badr, and M. Lyte. 2005. Activation in vagal afferents and central autonomic pathways: Early responses to intestinal infection with Campylobacter jejuni. Brain, Behavior, and Immunity 19 (4):334–44. doi: 10.1016/j.bbi.2004.09.002.
  • Gołembiowska, K., and A. Dziubina. 2012. The effect of adenosine A(2A) receptor antagonists on hydroxyl radical, dopamine, and glutamate in the striatum of rats with altered function of VMAT2. Neurotoxicity Research 22 (2):150–7. doi: 10.1007/s12640-012-9316-9.
  • Goncalves, P. B., A. C. R. Sodero, and Y. Cordeiro. 2021. Green tea epigallocatechin-3-gallate (EGCG) targeting protein misfolding in drug discovery for neurodegenerative diseases. Biomolecules 11 (5):767. doi: 10.3390/biom11050767.
  • Graham, H. N. 1992. Green tea composition, consumption, and polyphenol chemistry. Preventive Medicine 21 (3):334–50. doi: 10.1016/0091-7435(92)90041-F.
  • Grant, W. B. 2014. Trends in diet and Alzheimer’s disease during the nutrition transition in Japan and developing countries. Journal of Alzheimer’s Disease: JAD 38 (3):611–20. doi: 10.3233/JAD-130719.
  • Gu, Y.-J., C.-H. He, S. Li, S.-Y. Zhang, S.-Y. Duan, H.-P. Sun, Y.-P. Shen, Y. Xu, J.-Y. Yin, and C.-W. Pan. 2018. Tea consumption is associated with cognitive impairment in older Chinese adults. Aging & Mental Health 22 (9):1237–43. doi: 10.1080/13607863.2017.1339779.
  • Gueli, M. C., and G. Taibi. 2013. Alzheimer’s disease: Amino acid levels and brain metabolic status. Neurological Sciences 34 (9):1575–9. doi: 10.1007/s10072-013-1289-9.
  • Guo, T., W. Noble, and D. P. Hanger. 2017. Roles of tau protein in health and disease. Acta Neuropathologica 133 (5):665–704. doi: 10.1007/s00401-017-1707-9.
  • Guo, Y., Y. Zhao, Y. Nan, X. Wang, Y. Chen, and S. Wang. 2017. (-)-Epigallocatechin-3-gallate ameliorates memory impairment and rescues the abnormal synaptic protein levels in the frontal cortex and hippocampus in a mouse model of Alzheimer’s disease. Neuroreport 28 (10):590–7. doi: 10.1097/wnr.0000000000000803.
  • Gurwara, S., A. Dai, N. Ajami, H. El-Serag, D. Graham, and L. Jiao. 2019. Caffeine consumption and the colonic mucosa-associated gut microbiota. American Journal of Gastroenterology. doi: 10.14309/01.ajg.0000590316.43252.64.
  • Haam, J., and J. L. Yakel. 2017. Cholinergic modulation of the hippocampal region and memory function. Journal of Neurochemistry 142 (S2):111–21. doi: 10.1111/jnc.14052.
  • Hang, Z., T. Lei, Z. Zeng, S. Cai, W. Bi, and H. Du. 2022. Composition of intestinal flora affects the risk relationship between Alzheimer’s disease/Parkinson’s disease and cancer. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 145:112343. doi: 10.1016/j.biopha.2021.112343.
  • Han, K., N. Jia, J. Li, L. Yang, and L.-Q. Min. 2013. Chronic caffeine treatment reverses memory impairment and the expression of brain BNDF and TrkB in the PS1/APP double transgenic mouse model of Alzheimer’s disease. Molecular Medicine Reports 8 (3):737–40. doi: 10.3892/mmr.2013.1601.
  • Haran, J. P., S. K. Bhattarai, S. E. Foley, P. Dutta, D. V. Ward, V. Bucci, and B. A. McCormick. 2022. Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory P-glycoprotein pathway. MBio 10 (3):e00632–19. doi: 10.1128/mBio.00632-19.
  • Hayat, K., H. Iqbal, U. Malik, U. Bilal, and S. Mushtaq. 2015. Tea and its consumption: Benefits and risks. Critical Reviews in Food Science and Nutrition 55 (7):939–54. doi: 10.1080/10408398.2012.678949.
  • He, J., J. Chen, Q. He, S. Li, L. Jian, F. Xie, C. Dong, G. Bai, Z. Wang, T. Zou, et al. 2021. Oral L-theanine administration promotes fat browning and prevents obesity in mice fed high-fat diet associated with the modulation of gut microbiota. Journal of Functional Foods 81 (June):104476. doi: 10.1016/j.jff.2021.104476.
  • He, M., M.-Y. Liu, S. Wang, Q.-S. Tang, W.-F. Yao, H.-S. Zhao, and M.-J. Wei. 2012. Research on EGCG improving the degenerative changes of the brain in AD model mice induced with chemical drugs. Zhong Yao Cai = Zhongyaocai = Journal of Chinese Medicinal Materials 35 (10):1641–4. http://europepmc.org/abstract/MED/23627134.
  • Hilal, Y., and U. Engelhardt. 2007. Characterisation of white tea – comparison to green and black tea. Journal Für Verbraucherschutz Und Lebensmittelsicherheit 2 (4):414–21. doi: 10.1007/s00003-007-0250-3.
  • Hill, E., A. M. Goodwill, A. Gorelik, and C. Szoeke. 2019. Diet and biomarkers of Alzheimer’s disease: A systematic review and meta-analysis. Neurobiology of Aging 76:45–52. doi: 10.1016/j.neurobiolaging.2018.12.008.
  • Hu, H.-Y., B.-S. Wu, Y.-N. Ou, Y.-H. Ma, Y.-Y. Huang, W. Cheng, L. Tan, and J.-T. Yu. 2022. Tea consumption and risk of incident dementia: a prospective cohort study of 377 592 UK biobank participants. Translational Psychiatry 12 (1):171. doi: 10.1038/s41398-022-01923-z.
  • Huang, W. J., X. Zhang, and W. W. Chen. 2016. Role of oxidative stress in Alzheimer’s disease. Biomedical Reports 4 (5):519–22. doi:10.3892/BR.2016.630/HTML.
  • Ide, K., Y. Kawasaki, K. Kawakami, and H. Yamada. 2018. Chapter 5 - Effects of bioactive components of green tea on Alzheimer’s disease. In Studies in natural products chemistry, ed. Atta-ur-Rahman, vol. 56, 151–72. The Netherlands: Elsevier. doi: 10.1016/B978-0-444-64058-1.00005-4.
  • Iqbal, K., F. Liu, C. X. Gong, and I. Grundke-Iqbal. 2010. Tau in Alzheimer disease and related tauopathies. Current Alzheimer Research 7 (8):656–64. doi: 10.2174/156720510793611592.
  • Jang, H.-S., J. Y. Jung, I.-S. Jang, K.-H. Jang, S.-H. Kim, J.-H. Ha, K. Suk, and M.-G. Lee. 2012. L-Theanine partially counteracts caffeine-induced sleep disturbances in rats. Pharmacology, Biochemistry, and Behavior 101 (2):217–21. doi: 10.1016/j.pbb.2012.01.011.
  • Janle, E. M., D. M. Morré, D. J. Morré, Q. Zhou, and Y. Zhu. 2008. Pharmacokinetics of green tea catechins in extract and sustained-release preparations. Journal of Dietary Supplements 5 (3):248–63. doi: 10.1080/19390210802414279.
  • Jeon, S. G., S. B. Hong, Y. Nam, J. Tae, A. Yoo, E. J. Song, K. I. Kim, D. Lee, J. Park, S. M. Lee, et al. 2019. Ghrelin in Alzheimer’s disease: Pathologic roles and therapeutic implications. Ageing Research Reviews 55:100945. doi: 10.1016/j.arr.2019.100945.
  • Jia, N., K. Han, J.-J. Kong, X.-M. Zhang, S. Sha, G.-R. Ren, and Y.-P. Cao. 2013. (−) (-)-Epigallocatechin-3-gallate alleviates spatial memory impairment in APP/PS1 mice by restoring IRS-1 signaling defects in the hippocampus. Molecular and Cellular Biochemistry 380 (1–2):211–8. doi: 10.1007/s11010-013-1675-x.
  • Jiang, H., F. Yu, L. Qin, N. Zhang, Q. Cao, W. Schwab, D. Li, and C. Song. 2019. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia Sinensis L.) leaves. Journal of Food Composition and Analysis 77:28–38. doi: 10.1016/j.jfca.2019.01.005.
  • Jiménez-Balado, J., and T. S. Eich. 2021. GABAergic dysfunction, neural network hyperactivity and memory impairments in human aging and Alzheimer’s disease. Seminars in Cell & Developmental Biology 116:146–59. doi: 10.1016/j.semcdb.2021.01.005.
  • Jo, M.-R., M.-H. Park, D.-Y. Choi, D.-Y. Yuk, Y.-M. Lee, J.-M. Lee, J.-H. Jeong, et al. 2011. Neuroprotective effect of L-theanine on a beta-induced neurotoxicity through anti-oxidative mechanisms in SK-N-SH and SK-N-MC cells. Biomolecules and Therapeutics 19 (July). doi: 10.4062/biomolther.2011.19.3.288.
  • Jo, S., O. Yarishkin, Y. J. Hwang, Y. E. Chun, M. Park, D. H. Woo, J. Y. Bae, T. Kim, J. Lee, H. Chun, et al. 2014. GABA from reactive astrocytes impairs memory in mouse models of Alzheimer’s disease. Nature Medicine 20 (8):886–96. doi: 10.1038/nm.3639.
  • Kakuda, T. 2011. Neuroprotective effects of theanine and its preventive effects on cognitive dysfunction. Pharmacological Research 64 (2):162–8. doi: 10.1016/j.phrs.2011.03.010.
  • Kakuda, T., E. Hinoi, A. Abe, A. Nozawa, M. Ogura, and Y. Yoneda. 2008. Theanine, an ingredient of green tea, inhibits [3H] glutamine transport in neurons and astroglia in rat brain. Journal of Neuroscience Research 86 (8):1846–56. doi: 10.1002/jnr.21637.
  • Kim, T. I., Y. K. Lee, S. G. Park, I. S. Choi, J. O. Ban, H. K. Park, S.-Y. Nam, Y. W. Yun, S. B. Han, K. W. Oh, et al. 2009. L-Theanine, an amino acid in green tea, attenuates beta-amyloid-induced cognitive dysfunction and neurotoxicity: Reduction in oxidative damage and inactivation of ERK/p38 kinase and NF-kappaB pathways. Free Radical Biology & Medicine 47 (11):1601–10. doi: 10.1016/j.freeradbiomed.2009.09.008.
  • Kim, T. I., D. Y. Yuk, S. G. Park, H. K. Park, Y. K. Yoon, K. W. Oh, and J. T. Hong. 2008. Improvement of memory impairment by the combination of green tea extract and L-theanine through inhibition of acetylcholinesterase activity in mice TT. Laboratory Animal Research 24:87–92. http://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE01001107.
  • Kim, Y., H. Choi, W. Kim, S. Park, D. Lee, D. K. Kim, H. J. Kim, et al. 2020. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut 69 (2):283–94. doi: 10.1136/gutjnl-2018-317431.
  • Kim, Y.-S., S. M. Kwak, and S.-K. Myung. 2015. Caffeine Intake from coffee or tea and cognitive disorders: A meta-analysis of observational studies. Neuroepidemiology 44 (1):51–63. doi: 10.1159/000371710.
  • Kitaoka, S., H. Hayashi, H. Yokogoshi, and Y. Suzuki. 1996. Transmural potential changes associated with the in vitro absorption of theanine in the guinea pig intestine. Bioscience, Biotechnology, and Biochemistry 60 (11):1768–71. doi: 10.1271/bbb.60.1768.
  • Kitamura, K., Y. Watanabe, K. Nakamura, K. Sanpei, M. Wakasugi, A. Yokoseki, O. Onodera, et al. 2016. Modifiable factors associated with cognitive impairment in 1,143 Japanese outpatients: The Project in Sado for Total Health (PROST). Dementia and Geriatric Cognitive Disorders Extra 6 (2):341–9. doi: 10.1159/000447963.
  • Kojima, S., and Y. Yoshida. 2008. Effects of green tea powder feed supplement on performance of hens in the late stage of laying. International Journal of Poultry Science 7 (5):491–6. doi: 10.3923/ijps.2008.
  • Košir, R., K. Španinger, and D. Rozman. 2013. Circadian events in human diseases and in cytochrome P450-related drug metabolism and therapy. IUBMB Life 65 (6):487–96. doi: 10.1002/IUB.1160.
  • Kuriyama, S., A. Hozawa, K. Ohmori, T. Shimazu, T. Matsui, S. Ebihara, S. Awata, R. Nagatomi, H. Arai, and I. Tsuji. 2006. Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project 1. The American Journal of Clinical Nutrition 83 (2): 355–61. doi: 10.1093/ajcn/83.2.355.
  • Laurent, C., S. Eddarkaoui, M. Derisbourg, A. Leboucher, D. Demeyer, S. Carrier, M. Schneider, et al. 2014. Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like tau pathology. Neurobiology of Aging 35 (9):2079–90. doi: 10.1016/j.neurobiolaging.2014.03.027.
  • Lee, J. W., Y. K. Lee, J. O. Ban, T. Y. Ha, Y. P. Yun, S. B. Han, K. W. Oh, and J. T. Hong. 2009. Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. The Journal of Nutrition 139 (10):1987–93. doi: 10.3945/jn.109.109785.
  • Lee, Y. J., D. Y. Choi, Y. P. Yun, S. B. Han, K. W. Oh, and J. T. Hong. 2013. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. The Journal of Nutritional Biochemistry 24 (1):298–310. doi: 10.1016/j.jnutbio.2012.06.011.
  • Levites, Y., T. Amit, S. Mandel, and M. B. H. Youdim. 2003. Neuroprotection and neurorescue against Aβ toxicity and PKC-dependent release of non-amyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallocatechin-3-gallate. The FASEB Journal 17 (8):1–23. doi: 10.1096/fj.02-0881fje.
  • Li, R., Y.-G. Huang, D. Fang, and W.-D. Le. 2004. (−) (-)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. Journal of Neuroscience Research 78 (5):723–31. doi: 10.1002/jnr.20315.
  • Li, Y., S. U. Rahman, Y. Huang, Y. Zhang, P. Ming, L. Zhu, X. Chu, et al. 2020. Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity. The Journal of Nutritional Biochemistry 78:108324. doi: 10.1016/j.jnutbio.2019.108324.
  • Liu, Y., L. Luo, Y. Luo, J. Zhang, X. Wang, K. Sun, and L. Zeng. 2020. Prebiotic properties of green and dark tea contribute to protective effects in chemical-induced colitis in mice: a fecal microbiota transplantation study. Journal of Agricultural and Food Chemistry 68 (23):6368–80. doi: 10.1021/acs.jafc.0c02336.
  • Liang, J., H. Yan, P. Puligundla, X. Gao, Y. Zhou, and X. Wan. 2017. Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: A review. Food Hydrocolloids. 69:286–92. doi: 10.1016/j.foodhyd.2017.01.041.
  • Lin, L., L. Zeng, A. Liu, Y. Peng, D. Yuan, S. Zhang, Y. Li, J. Chen, W. Xiao, and Z. Gong. 2020. L-Theanine regulates glucose, lipid, and protein metabolism via insulin and AMP-activated protein kinase signaling pathways. Food & Function 11 (2):1798–809. doi: 10.1039/C9FO02451D.
  • Liu, J., W. Hao, Z. He, E. Kwek, Y. Zhao, H. Zhu, N. Liang, K. Y. Ma, L. Lei, W.-S. He, et al. 2019. Beneficial effects of tea water extracts on the body weight and gut microbiota in C57BL/6J mice fed with a high-fat diet. Food & Function 10 (5):2847–60. doi: 10.1039/C8FO02051E.
  • Liu, S. H., J. Li, J. A. Huang, Z. H. Liu, and L. G. Xiong. 2021. New advances in genetic engineering for L-theanine biosynthesis. Trends in Food Science & Technology 114 (August):540–51. doi: 10.1016/j.tifs.2021.06.006.
  • Liu, X., X. Du, G. Han, and W. Gao. 2017. Association between tea consumption and risk of cognitive disorders: A dose-response meta-analysis of observational studies. Oncotarget 8 (26):43306–21. doi: 10.18632/oncotarget.17429.
  • London, E., and C. A. Stratakis. 2022. The regulation of PKA signaling in obesity and in the maintenance of metabolic health. Pharmacology & Therapeutics 237:108113. doi: 10.1016/j.pharmthera.2022.108113.
  • Londzin, P., M. Zamora, B. Kąkol, A. Taborek, and J. Folwarczna. 2021. Potential of Caffeine in Alzheimer’s Disease—A Review of Experimental Studies. Nutrients 13 (2):537 doi:10.3390/nu13020537.
  • Lu, H., X. Meng, and C. S. Yang. 2003. Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (-)-epigallocatechin gallate. Drug Metabolism and Disposition: The Biological Fate of Chemicals 31 (5):572–9. doi: 10.1124/dmd.31.5.572.
  • Luo, M., R.-Y. Gan, B.-Y. Li, Q.-Q. Mao, A. Shang, X.-Y. Xu, H.-Y. Li, and H.-B. Li. 2021. Effects and mechanisms of tea on Parkinson’s disease, Alzheimer’s disease and depression. Food Reviews International: 1–29. doi: 10.1080/87559129.2021.1904413.
  • Ma, Q.-P., H. Chen, C. Qiao-Yun, Y. Ding-Jun, S. Kang, C. Xuan, and L. Xing-Hui. 2016. Meta-analysis of the association between tea intake and the risk of cognitive disorders. PloS One 11 (11): e0165861. doi: 10.1371/JOURNAL.PONE.0165861.
  • Maia, L., and A. De Mendonça. 2002. Does caffeine intake protect from Alzheimer’s disease? European Journal of Neurology 9 (4):377–82. doi: 10.1046/j.1468-1331.2002.00421.x.
  • Majolo, F. A. Martins, S. Rehfeldt, J. A. P. Henriques, V. Contini, and M. I. Goettert. 2021. Chapter 1 - Approaches for the treatment of neurodegenerative diseases related to natural products. In Bioactive natural products, edited by Atta-ur-Rahman, vol. 69, 1–63. Studies in natural products chemistry. The Netherlands: Elsevier. doi: 10.1016/B978-0-12-819487-4.00014-8.
  • Makhaeva, G. F., S. V. Lushchekina, N. P. Boltneva, V. B. Sokolov, V. V. Grigoriev, O. G. Serebryakova, E. A. Vikhareva, A. Y. Aksinenko, G. E. Barreto, G. Aliev, et al. 2015. Conjugates of γ-carbolines and phenothiazine as new selective inhibitors of butyrylcholinesterase and blockers of NMDA receptors for Alzheimer disease. Scientific Reports 5 (1):13164–11. doi: 10.1038/srep13164.
  • Marizzoni, M., S. Provasi, A. Cattaneo, and G. B. Frisoni. 2017. Microbiota and neurodegenerative diseases. Current Opinion in Neurology 30 (6):630–8. https://journals.lww.com/co-neurology/Fulltext/2017/12000/Microbiota_and_neurodegenerative_diseases.12.aspx. doi: 10.1097/WCO.0000000000000496.
  • Meco, A. D., C. De Lucia, M. E. Curtis, and D. Pratico. 2018. Gestational high sugar diet promotes Alzheimer’s disease phenotype, triggers metabolic dysfunction and shortens survival in 3XTG offspring later in life. Alzheimer’s & Dementia 14 (7, Supplement):P308. doi: 10.1016/j.jalz.2018.06.099.
  • Mindt, M., T. Walter, P. Kugler, and V. F. Wendisch. 2020. Microbial engineering for production of N-functionalized amino acids and amines. Biotechnology Journal 15 (7):1900451–15. doi: 10.1002/biot.201900451.
  • Moreira, P. I., C. Carvalho, X. Zhu, M. A. Smith, and G. Perry. 2010. Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochimica et Biophysica Acta 1802 (1):2–10. doi: 10.1016/J.BBADIS.2009.10.006.
  • Moro, S., F. Deflorian, G. Spalluto, G. Pastorin, B. Cacciari, S. K. Kim, and K. A. Jacobson. 2003. Demystifying the three dimensional structure of G protein-coupled receptors (GPCRs) with the aid of molecular modeling. Chemical Communications 3 (24):2949–56. doi: 10.1039/b303439a.
  • Murakami, A. 2014. Dose-dependent functionality and toxicity of green tea polyphenols in experimental rodents. Archives of Biochemistry and Biophysics 557:3–10. doi: 10.1016/j.abb.2014.04.018.
  • Murphy, M. P., and H. Levine. 2010. Alzheimer’s disease and the amyloid-beta peptide. Journal of Alzheimer’s Disease: JAD 19 (1):311–23. doi: 10.3233/JAD-2010-1221.
  • Murray, M. T. 2020. 108 - Pyrroloquinoline Quinone (PQQ). In Textbook of natural medicine, edited by Joseph E Pizzorno and Michael T Murray, 5th ed., 833–5.e1. St. Louis, MO: Churchill Livingstone. doi: 10.1016/B978-0-323-43044-9.00108-4.
  • Nehlig, A. 2018. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacological Reviews 70 (2):384–411. doi: 10.1124/pr.117.014407.
  • Newman, D. J., and G. M. Cragg. 2016. Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products 79 (3):629–61. doi: 10.1021/acs.jnatprod.5b01055.
  • Ning, J. M., D. X. Li, X. J. Luo, D. Ding, Y. S. Song, Z. Z. Zhang, and X. C. Wan. 2016. Stepwise identification of six tea (Camellia Sinensis (L.)) categories based on catechins, caffeine, and theanine contents combined with fisher discriminant analysis. Food Analytical Methods 9 (11):3242–50. doi: 10.1007/s12161-016-0518-2.
  • Noguchi-Shinohara, M., S. Yuki, C. Dohmoto, Y. Ikeda, M. Samuraki, K. Iwasa, M. Yokogawa, et al. 2014. Consumption of green tea, but not black tea or coffee, is associated with reduced risk of cognitive decline. PloS One 9 (5):e96013–e96013. doi: 10.1371/journal.pone.0096013.
  • Okello, E. J., and J. Mather. 2020. Comparative kinetics of acetyl- and butyryl-cholinesterase inhibition by green tea catechins|relevance to the symptomatic treatment of Alzheimer’s disease. Nutrients 12(4): 1090. doi: 10.3390/nu12041090.
  • Park, K.-S., J. H. Oh, H.-S. Yoo, Y.-M. Lee, M.-K. Lee, J. T. Hong, and K.-W. Oh. 2010. (-)-Epigallocatechin-3-O-gallate (EGCG) reverses caffeine-induced anxiogenic-like effects. Neuroscience Letters 481 (2):131–4. doi: 10.1016/j.neulet.2010.06.072.
  • Park, S., D. S. Kim, S. Kang, and H. J. Kim. 2018. The combination of luteolin and L-theanine Improved Alzheimer disease-like symptoms by potentiating hippocampal insulin signaling and decreasing neuroinflammation and norepinephrine degradation in amyloid-β-infused rats. Nutrition Research (New York, NY) 60:116–31. doi: 10.1016/j.nutres.2018.09.010.
  • Pasinetti, G. M., and J. A. Eberstein. 2008. Metabolic syndrome and the role of dietary lifestyles in Alzheimer’s disease. Journal of Neurochemistry 106 (4):1503–14. doi: 10.1111/j.1471-4159.2008.05454.x.
  • Prasanth, M. I., B. S. Sivamaruthi, C. Chaiyasut, and T. Tencomnao. 2019. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients 11 (2):474. doi: 10.3390/nu11020474.
  • Przybylska, S. 2020. Lycopene – a bioactive carotenoid offering multiple health benefits: a review. International Journal of Food Science & Technology 55 (1):11–32. doi: 10.1111/ijfs.14260.
  • Pohanka, M., and P. Dobes. 2013. Caffeine inhibits acetylcholinesterase, but not butyrylcholinesterase. International Journal of Molecular Sciences 14 (5):9873–82. doi: 10.3390/ijms14059873.
  • Qian, X., X. Song, X. Liu, S. Chen, and H. Tang. 2021. Inflammatory pathways in Alzheimer’s disease mediated by gut microbiota. Ageing Research Reviews 68:101317. doi: 10.1016/j.arr.2021.101317.
  • Raber, J., Y. Huang, and J. W. Ashford. 2004. ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiology of Aging 25 (5):641–50. doi: 10.1016/j.neurobiolaging.2003.12.023.
  • Radi, E., P. Formichi, C. Battisti, and A. Federico. 2014. Apoptosis and oxidative stress in neurodegenerative diseases. Journal of Alzheimer’s Disease 42 (s3):S125–S52. doi: 10.3233/JAD-132738.
  • Rajendran, P., A. Bhatt, S. Manthuruthil, and S. Pericherla. 2013. Caffeine and Alzheimer’s Disease. International Journal of Biological & Medical Research 3 (1):3513–4. doi: 10.1016/S0140-6736(05)62266-0.
  • Ramis, M. R., F. Sarubbo, S. Tejada, M. Jiménez, S. Esteban, A. Miralles, and D. Moranta. 2020. Chronic polyphenon-60 or catechin treatments increase brain monoamines syntheses and Hippocampal SIRT1 LEVELS improving cognition in aged rats. Nutrients 12(2): 326. doi: 10.3390/nu12020326.
  • Rashidinejad, A., S. Boostani, A. Babazadeh, A. Rehman, A. Rezaei, S. Akbari-Alavijeh, R. Shaddel, and S. M. Jafari. 2021. Opportunities and Challenges for the nanodelivery of green tea catechins in functional foods. Food Research International (Ottawa, ON) 142:110186. doi: 10.1016/j.foodres.2021.110186.
  • Reddy, P. H., M. Manczak, X. Yin, M. C. Grady, A. Mitchell, S. Tonk, C. S. Kuruva, et al. 2018. Protective effects of indian spice curcumin against amyloid-β in Alzheimer’s disease. Journal of Alzheimer’s Disease 61:843–66. doi: 10.3233/JAD-170512.
  • Rezai-Zadeh, K., G. W. Arendash, H. Hou, F. Fernandez, M. Jensen, M. Runfeldt, R. D. Shytle, and J. Tan. 2008. Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Research 1214 (June):177–87. doi: 10.1016/J.BRAINRES.2008.02.107.
  • Ritchie, K., I. Carrière, A. De Mendonça, F. Portet, J. F. Dartigues, O. Rouaud, P. Barberger-Gateau, and M. L. Ancelin. 2007. The neuroprotective effects of caffeine: A prospective population study (the three city study). Neurology 69 (6):536–45. doi: 10.1212/01.WNL.0000266670.35219.0C.
  • Rollins, C. P. E., D. Gallino, V. Kong, G. Ayranci, G. A. Devenyi, J. Germann, and M. M. Chakravarty. 2019. Contributions of a high-fat diet to Alzheimer’s disease-related decline: A longitudinal behavioural and structural neuroimaging study in mouse models. NeuroImage. Clinical 21:101606. doi: 10.1016/j.nicl.2018.11.016.
  • Roowi, S., A. Stalmach, W. Mullen, M. E. J. Lean, C. A. Edwards, and A. Crozier. 2010. Green tea flavan-3-ols: Colonic degradation and urinary excretion of catabolites by humans. Journal of Agricultural and Food Chemistry 58 (2):1296–304. doi: 10.1021/jf9032975.
  • La Rosa, F., M. Clerici, D. Ratto, A. Occhinegro, A. Licito, M. Romeo, C. Iorio, and P. Rossi. 2018. The gut-brain axis in Alzheimer’s disease and omega-3. A critical overview of clinical trials. Nutrients 10 (9):1267. doi: 10.3390/nu10091267.
  • Roux, P. P., and J. Blenis. 2004. ERK and P38 MAPK-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiology and Molecular Biology Reviews: MMBR 68 (2):320–44. doi: 10.1128/MMBR.68.2.320-344.2004.
  • Roy, U., L. Stute, C. Höfling, M. Hartlage-Rübsamen, J. Matysik, S. Roβner, and A. Alia. 2018. Sex- and age-specific modulation of brain GABA levels in a mouse model of Alzheimer’s disease. Neurobiology of Aging 62:168–79. doi: 10.1016/j.neurobiolaging.2017.10.015.
  • Scapagnini, G., S. Vasto, V. Sonya, N. G. Abraham, A. G. Nader, C. Caruso, C. Calogero, D. Zella, and G. Fabio. 2011. Modulation of Nrf2/ARE pathway by food polyphenols: A nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Molecular Neurobiology 44 (2):192–201. doi: 10.1007/s12035-011-8181-5.
  • Scheid, L., S. Ellinger, B. Alteheld, H. Herholz, J. Ellinger, T. Henn, H. P. Helfrich, and P. Stehle. 2012. Kinetics of L-theanine uptake and metabolism in healthy participants are comparable after ingestion of L-theanine via capsules and green tea. The Journal of Nutrition 142 (12):2091–6. doi: 10.3945/jn.112.166371.
  • Seneff, S., G. Wainwright, and L. Mascitelli. 2011. Nutrition and Alzheimer’s disease: The detrimental role of a high carbohydrate diet. European Journal of Internal Medicine 22 (2):134–40. doi: 10.1016/j.ejim.2010.12.017.
  • Shal, B., W. Ding, H. Ali, Y. S. Kim, and S. Khan. 2018. Anti-neuroinflammatory potential of natural products in attenuation of Alzheimer’s disease. Frontiers in Pharmacology 9:548. doi: 10.3389/fphar.2018.00548.
  • Sharma, E., R. Joshi, and A. Gulati. 2018. L-Theanine: An astounding sui generis integrant in tea. Food Chemistry 242:601–10. doi: 10.1016/j.foodchem.2017.09.046.
  • Sharma, V. K., A. Bhattacharya, A. Kumar, and H. K. Sharma. 2007. Health benefits of tea consumption. Tropical Journal of Pharmaceutical Research 6 (3):785–92. doi: 10.4314/tjpr.v6i3.14660.
  • Shen, W., Y. Xiao, X. Ying, S. Li, Y. Zhai, X. Shang, F. Li, X. Wang, F. He, and J. Lin. 2015. Tea consumption and cognitive impairment: A cross-sectional study among Chinese elderly. PLoS One 10 (9):e0137781. doi: 10.1371/journal.pone.0137781.
  • Singh, N. A., A. K. A. Mandal, and Z. A. Khan. 2015. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutrition Journal 15 (1). doi: 10.1186/s12937-016-0179-4.
  • Singh, N. A., V. Bhardwaj, C. Ravi, N. Ramesh, A. K. A. Mandal, and Z. A. Khan. 2018. EGCG Nanoparticles attenuate aluminum chloride induced neurobehavioral deficits, beta amyloid and tau pathology in a rat model of Alzheimer’s disease. Frontiers in Aging Neuroscience 10. doi: 10.3389/fnagi.2018.00244.
  • Skrzypczak-Jankun, E., and J. Jankun. 2010. Theaflavin digallate inactivates plasminogen activator inhibitor: Could tea help in Alzheimer’s disease and obesity? International Journal of Molecular Medicine 26 (1):45–50. doi: 10.3892/ijmm_00000433.
  • Smith, A., B. Giunta, P. C. Bickford, M. Fountain, J. Tan, and R. D. Shytle. 2010. Nanolipidic Particles improve the bioavailability and α-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer’s disease. International Journal of Pharmaceutics 389 (1–2):207–12. doi: 10.1016/j.ijpharm.2010.01.012.
  • Solch, R. J., J. O. Aigbogun, A. G. Voyiadjis, G. M. Talkington, R. M. Darensbourg, S. O’Connell, K. M. Pickett, S. R. Perez, and D. M. Maraganore. 2022. Mediterranean diet adherence, gut microbiota, and Alzheimer’s or Parkinson’s disease risk: A systematic review. Journal of the Neurological Sciences 434:120166. doi: 10.1016/j.jns.2022.120166.
  • Spencer, J. P., H. Schroeter, A. R. Rechner, and C. Rice-Evans. 2001. Bioavailability of flavan-3-ols and procyanidins: Gastrointestinal tract influences and their relevance to bioactive forms in vivo. Antioxidants & Redox Signaling 3 (6):1023–39. doi: 10.1089/152308601317203558.
  • Stoothoff, W. H., and G. V. W. Johnson. 2005. Tau phosphorylation: Physiological and pathological consequences. Biochimica et Biophysica Acta 1739 (2–3):280–97. doi: 10.1016/j.bbadis.2004.06.017.
  • Strooper, B. D. 2010. Proteases and proteolysis in Alzheimer disease: A multifactorial view on the disease process. Physiological Reviews 90 (2):465–494. doi: 10.1152/physrev.00023.2009.
  • Suganthy, N., and K. P. Devi. 2016. Protective effect of catechin rich extract of rhizophora mucronata against β-amyloid-induced toxicity in PC12 cells. Journal of Applied Biomedicine 14 (2):137–46. doi: 10.1016/j.jab.2015.10.003.
  • Sun, H., Y. Chen, M. Cheng, X. Zhang, X. Zheng, and Z. Zhang. 2018. The modulatory effect of polyphenols from green tea, oolong tea and black tea on human intestinal microbiota in vitro. Journal of Food Science and Technology 55 (1):399–407. doi: 10.1007/s13197-017-2951-7.
  • Swerdlow, R. H., J. M. Burns, and S. M. Khan. 2014. The Alzheimer’s disease mitochondrial cascade hypothesis: Progress and perspectives. Biochimica et Biophysica Acta 1842 (8):1219–31. doi: 10.1016/j.bbadis.2013.09.010.
  • Swerdlow, R. H., and S. M. Khan. 2004. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Medical Hypotheses 63 (1):8–20. doi: 10.1016/j.mehy.2003.12.045.
  • Taniguchi, S., N. Suzuki, M. Masuda, S. I. Hisanaga, T. Iwatsubo, M. Goedert, and M. Hasegawa. 2005. Inhibition of heparin-induced tau filament formation by phenothiazines, polyphenols, and porphyrins. The Journal of Biological Chemistry 280 (9):7614–23. doi: 10.1074/JBC.M408714200.
  • Temple, J. L., C. Bernard, S. E. Lipshultz, J. D. Czachor, J. A. Westphal, and M. A. Mestre. 2017. The safety of ingested caffeine: A comprehensive review. Frontiers in Psychiatry 8 (May):80. doi:10.3389/FPSYT.2017.00080/BIBTEX.
  • Tomata, Y., K. Sugiyama, Y. Kaiho, K. Honkura, T. Watanabe, S. Zhang, Y. Sugawara, and I. Tsuji. 2016. Green tea consumption and the risk of incident dementia in elderly Japanese: The Ohsaki cohort 2006 study. The American Journal of Geriatric Psychiatry 24 (10):881–9. doi: 10.1016/j.jagp.2016.07.009.
  • Tomata, Y., M. Kakizaki, N. Nakaya, T. Tsuboya, T. Sone, S. Kuriyama, A. Hozawa, and I. Tsuji. 2012. Green tea consumption and the risk of incident functional disability in elderly Japanese: The Ohsaki Cohort 2006 study. The American Journal of Clinical Nutrition 95 (3):732–39. doi: 10.3945/ajcn.111.023200.
  • Türközü, D., and N. Şanlier. 2017. L-Theanine, unique amino acid of tea, and its metabolism, health effects, and safety. Critical Reviews in Food Science and Nutrition 57 (8):1681–7. doi: 10.1080/10408398.2015.1016141.
  • Unno, T., Y. Suzuki, T. Kakuda, T. Hayakawa, and H. Tsuge. 1999. Metabolism of theanine, gamma-glutamylethylamide, in rats. Journal of Agricultural and Food Chemistry 47 (4):1593–6. doi: 10.1021/jf981113t.
  • van der Pijl, P. C., L. Chen, and T. P. J. Mulder. 2010. Human disposition of L-theanine in tea or aqueous solution. Journal of Functional Foods 2 (4):239–44. doi: 10.1016/j.jff.2010.08.001.
  • Vuong, Q. V. 2014. Epidemiological evidence linking tea consumption to human health: A review. Critical Reviews in Food Science and Nutrition 54 (4):523–36. doi: 10.1080/10408398.2011.594184.
  • Vuong, Q. V., M. C. Bowyer, and P. D. Roach. 2011. L-Theanine: Properties, synthesis and isolation from tea. Journal of the Science of Food and Agriculture 91 (11):1931–9. doi: 10.1002/jsfa.4373.
  • Walker, J. M., D. Klakotskaia, D. Ajit, G. A. Weisman, W. G. Wood, G. Y. Sun, P. Serfozo, A. Simonyi, and T. R. Schachtman. 2015. Beneficial effects of dietary EGCG and voluntary exercise on behavior in an Alzheimer’s disease mouse model. Journal of Alzheimer’s Disease 44:561–72. doi: 10.3233/JAD-140981.
  • Wei, Y., J. Xu, S. W. Miao, K. Wei, L. L. Peng, Y. F. Wang, and X. L. Wei. 2022. Recent advances in the utilization of tea active ingredients to regulate sleep through neuroendocrine pathway, immune system and intestinal microbiota. Critical Reviews in Food Science and Nutrition 1–29. doi: 10.1080/10408398.2022.2048291.
  • Więckowska-Gacek, A., A. Mietelska-Porowska, M. Wydrych, and U. Wojda. 2021. Western diet as a trigger of Alzheimer’s disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Research Reviews 70:101397. doi: 10.1016/j.arr.2021.101397.
  • Wong, M., S. Sirisena, and K. Ng. 2022. Phytochemical profile of differently processed tea: A review. Journal of Food Science 87 (5):1925–42. doi: 10.1111/1750-3841.16137.
  • Wood, E. K., and E. L. Sullivan. 2022. The influence of diet on metabolism and health across the lifespan in nonhuman primates. Current Opinion in Endocrine and Metabolic Research 24:100336. doi: 10.1016/j.coemr.2022.100336.
  • Xia, H., J. Wang, X. Xie, L. Xu, and S. Tang. 2019. Green tea polyphenols attenuate hepatic steatosis, and reduce insulin resistance and inflammation in high-fat diet-induced rats. International Journal of Molecular Medicine 44 (4):1523–30. doi: 10.3892/ijmm.2019.4285.
  • Xu, H., Y. Wang, Y. Yuan, X. Zhang, X. Zuo, L. Cui, Y. Liu, et al. 2018. Gender differences in the protective effects of green tea against amnestic mild cognitive impairment in the elderly Han population. Neuropsychiatric Disease and Treatment 14 (July):1795–801. doi: 10.2147/NDT.S165618.
  • Yamada, T., T. Terashima, H. Honma, S. Nagata, T. Okubo, L. R. Juneja, and H. Yokogoshi. 2008. Effects of theanine, a unique amino acid in tea leaves, on memory in a rat behavioral test. Bioscience, Biotechnology, and Biochemistry 72 (5):1356–9. doi: 10.1271/bbb.70669.
  • Yamamoto, N., M. Shibata, R. Ishikuro, M. Tanida, Y. Taniguchi, Y. Ikeda-Matsuo, and K. Sobue. 2017. Epigallocatechin gallate induces extracellular degradation of amyloid β-protein by increasing neprilysin secretion from astrocytes through activation of ERK and PI3K pathways. Neuroscience 362:70–8. doi: 10.1016/j.neuroscience.2017.08.030.
  • Yang, C. S., and E. Pan. 2012. The effects of green tea polyphenols on drug metabolism. Expert Opinion on Drug Metabolism & Toxicology 8 (6):677–89. doi: 10.1517/17425255.2012.681375.
  • Yang, C. S., X. Wang, G. Lu, and S. C. Picinich. 2009. Cancer prevention by tea: Animal studies, molecular mechanisms and human n relevance. Nature Reviews. Cancer 9 (6):429–39. doi: 10.1038/nrc2641.
  • Yang, L., X. Jin, J. Yan, Y. Jin, W. Yu, H. Wu, and S. Xu. 2016. Prevalence of dementia, cognitive status and associated risk factors among elderly of Zhejiang Province, China in 2014. Age and Ageing 45 (5):707–11. doi: 10.1093/ageing/afw088.
  • Yang, S., W. Liu, S. Lu, Y. Tian, W. Wang, T. Ling, and R. Liu. 2016. A novel multifunctional compound camellikaempferoside B decreases Aβ production, interferes with Aβ aggregation, and prohibits Aβ-mediated neurotoxicity and neuroinflammation. ACS Chemical Neuroscience 7 (4):505–18. doi: 10.1021/acschemneuro.6b00091.
  • Yang, W., D. Ren, Y. Zhao, L. Liu, and X. Yang. 2021. Fuzhuan brick tea polysaccharide improved ulcerative colitis in association with gut microbiota-derived tryptophan metabolism. Journal of Agricultural and Food Chemistry 69 (30):8448–59. doi: 10.1021/acs.jafc.1c02774.
  • Yang, Z., D.-D. Zhou, S.-Y. Huang, A.-P. Fang, H.-B. Li, and H.-L. Zhu. 2021. Effects and mechanisms of natural products on Alzheimer’s disease. Critical Reviews in Food Science and Nutrition: 1–21. doi: 10.1080/10408398.2021.1985428.
  • Yang, L., X. Jin, J. Yan, Y. Jin, W. Yu, H. Wu, and S. Xu. 2016. Prevalence of dementia, cognitive status and associated risk factors among elderly of Zhejiang Province, China in 2014. Age and Ageing 45 (5): 707–11. doi: 10.1093/AGEING/AFW088.
  • Yang, S., W. Liu, S. Lu, Y. Tian, W. Wang, T. Ling, and R. Liu. 2016. A novel multifunctional compound camellikaempferoside B decreases Aβ production, interferes with Aβ aggregation, and prohibits Aβ-mediated neurotoxicity and neuroinflammation. ACS Chemical Neuroscience 7 (4): 505–18. doi: 10.1021/acschemneuro.6b00091.
  • Yang, W., D. Ren, Y. Zhao, L. Liu, and X. Yang. 2021. Fuzhuan brick tea polysaccharide improved ulcerative colitis in association with gut microbiota-derived tryptophan metabolism. Journal of Agricultural and Food Chemistry 69 (30): 8448–59. doi: 10.1021/acs.jafc.1c02774.
  • Yazir, Y., T. Utkan, N. Gacar, and F. Aricioglu. 2015. Resveratrol exerts anti-inflammatory and neuroprotective effects to prevent memory deficits in rats exposed to chronic unpredictable mild stress. Physiology & Behavior 138:297–304. doi: 10.1016/j.physbeh.2014.10.010.
  • Yenisetti, S. C., and Y. Muralidhara. 2016. Beneficial role of coffee and caffeine in neurodegenerative diseases: A minireview. AIMS Public Health 3 (2):407–22. doi: 10.3934/publichealth.2016.2.407.
  • Yi, T., L. Zhu, W.-L. Peng, X.-C. He, H.-L. Chen, J. Li, T. Yu, Z.-T. Liang, Z.-Z. Zhao, and H.-B. Chen. 2015. Comparison of ten major constituents in seven types of processed tea using HPLC-DAD-MS followed by principal component and hierarchical cluster analysis. LWT - Food Science and Technology 62 (1):194–201. doi: 10.1016/j.lwt.2015.01.003.
  • Yu, Z., and Z. Yang. 2020. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Critical Reviews in Food Science and Nutrition 60 (5):844–58. doi: 10.1080/10408398.2018.1552245.
  • Yusufov, M., L. L. Weyandt, and I. Piryatinsky. 2017. Alzheimer’s disease and diet: A systematic review. International Journal of Neuroscience 127 (2):161–75. doi: 10.3109/00207454.2016.1155572.
  • Zappettini, S., E. Faivre, A. Ghestem, S. Carrier, L. Buée, D. Blum, M. Esclapez, and C. Bernard. 2019. Caffeine consumption during pregnancy accelerates the development of cognitive deficits in offspring in a model of tauopathy. Frontiers in Cellular Neuroscience 13. doi: 10.3389/fncel.2019.00438.
  • Zeitlin, R., S. Patel, S. Burgess, G. W. Arendash, and V. Echeverria. 2011. Caffeine induces beneficial changes in PKA signaling and JNK and ERK activities in the striatum and cortex of Alzheimer’s transgenic mice. Brain Research 1417:127–36. doi: 10.1016/j.brainres.2011.08.036.
  • Zhang, C., C. L.-C. Suen, C. Yang, and S. Y. Quek. 2018. Antioxidant capacity and major polyphenol composition of teas as affected by geographical location, plantation elevation and leaf grade. Food Chemistry 244:109–19. doi: 10.1016/j.foodchem.2017.09.126.
  • Zhang, X., X. Zhu, Y. Sun, B. Hu, Y. Sun, S. Jabbar, and X. Zeng. 2013. Fermentation in vitro of EGCG, GCG and EGCG3”Me isolated from Oolong tea by human intestinal microbiota. Food Research International 54 (2):1589–95. doi: 10.1016/j.foodres.2013.10.005.
  • Zhang, Y., C. Chen, Y. Jiang, S. Wang, X. Wu, and K. Wang. 2017. PPARγ coactivator-1α (PGC-1α) protects neuroblastoma cells against amyloid-beta (Aβ) induced cell death and neuroinflammation via NF-ΚB pathway. BMC Neuroscience 18 (1):69. doi: 10.1186/s12868-017-0387-7.
  • Zhang, Z., F. He, W. Yang, L. Yang, S. Huang, H. Mao, Y. Hou, and R. Xiao. 2021. Pu-Erh tea extraction alleviates intestinal ­inflammation in mice with flora disorder by regulating gut microbiota. Food Science & Nutrition 9 (9):4883–92. doi: 10.1002/fsn3.2437.
  • Zhang, J., A. Wang, X. Zhang, S. Chen, S. Wu, X. Zhao, and Q. Zhang. 2020. Association between tea consumption and cognitive impairment in middle-aged and older adults. BMC Geriatrics 20 (1):447. doi: 10.1186/s12877-020-01848-6.
  • Zhao, C.-N., G.-Y. Tang, S.-Y. Cao, X.-Y. Xu, R.-Y. Gan, Q. Liu, Q.-Q. Mao, A. Shang, and H.-B. Li. 2019. Phenolic profiles and antioxidant activities of 30 tea infusions from green, black, oolong, white, yellow and dark teas. Antioxidants 8 (7):215. doi: 10.3390/antiox8070215.
  • Zhong, X., M. Liu, W. Yao, K. Du, M. He, X. Jin, L. Jiao, G. Ma, B. Wei, and M. Wei. 2019. Epigallocatechin-3-gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF-ΚB pathway. Molecular Nutrition & Food Research 63 (21):1801230. doi: 10.1002/mnfr.201801230.
  • Zhou, X., and L. Zhang. 2021. The neuroprotective effects of moderate and regular caffeine consumption in Alzheimer’s disease. Oxidative Medicine and Cellular Longevity 2021:5568011. doi: 10.1155/2021/5568011.
  • Zhou, C., X. Zhou, Z. Wen, Z. Yang, R. Mu, Y. Song, X. Mei, and D. O. Rothenberg. 2021. Effect of Duyun compound green tea on gut microbiota diversity in high-fat-diet-induced mice revealed by illumina high-throughput sequencing. Edited by Chongshan Dai. Evidence-Based Complementary and Alternative Medicine 2021: 8832554. doi: 10.1155/2021/8832554.
  • Zhou, F., Y.-L. Li, X. Zhang, K.-B. Wang, J.-A. Huang, Z.-H. Liu, and M.-Z. Zhu. 2021. Polyphenols from Fu brick tea reduce obesity via modulation of gut microbiota and gut microbiota-related intestinal oxidative stress and barrier function. Journal of Agricultural and Food Chemistry 69 (48): 14530–43. doi: 10.1021/acs.jafc.1c04553.
  • Zhu, G., S. Yang, Z. Xie, and X. Wan. 2018. Synaptic modification by L-theanine, a natural constituent in green tea, rescues the impairment of hippocampal long-term potentiation and memory in AD mice. Neuropharmacology 138:331–40. doi: 10.1016/j.neuropharm.2018.06.030.
  • Zuo, A.-R., H.-H. Dong, Y.-Y. Yu, Q.-L. Shu, L.-X. Zheng, X.-Y. Yu, and S.-W. Cao. 2018. The Antityrosinase and antioxidant activities of flavonoids dominated by the number and location of phenolic hydroxyl groups. Chinese Medicine 13 (1):51. doi: 10.1186/s13020-018-0206-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.