667
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Wine yeast selection in the Iberian Peninsula: Saccharomyces and non-Saccharomyces as drivers of innovation in Spanish and Portuguese wine industries

ORCID Icon, , ORCID Icon, , , , , , , ORCID Icon, , ORCID Icon, , , , , ORCID Icon, ORCID Icon, , , , , , ORCID Icon, & show all
Pages 10899-10927 | Published online: 10 Jun 2022

References

  • Ambrona, J., M. Maqueda, E. Zamora, and M. Ramírez. 2005. Sulfometuron resistance as a genetic marker for yeast populations in wine fermentations. Journal of Agricultural and Food chemistry 53 (19):7438–43. doi: 10.1021/jf0514468.
  • Ambrona, J., A. Vinagre, M. Maqueda, L. M. Álvarez, and M. Ramírez. 2006. Rhodamine-pink as a genetic marker for yeast populations in wine fermentation. Journal of Agricultural and Food chemistry 54 (8):2977–84. doi: 10.1021/jf052844d.
  • Aranda, A., A. Querol, and M. Del Olmo. 2002. Correlation between acetaldehyde and ethanol resistance and expression of HSP Genes in yeast strains isolated during the biological aging of sherry wines. Archives of microbiology 177 (4):304–12. doi: 10.1007/S00203-001-0391-1.
  • Arroyo, T. 2000. Estudio de La Influencia de Diferentes Tratamientos Enológicos En La Evolución de La Microbiota y En La Calidad de Los Vinos Elaborados Con La Variedad ‘Airén’, En La D.O. ‘Vinos de Madrid.’ Madrid, Spain: Universidad de Alcalá.
  • Arroyo, T. J. M. Cabellos, A. Pedregosa, J. M. Mínguez, and J. L. Gómez. 1998. Estudio de La Calidad de Vinos Blancos Jóvenes En La Denominación de Origen ‘Vinos de Madrid’. Tratamientos Enológicos y Evolución de La Flora Fermentativa. In XIX Jornadas de Viticultura y Enología de Tierra de Barros, 107–25. Spain: Cultural Santa Ana.
  • Arroyo, T. G. Cordero, A. Serrano, and E. Valero. 2010. β-Glucosidase production by non-Saccharomyces yeasts isolated from vineyard. In Expression of multidisciplinary flavor science, eds. I. Blank, M. Wüst, and C. Yeretzian, 359–62. Winterthur, Switzerland: American Chemical Society. https://sci-hub.ren/https://www.researchgate.net/file.PostFileLoader.html?id=53f87ae4d3df3ef50d8b45bf&assetKey=AS%3A272445783642113%401441967545232.
  • Balboa-Lagunero, T., T. Arroyo, J. M. Cabellos, and M. Aznar. 2013. Yeast selection as a tool for reducing key oxidation notes in organic wines. Food Research International 53 (1):252–9. doi: 10.1016/j.foodres.2013.04.006.
  • Banilas, G., G. Sgouros, and A. Nisiotou. 2016. Development of microsatellite markers for Lachancea Thermotolerans typing and population structure of wine-associated isolates. Microbiological Research 193 (December):1–10. doi: 10.1016/j.micres.2016.08.010.
  • Barata, A., M. Malfeito-Ferreira, and V. Loureiro. 2012. The microbial ecology of wine grape berries. International Journal of Food Microbiology 153 (3):243–59. doi: 10.1016/J.IJFOODMICRO.2011.11.025.
  • Barrajón, N., M. Arévalo-Villena, L. J. Rodríguez-Aragón, and A. Briones. 2009. Ecological study of wine yeast in inoculated vats from La Mancha Region. Food Control 20 (9):778–83. doi: 10.1016/j.foodcont.2008.10.002.
  • Barrajón, N., A. Capece, M. Arévalo-Villena, A. Briones, and P. Romano. 2011. Co-inoculation of different Saccharomyces Cerevisiae strains and influence on volatile composition of wines. Food Microbiology 28 (5):1080–6. doi: 10.1016/J.FM.2011.02.016.
  • Berbegal, C., N. Peña, P. Russo, F. Grieco, I. Pardo, S. Ferrer, G. Spano, and V. Capozzi. 2016. Technological properties of Lactobacillus Plantarum strains isolated from grape must fermentation. Food Microbiology 57 (August):187–94. doi: 10.1016/J.FM.2016.03.002.
  • Berlanga, T. M., R. Peinado, C. Millán, J. C. Mauricio, and J. M. Ortega. 2004. Influence of blending on the content of different compounds in the biological aging of sherry dry wines. Journal of Agricultural and Food Chemistry 52 (9):2577–81. doi:10.1021/JF035405S/SUPPL_FILE/JF035405SSI20040223_042721.XLS.
  • Blanco, P., D. Castrillo, M. J. Graña, M. J. Lorenzo, and E. Soto. 2021. Evaluation of autochthonous non-Saccharomyces yeasts by sequential fermentation for wine differentiation in Galicia (NW Spain). Fermentation 7 (3):183. doi: 10.3390/fermentation7030183.
  • Blanco, P., J. M. Mirás-Avalos, E. Pereira, and I. Orriols. 2013. Fermentative aroma compounds and sensory profiles of Godello and Albariño wines as influenced by Saccharomyces cerevisiae yeast strains. Journal of the Science of Food and Agriculture 93 (11):2849–57. doi: 10.1002/JSFA.6122.
  • Blanco, P., J. M. Mirás-Avalos, V. Suárez, and I. Orriols. 2013. Inoculation of Treixadura Musts with autochthonous Saccharomyces cerevisiae strains: Fermentative performance and influence on the wine characteristics. Food Science and Technology International = Ciencia y tecnologia de los alimentos internacional 19 (2):177–86. doi: 10.1177/1082013212442193.
  • Blanco, P., E. Rabuñal, N. Neira, and D. Castrillo. 2020. Dynamic of Lachancea Thermotolerans population in monoculture and mixed fermentations: Impact on wine characteristics. Beverages 6 (2):36. doi: 10.3390/beverages6020036.
  • Blanco, P., M. Vázquez-Alén, T. Garde-Cerdán, and M. Vilanova. 2021. Application of autochthonous yeast Saccharomyces Cerevisiae XG3 in treixadura wines from D.O. Ribeiro (NW Spain): Effect on wine aroma. Fermentation 7 (1):31. doi: 10.3390/fermentation7010031.
  • Briones, A. I., J. F. Ubeda, M. D. Cabezudo, and P. Martín-Alvarez. 1995. Selection of spontaneous strains of Saccharomyces cerevisiae as starters in their viticultural area. Developments in Food Science 37 (C):1597–622. doi: 10.1016/S0167-4501(06)80253-0.
  • Cabellos, J. M. M. Gil, and T. Arroyo. 2002. Estudios de Compuestos de Calidad En Vinos de La Variedad Malvar, Elaboradas Con Cepas Autóctonas de Saccharomyces En La Denominación de Origen ‘Vinos de Madrid. ‘” In XXIII Jornadas de Viticultura y Enología de Tierra de Barros, 209–22. Spain: Cultural Santa Ana.
  • Callejon, R. M., A. Clavijo, P. Ortigueira, A. M. Troncoso, P. Paneque, and M. L. Morales. 2010. Volatile and sensory profile of organic red wines produced by different selected autochthonous and commercial Saccharomyces cerevisiae strains. Analytica Chimica Acta 660 (1-2):68–75. doi: 10.1016/J.ACA.2009.09.040.
  • Carbonero-Pacheco, J., J. Moreno-García, J. Moreno, T. García-Martínez, and J. C. Mauricio. 2021. Revealing the yeast diversity of the flor biofilm microbiota in sherry wines through internal transcribed spacer-metabarcoding and matrix-assisted laser desorption/ionization time of flight mass spectrometry. Frontiers in Microbiology 12 (February):825756. doi: 10.3389/FMICB.2021.825756/BIBTEX.
  • Castrillo, D., E. Rabuñal, N. Neira, and P. Blanco. 2019. Oenological potential of non-Saccharomyces yeasts to mitigate effects of climate change in winemaking: Impact on aroma and sensory profiles of treixadura wines. FEMS Yeast Research 19 (7):65. doi: 10.1093/femsyr/foz065.
  • Coi, A. L., F. Bigey, S. Mallet, S. Marsit, G. Zara, P. Gladieux, V. Galeote, M. Budroni, S. Dequin, and J. L. Legras. 2017. Genomic signatures of adaptation to wine biological ageing conditions in biofilm-forming flor yeasts. Molecular Ecology 26 (7):2150–66. doi: 10.1111/mec.14053.
  • Comitini, F., M. Gobbi, P. Domizio, C. Romani, L. Lencioni, I. Mannazzu, and M. Ciani. 2011. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Food Microbiology 28 (5):873–82. doi: 10.1016/j.fm.2010.12.001.
  • Cordero-Bueso, G., B. Esteve-Zarzoso, J. M. Cabellos, M. Gil-Díaz, and T. Arroyo. 2013. Biotechnological potential of non-Saccharomyces yeasts isolated during spontaneous fermentations of malvar (Vitis vinifera Cv. L.). European Food Research and Technology 236 (1):193–207. Springer doi: 10.1007/S00217-012-1874-9/FIGURES/1.
  • Cordero-Bueso, G., T. Arroyo, A. Serrano, J. Tello, I. Aporta, M. Do Vélez, and E. Valero. 2011. Influence of the farming system and vine variety on yeast communities associated with grape berries. International Journal of Food Microbiology 145 (1):132–9. doi: 10.1016/J.IJFOODMICRO.2010.11.040.
  • Cordero-Bueso, G., T. Arroyo, A. Serrano, and E. Valero. 2011. Influence of different floor management strategies of the vineyard on the natural yeast population associated with grape berries. International Journal of Food Microbiology 148 (1):23–9. doi: 10.1016/J.IJFOODMICRO.2011.04.021.
  • Cordero-Bueso, G., B. Esteve-Zarzoso, M. Gil-Díaz, M. García, J. M. Cabellos, and T. Arroyo. 2016. Improvement of malvar wine quality by use of locally-selected Saccharomyces cerevisiae strains. Fermentation 2 (4):7. doi: 10.3390/fermentation2010007.
  • Cordero-Bueso, G., M. Ruiz-Muñoz, M. González-Moreno, S. Chirino, M. C. Bernal-Grande, and J. M. Cantoral. 2018. The microbial diversity of sherry wines. Fermentation 4 (1):19. doi: 10.3390/fermentation4010019.
  • De Fatima, M. F. Centeno, and A. Palacios. 2007. Desacidificación Biológica de Mosto a Través de La Inoculación de Levadura Schizosaccharomyces Pombe Encapsulada Como Alternativa a La No Producción de Aminas Biógenas. In International Symposium of Microbiology and Food Safety in Wine “Microsafetywine. Barcelona, Spain: Vilafranca del Penedès.
  • Domizio, P., Y. Liu, L. F. Bisson, and D. Barile. 2017. Cell wall polysaccharides released during the alcoholic fermentation by Schizosaccharomyces Pombe and S. japonicus: Quantification and characterization. Food Microbiology 61 (February):136–49. doi: 10.1016/J.FM.2016.08.010.
  • Eldarov, M. A., A. V. Beletsky, T. N. Tanashchuk, S. A. Kishkovskaya, N. V. Ravin, and A. V. Mardanov. 2018. Whole-genome analysis of three yeast strains used for production of sherry-like wines revealed genetic traits specific to flor yeasts. Frontiers in Microbiology 9 (May):965. doi:10.3389/FMICB.2018.00965/BIBTEX.
  • Epifanio, S. I., A. R. Gutierrez, M. P. Santamaría, and R. López. 1999. The influence of enological practices on the selection of wild yeast strains in spontaneous fermentation. American Journal of Enology and Viticulture 50 (2):219–24.
  • Escribano-Viana, R., P. Garijo, I. López-Alfaro, R. López, P. Santamaría, A. R. Gutiérrez, and L. González-Arenzana. 2019. Do non-Saccharomyces yeasts work equally with three different red grape varieties? Fermentation 6 (1):3. doi: 10.3390/fermentation6010003.
  • Escribano-Viana, R., L. González-Arenzana, P. Garijo, R. López, P. Santamaría, and A. R. Gutiérrez. 2021. Selection process of a mixed inoculum of non-Saccharomyces Yeasts isolated in the D.O.Ca. Rioja. Fermentation 7 (3):148. doi: 10.3390/fermentation7030148.
  • Escribano-Viana, R., L. González-Arenzana, J. Portu, P. Garijo, I. López-Alfaro, R. López, P. Santamaría, and A. R. Gutiérrez. 2018. Wine aroma evolution throughout alcoholic fermentation sequentially inoculated with non-Saccharomyces/Saccharomyces yeasts . Food Research International 112 (October):17–24. doi: 10.1016/J.FOODRES.2018.06.018.
  • Escribano-Viana, R., J. Portu, P. Garijo, R. López, P. Santamaría, I. López-Alfaro, A. R. Gutiérrez, and L. González-Arenzana. 2019. Effect of the sequential inoculation of non-Saccharomyces/Saccharomyces on the anthocyans and stilbenes composition of tempranillo wines. Frontiers in Microbiology 10 (APR):773. doi:10.3389/FMICB.2019.00773/BIBTEX.
  • Escribano, R., L. González-Arenzana, P. Garijo, C. Berlanas, I. López-Alfaro, R. López, A. R. Gutiérrez, and P. Santamaría. 2017. Screening of enzymatic activities within different enological non-Saccharomyces yeasts. Journal of Food Science and Technology 54 (6):1555–64. doi:10.1007/S13197-017-2587-7/TABLES/3.
  • Escribano, R., L. González-Arenzana, J. Portu, P. Garijo, I. López-Alfaro, R. López, P. Santamaría, and A. R. Gutiérrez. 2018. Wine aromatic compound production and fermentative behaviour within different non-Saccharomyces species and clones. Journal of Applied Microbiology 124 (6):1521–31. doi: 10.1111/JAM.13735.
  • Esteve-Zarzoso, B., C. Belloch, F. Uruburu, and A. Querol. 1999. Identification of yeasts by RFLP analysis of the 5.8S RRNA gene and the two ribosomal internal transcribed spacers. International Journal of Systematic and Evolutionary Microbiology 49 (1):329–37. doi: 10.1099/00207713-49-1-329/CITE/REFWORKS.
  • Esteve-Zarzoso, B., M. T. Fernández-Espinar, and A. Querol. 2004. Authentication and Identification of Saccharomyces Cerevisiae ‘flor’ yeast races involved in sherry ageing. Antonie van Leeuwenhoek 85 (2):151–8. doi: 10.1023/B:ANTO.0000020282.83717.bd.
  • Esteve-Zarzoso, B., A. Gostı́ncar, R. Bobet, F. Uruburu, and A. Querol. 2000. Selection and molecular characterization of wine yeasts isolated from the ‘El Penedès’ Area (Spain). Food Microbiology 17 (5):553–62. doi: 10.1006/fmic.2000.0347.
  • Esteve-Zarzoso, B., M. J. Peris-Torán, E. García-Maiquez, F. Uruburu, and A. Querol. 2001. Yeast population dynamics during the fermentation and biological aging of sherry wines. Applied and Environmental Microbiology 67 (5):2056–61. doi:10.1128/AEM.67.5.2056-2061.2001/ASSET/AB3F213F-92F5-4818-86C1-C96E997755CA/ASSETS/GRAPHIC/AM0511816003.JPEG.
  • Fernández-González, M., and A. I. Briones. 2013. Study of Yeast populations and their enological properties in Guijoso appellation of origin (Spain). Annals of Microbiology 63 (1):371–9. doi: 10.1007/S13213-012-0484-X/TABLES/3.
  • Fernández-González, M., R. D. Stefano, and A. I. Briones. 2003. Hydrolysis and transformation of terpene glycosides from muscat must by different yeast species. Food Microbiology 20 (1):35–41. doi: 10.1016/S0740-0020(02)00105-3.
  • Fernández-González, M., J. F. Ubeda, and A. I. Briones. 1999. Comparative study of non-Saccharomyces microflora of musts in fermentation. FEMS Microbiology Letters 173 (1):223–9. doi: 10.1111/j.1574-6968.1999.tb13506.x.
  • Fernández, M., J. F. Úbeda, and A. I. Briones. 2000. Typing of non-Saccharomyces yeasts with enzymatic activities of interest in wine-making. International Journal of Food Microbiology 59 (1-2):29–36. doi: 10.1016/S0168-1605(00)00283-X.
  • Ferreira, V., R. López, and J. F. Cacho. 2000. Quantitative determination of the odorants of young red wines from different grape varieties. Journal of the Science of Food and Agriculture 80 (11):1659–67. doi: 10.1002/1097-0010(20000901)80:11 < 1659::AID-JSFA693 > 3.0.CO;2-6.
  • Gallander, J. F. 1977. Deacidification of eastern table wines with Schizosaccharomyces Pombe. American Journal of Enology and Viticulture 28 (2):65–68.
  • Gallego, F. J., M. A. Pérez, Y. Núñez, and P. Hidalgo. 2005. Comparison of RAPDs, AFLPs and SSR markers for the genetic analysis of yeast strains of Saccharomyces Cerevisiae. Food Microbiology 22 (6):561–8. doi: 10.1016/j.fm.2004.11.019.
  • García, M., R. Apolinar-Valiente, P. Williams, B. Esteve-Zarzoso, T. Arroyo, J. Crespo, and T. Doco. 2017. Polysaccharides and oligosaccharides produced on malvar wines elaborated with Torulaspora delbrueckii CLI 918 and Saccharomyces cerevisiae CLI 889 native yeasts from D.O. "Vinos de Madrid". Journal of Agricultural and Food Chemistry 65 (31):6656–64. doi: 10.1021/ACS.JAFC.7B01676.
  • García, M., T. Arroyo, J. Crespo, J. M. Cabellos, and B. Esteve-Zarzoso. 2017. Use of native non-Saccharomyces strain: A new strategy in D.O. ‘Vinos de Madrid’ (Spain) wines elaboration. European Journal of Food Science and Technology 5 (2):215–33.
  • García, M., J. Crespo, J. M. Cabellos, and T. Arroyo. 2021. Growth of non-Saccharomyces native strains under different fermentative stress conditions. Fermentation 7 (3):124. doi: 10.3390/fermentation7030124.
  • García, M., B. Esteve-Zarzoso, J. Ma. Cabellos, and T. Arroyo. 2018. Advances in the study of Candida stellata. Fermentation 4 (3):74. doi: 10.3390/fermentation4030074.
  • García, M., B. Esteve-Zarzoso, J. Crespo, J. M. Cabellos, and T. Arroyo. 2017. Yeast monitoring of wine mixed or sequential fermentations made by native strains from D.O. "Vinos de Madrid" using real-time quantitative PCR . Frontiers in microbiology 8 (DEC):2520. doi:10.3389/FMICB.2017.02520/BIBTEX.
  • García, M., B. Esteve-Zarzoso, J. Crespo, J. M. Cabellos, and T. Arroyo. 2019. Influence of native Saccharomyces cerevisiae Strains from D.O. ‘Vinos de Madrid’ in the volatile profile of white wines. Fermentation 5 (4): 94–104. doi: 10.3390/fermentation5040094.
  • García, M., D. Greetham, T. T. Wimalasena, T. G. Phister, J. M. Cabellos, and T. Arroyo. 2016. The phenotypic characterization of yeast strains to stresses inherent to wine fermentation in warm climates. Journal of Applied Microbiology 121 (1):215–33. doi: 10.1111/JAM.13139.
  • García, M., B. Esteve-Zarzoso, J. M. Cabellos, and T. Arroyo. 2020. Sequential non-Saccharomyces and Saccharomyces cerevisiae fermentations to reduce the alcohol content in wine. Fermentation 6 (2):60. doi: 10.3390/fermentation6020060.
  • Garijo, P., P. Santamaría, R. López, S. Sanz, C. Olarte, and A. R. Gutiérrez. 2008. The occurrence of fungi, yeasts and bacteria in the air of a Spanish winery during vintage. International Journal of Food Microbiology 125 (2):141–5. doi: 10.1016/J.IJFOODMICRO.2008.03.014.
  • Gil-Díaz, M. M. 2003. Tipificación y Valoración de La Calidad de Los Mostos y Vinos de La Denominación de Origen ‘Vinos de Madrid.’ Madrid, Spain: Universidad de Alcalá.
  • Gil-Díaz, M. M., E. Valero, J. M. Cabellos, M. García, and T. Arroyo. 2019. The impact of active dry yeasts in commercial wineries from the denomination of origen “Vinos de Madrid”, Spain. 3 Biotech 9 (11):382–94. doi: 10.1007/s13205-019-1913-3.
  • Gobbi, M., F. Comitini, P. Domizio, C. Romani, L. Lencioni, I. Mannazzu, and M. Ciani. 2013. Lachancea thermotolerans and Saccharomyces cerevisiae in Simultaneous and sequential co-fermentation: A strategy to enhance acidity and improve the overall quality of wine. Food Microbiology 33 (2):271–81. doi: 10.1016/j.fm.2012.10.004.
  • González-Arenzana, L., P. Garijo, C. Berlanas, I. López-Alfaro, R. López, P. Santamaría, and A. R. Gutiérrez. 2017. Genetic and phenotypic intraspecific variability of non-Saccharomyces yeasts populations from La Rioja Winegrowing Region (Spain). Journal of Applied Microbiology 122 (2):378–88. doi: 10.1111/JAM.13341.
  • Gutiérrez, A. R. 1995. Selección de Levaduras Vínicas En La D.O.C. Rioja. In Serie de Estudios. Logroño: Gobierno de la Rioja.
  • Gutiérrez, A. R., S. Epifanio, P. Garijo, R. López, and P. Santamaría. 2001. Killer yeasts: Incidence in the ecology of spontaneous fermentation. American Journal of Enology and Viticulture 52 (4):352–6.
  • Gutiérrez, A. R., R. López, M. P. Santamaría, and M. J. Sevilla. 1997. Ecology of inoculated and spontaneous fermentations in Rioja (Spain) Musts, examined by mitochondrial DNA restriction analysis. International Journal of Food Microbiology 36 (2-3):241–5. doi: 10.1016/S0168-1605(97)01258-0.
  • Gutiérrez, A. R., R. López, and P. Santamaría. 1997. VRB, Levadura Autóctona de La D.O.Ca. Rioja. Proceso de Selección y Evaluación En Bodega. Viticultura y Enología Profesional 51:36–43.
  • Gutierrez, A. R., P. Santamaria, S. Epifanio, P. Garijo, and R. Lopez. 1999. Ecology of spontaneous fermentation in one winery during 5 consecutive years. Letters in Applied Microbiology 29 (6):411–5. doi: 10.1046/j.1472-765X.1999.00657.x.
  • Hidalgo, P., and M. Flores. 1991. Taxonomic study of the yeast flora of musts and wine from ‘Madrid wines’. Microbiología SEM 7 (2):120–5.
  • Hranilovic, A., W. Albertin, D. L. Capone, A. Gallo, P. R. Grbin, L. Danner, S. E. P. Bastian, I. Masneuf-Pomarede, J. Coulon, M. Bely, et al. 2021. Impact of Lachancea thermotolerans on chemical composition and sensory profiles of merlot wines. Food Chemistry 349 (July):129015. Elsevier:doi: 10.1016/J.FOODCHEM.2021.129015.
  • Hranilovic, A., J. M. Gambetta, L. Schmidtke, P. K. Boss, P. R. Grbin, I. Masneuf-Pomarede, M. Bely, W. Albertin, and V. Jiranek. 2018. Oenological traits of Lachancea thermotolerans show signs of domestication and allopatric differentiation. Scientific Reports 8 (1):1–13. doi: 10.1038/s41598-018-33105-7.
  • Ibeas, J. I., I. Lozano, F. Perdigones, and J. Jiménez. 1997. Dynamics of flor yeast populations during the biological aging of sherry wines. American Journal of Enology and Viticulture 48 (1):75–9.
  • Izquierdo Cañas, P. M., E. García-Romero, J. M. Heras Manso, and M. Fernández-González. 2014. Influence of sequential inoculation of Wickerhamomyces anomalus and Saccharomyces cerevisiae in the quality of red wines. European Food Research and Technology 239 (2):279–86. doi: 10.1007/S00217-014-2220-1/FIGURES/2.
  • Izquierdo Cañas, P. M., A. T. Palacios García, and E. G. Romero. 2011. Enhancement of Flavour Properties in Wines Using Sequential Inoculations of Non-Saccharomyces (Hansenula and Torulaspora) and Saccharomyces Yeast. VITIS: Journal of Grapevine Research 50 (4):177– doi: 10.5073/VITIS.2011.50.177-182.
  • Khayyat, N., V. Arroyo, J. F. Somavilla, and B. Iñigo. 1982. La España Vitivinícola. Estudio Microbiológico. Alimentaria 131:29–32.
  • Kreger van Rij, N. J. W. 1984. Debaryomyces. In The yeasts, a taxonomic study, eds C. Kurtzmann and J.W. Fell, 3rd ed. London, U.K.: Elsevier.
  • Kurtzman, C. P. J. W. Fell, and T. Boekhout. 1998. The yeasts. A taxonomic study. The yeasts. A taxonomic study. Amsterdam, Netherlands: Elsevier Science.
  • Kurtzman, C. P., and C. J. Robnett. 1998. Identification and phylogeny of Ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie van Leeuwenhoek 73 (4):331–71. doi: 10.1023/A:1001761008817.
  • Lachance, M. A. 1998. The genus Kluyveromyces. In The yeasts, a taxonomic study, eds. C. P. Kurtzman and J. W. Fell, 4th ed., 230–50. Amsterdam: Elsevier.
  • Le Coz, T. 2017. Identification et Sélection de Levures Non-Saccharomyces Indigènes. Dijon: Université de Bourgogne Franche-Comté.
  • Leça, J. M., V. Pereira, A. Miranda, J. L. Vilchez, M. Malfeito-Ferreira, and J. C. Marques. 2021. Impact of indigenous non-Saccharomyces yeasts isolated from Madeira Island vineyards on the formation of ethyl carbamate in the aging of fortified wines. Processes 9 (5):799. doi: 10.3390/pr9050799.
  • Legras, J.-L., C. Erny, and C. Charpentier. 2014. Population structure and comparative genome hybridization of European flor yeast reveal a unique group of Saccharomyces cerevisiae strains with few gene duplications in their genome. PloS One 9 (10):e108089. doi: 10.1371/JOURNAL.PONE.0108089.
  • Loira, I., A. Morata, P. Comuzzo, M. J. Callejo, C. González, F. Calderón, and J. A. Suárez-Lepe. 2015. Use of Schizosaccharomyces pombe and Torulaspora delbrueckii strains in mixed and sequential fermentations to improve red wine sensory quality . Food Research International (Ottawa, Ont.) 76 (Pt 3):325–33. doi: 10.1016/j.foodres.2015.06.030.
  • Loira, I., A. Morata, F. Palomero, C. González, and J. A. Suárez-Lepe. 2018. Schizosaccharomyces pombe: A promising biotechnology for modulating wine composition. Fermentation 4 (3):70–82. MDPI AG doi: 10.3390/fermentation4030070.
  • López, R., S. Epifanio, P. Garijo, P. Santamaría, and A. R. Gutiérrez. 2006. Effect of the addition of inert cellulose substrates to grape must on Saccharomyces cerevisiae diversity and the evolution of alcoholic fermentation. Letters in Applied Microbiology 42 (5):465–70. doi: 10.1111/J.1472-765X.2006.01877.X.
  • López, R., P. Garijo, P. Santamaría, and A. R. Gutiérrez. 2007. Levadura zymaflore RJA. Cuaderno de Campo 38:37–39.
  • López, R., P. Santamaría, A. R. Gutiérrez, A. Palacios, and S. Epifanio. 1999. Comportamiento Enológico de La Levadura VRB Seleccinonada En El CIDA de La D.O.Ca. Rioja. Comparación Con Otras Cepas Comerciales. La Semana Vitivinícola 2754:1845–1853.
  • Lubbers, M. W., S. B. Rodriguez, N. K. Honey, and R. J. Thornton. 1996. Purification and characterization of urease from Schizosaccharomyces Pombe. Canadian Journal of Microbiology 42 (2):132–40. doi: 10.1139/m96-021.
  • Lucio, O. L. Polo, I. Pardo, and S. Ferrer. 2009. Aislamiento e Identificación de Levaduras Vínicas de Viñedos Ecológicos. In Nuevos Horizontes En La Viticultura y Enología X Congreso Nacional de Investigación Enológica, 253–6. Orense, Spain.: Gráficas Gallegas, S.L.
  • Malfeito-Ferreira, M. 2021. Fine wine flavour perception and appreciation: Blending neuronal processes, tasting methods and expertise. Trends in Food Science & Technology 115 (September):332–46. doi: 10.1016/j.tifs.2021.06.053.
  • Marin-Menguiano, M., S. Romero-Sanchez, R. R. Barrales, and J. I. Ibeas. 2017. Population analysis of biofilm yeasts during fino sherry wine aging in the Montilla-Moriles D.O. Region. International Journal of Food Microbiology 244 (March):67–73. doi: 10.1016/J.IJFOODMICRO.2016.12.019.
  • Marin-Menguiano, M., S. Romero-Sanchez, R. R. Barrales, and J. I. Ibeas. 2017. Population analysis of biofilm yeasts during fino sherry wine aging in the Montilla-Moriles D.O. Region. International Journal of Food Microbiology 244 (March):67–73. doi: 10.1016/J.IJFOODMICRO.2016.12.019.
  • Martínez, P., A. C. Codón, L. Pérez, and T. Benítez. 1995. Physiological and molecular characterization of flor yeasts: Polymorphism of flor yeast populations. Yeast (Chichester, England) 11 (14):1399–411. doi: 10.1002/yea.320111408.
  • Martínez, P., L. Pérez-Rodríguez, and T. Benítez. 1997. Evolution of flor yeast population during the biological aging of fino sherry wine. American Journal of Enology and Viticulture 48 (2):160–8.
  • Mateos, P. L., N. Khayyat, V. Arroyo, and B. Iñigo. 1985. Agentes de Fermentación de Los Mostos de Uva de La Zona Utiel-Requena. Alimentaria 162:63–69.
  • Mesa, J. J., J. J. Infante, L. Rebordinos, and J. M. Cantoral. 1999. Characterization of yeasts involved in the biological ageing of sherry wines. LWT - Food Science and Technology 32 (2):114–20. doi: 10.1006/fstl.1998.0514.
  • Morales, M. L., M. Ochoa, M. Valdivia, C. Ubeda, S. Romero-Sanchez, J. I. Ibeas, and E. Valero. 2020. Volatile metabolites produced by different flor yeast strains during wine biological ageing. Food Research International 128 (February):108771. doi: 10.1016/J.FOODRES.2019.108771.
  • Morata, A., I. Loira, C. González, and C. Escott. 2021. Non-Saccharomyces as biotools to control the production of off-flavors in wines. Molecules 26 (15):4571–83. doi: 10.3390/molecules26154571.
  • Morata, A., M. A. Bañuelos, C. Vaquero, I. Loira, R. Cuerda, F. Palomero, C. González, J. A. Suárez-Lepe, J. Wang, S. Han, et al. 2019. Lachancea thermotolerans as a tool to improve Ph in red wines from warm regions. European Food Research and Technology 245 (4):885–94. doi: 10.1007/s00217-019-03229-9.
  • Morata, A., S. Benito, I. Loira, F. Palomero, M. C. González, and J. A. Suárez-Lepe. 2012. Formation of pyranoanthocyanins by Schizosaccharomyces Pombe during the fermentation of red must. International Journal of Food Microbiology 159 (1):47–53. doi: 10.1016/j.ijfoodmicro.2012.08.007.
  • Morata, A., C. Escott, M. A. Bañuelos, I. Loira, J. M. Del Fresno, C. González, and J. A. Suárez-Lepe. 2019. Contribution of non-Saccharomyces yeasts to wine freshness. A review. Biomolecules 10 (1):34–59. doi: 10.3390/biom10010034.
  • Morata, A., C. Escott, I. Loira, J. M. del Fresno, C. Vaquero, A. Bañuelos, F. Palomero, C. López, and C. González. 2021. PH control and aroma improvement using the non-Saccharomyces Lachancea thermotolerans and Hanseniaspora Spp. yeasts to improve wine freshness in warm areas. In Grapes and wine. IntechOpen. doi: 10.5772/INTECHOPEN.100538.
  • Morata, A., I. Loira, W. Tesfaye, M. A. Bañuelos, C. González, and J. A. Suárez-Lepe. 2018. Lachancea thermotolerans applications in wine technology. Fermentation 4 (3):53–65. doi: 10.3390/fermentation4030053.
  • Moreno-García, J., T. García-Martínez, J. Moreno, and J. C. Mauricio. 2015. Proteins involved in flor yeast carbon metabolism under biofilm formation conditions. Food Microbiology 46 (April):25–33. doi: 10.1016/J.FM.2014.07.001.
  • Morillas Álvarez, L. 2020. Influencia de La Variedad de Uva En La Evolución de Las Poblaciones Inoculadas de Torulaspora Delbrueckii y Saccharomyces Cerevisiae En Fermentaciones Vínicas y de Las Levaduras Sobre La Sensorialidad de Los Vinos Producidos. Valencia, Spain: Universitat de València.
  • Ocón, E., P. Garijo, S. Sanz, C. Olarte, R. López, P. Santamaría, and A. R. Gutiérrez. 2013a. Screening of yeast mycoflora in winery air samples and their risk of wine contamination. Food Control. 34 (2):261–7. doi: 10.1016/j.foodcont.2013.04.044.
  • Ocón, E., A. R. Gutiérrez, P. Garijo, R. López, and P. Santamaría. 2010. Presence of non-Saccharomyces yeasts in cellar equipment and grape juice during harvest time. Food Microbiology 27 (8):1023–7. doi: 10.1016/J.FM.2010.06.012.
  • Ocón, E., A. R. Gutiérrez, P. Garijo, C. Tenorio, I. López, R. López, and P. Santamaría. 2010. Quantitative and qualitative analysis of non-Saccharomyces yeasts in spontaneous alcoholic fermentations. European Food Research and Technology 230 (6):885–91. doi: 10.1007/s00217-010-1233-7.
  • Ocón, E., P. Garijo, S. Sanz, C. Olarte, R. López, P. Santamaría, and A. R. Gutiérrez. 2013b. Analysis of airborne yeast in one winery over a period of one year. Food Control 30 (2):585–9. doi: 10.1016/j.foodcont.2012.07.051.
  • Pallman, C. L., J. A. Brown, T. L. Olineka, L. Cocolin, D. A. Mills, and L. F. Bisson. 2001. Use of WL medium to profile native flora fermentations. American Journal of Enology and Viticulture 52 (3):198–203.
  • Palomero, F., A. Morata, S. Benito, F. Calderón, and J. A. Suárez-Lepe. 2009. New genera of yeasts for over-lees aging of red wine. Food Chemistry 112 (2):432–41. doi: 10.1016/j.foodchem.2008.05.098.
  • Pardo, I. 1987. Estudio de La Microflora Presente En Mostos y Vinos de La D.O. Utiel-Requena. Valencia, Spain: Universitat de València.
  • Pardo, I., M. J. García, M. Zúñiga, and F. Uruburu. 1989. Dynamics of microbial populations during fermentation of wines from the Utiel-Requena region of Spain. Applied and Environmental Microbiology 55 (2):539–41. doi: 10.1128/aem.55.2.539-541.1989.
  • Peinado, R. A., J. J. Moreno, O. Maestre, J. M. Ortega, M. Medina, and J. C. Mauricio. 2004. Gluconic acid consumption in wines by Schizosaccharomyces pombe and its effect on the concentrations of major volatile compounds and polyols. Journal of Agricultural and Food Chemistry 52 (3):493–7. doi:10.1021/JF035030A/SUPPL_FILE/JF035030ASI20031124_050711.XLS.
  • Pérez, F., J. A. Regodón, M. E. Valdés, C. De Miguel, and M. Ramı́rez. 2000. Cycloheximide Resistance as Marker for Monitoring Yeasts in Wine Fermentations. Food Microbiology 17 (2):119–28. doi: 10.1006/fmic.1999.0271.
  • Pérez, M. A., F. J. Gallego, and P. Hidalgo. 2001. Evaluation of molecular techniques for the genetic characterization of Saccharomyces cerevisiae strains. FEMS Microbiology Letters 205 (2):375–8. doi: 10.1111/J.1574-6968.2001.TB10975.X.
  • Polo, L. L. Andrés, T. Le Coz, S. Ferrer, and I. Pardo. 2018. Diversidad de Levaduras No-Saccharomyces En Mostos Tintos de Bobal, Cabernet-Sauvignon, Garnacha y Merlot. In Enoforum: Innovación y Excelencia. Italy: Vinidea SRL.
  • Polo, L. S. Ferrer, and I. Pardo. 2011. Selección e Implantación de Levaduras Ecológicas de La DO Utiel-Requena En Tempranillo, Cabernet Sauvignon y Bobal. In Gienol: Actualizaciones En Investigación Vitivinícola, ed. Gienol. Cádiz, Spain: Martínez Encuadernaciones, A. G.
  • Polo, L. S. Ferrer, and I. Pardo. 2013. Selección de Saccharomyces Cerevisiae Para La Elaboración de Vinos Ecológicos y Evaluación de Su Composición En Condiciones Industriales. In Nuevas Perspectivas En Investigación Vitivinícola., eds. F. Calderón, F. Palomero, and J. A. Suárez-Lepe, 249–52. Madrid, Spain: AMV Editores.
  • Porter, T. J., B. Divol, and M. E. Setati. 2019. Lachancea yeast species: origin, biochemical characteristics and oenological significance. Food Research International (Ottawa, Ont.) 119 (May):378–89. doi: 10.1016/J.FOODRES.2019.02.003.
  • Portugal, I., S. C. Ribeiro, A. M. R. B. Xavier, F. Centeno, and P. Strehaiano. 2011. Immobilised yeast grape must deacidification in a recycle fixed bed reactor. International Journal of Food Science & Technology 46 (2):284–9. doi: 10.1111/j.1365-2621.2010.02472.x.
  • Postigo, V., M. García, J. M. Cabellos, and T. Arroyo. 2021. Wine Saccharomyces yeasts for beer fermentation. Fermentation 7 (4):290. doi: 10.3390/fermentation7040290.
  • Pozo-Bayón, A., and V. Moreno-Arribas. 2011. Sherry wines. Advances in Food and Nutrition Research. 63:17–40. doi: 10.1016/B978-0-12-384927-4.00002-6.
  • Pretorius, I. S. 2000. Tailoring wine yeast for the new millennium: Novel approaches to the ancient art of winemaking. Yeast 16 (8):675–729. doi: 10.1002/1097-0061(20000615)16:8<675::AID-YEA585>3.0.CO;2-B.
  • Querol, A., E. Barrio, T. Huerta, and D. Ramon. 1992. Molecular monitoring of wine fermentations conducted by active dry yeast strains. Applied and Environmental microbiology 58 (9):2948–53. doi: 10.1128/AEM.58.9.2948-2953.1992.
  • Ramírez, M., R. Velázquez, M. Maqueda, A. López-Piñeiro, and J. C. Ribas. 2015. A new wine Torulaspora delbrueckii killer strain with broad antifungal activity and its toxin-encoding double-stranded RNA virus. Frontiers in microbiology 6 (Sept):983. doi:10.3389/FMICB.2015.00983/BIBTEX.
  • Ramírez, M., R. Velázquez, M. Maqueda, E. Zamora, A. López-Piñeiro, and L. M. Hernández. 2016. Influence of the dominance of must fermentation by Torulaspora delbrueckii on the malolactic fermentation and organoleptic quality of red table wine. International Journal of Food Microbiology 238 (December):311–9. doi: 10.1016/J.IJFOODMICRO.2016.09.029.
  • Ramírez, M., and J. Ambrona. 2008. Construction of Sterile ime1 Delta-transgenic Saccharomyces cerevisiae wine yeasts unable to disseminate in nature. Applied and Environmental Microbiology 74 (7):2129–34. doi:10.1128/AEM.01840-07/ASSET/D1C8B18F-5237-4AA3-AE2A-CDAF7802493F/ASSETS/GRAPHIC/ZAM0070887120001.JPEG.
  • Ramirez, M., J. Regodon, F. PeRez, and J. Rebollo. 1999. Wine yeast fermentation vigor may be improved by elimination of recessive growth-retarding alleles. Biotechnology and Bioengineering 65 (2):212–8. doi: 10.1002/(SICI)1097-0290(19991020)65:2<212::AID-BIT12>3.0.CO;2-7.
  • Ramírez, M., A. Vinagre, J. Ambrona, F. Molina, M. Maqueda, and J. E. Rebollo. 2004. Genetic instability of heterozygous, hybrid, natural wine yeasts. Applied and Environmental microbiology 70 (8):4686–91. doi:10.1128/AEM.70.8.4686-4691.2004/ASSET/D52AEC86-B3F7-4AF0-8C5B-E4F0B10ACCFA/ASSETS/GRAPHIC/ZAM0080446770003.JPEG.
  • Rankine, B. C. 1966. Decomposition of L-malic acid by wine yeasts. Journal of the Science of Food and Agriculture 17 (7):312–6. doi: 10.1002/jsfa.2740170707.
  • Regodón, J. A., F. Peréz, M. E. Valdés, C. De Miguel, and M. Ramı́rez. 1997. A simple and effective procedure for selection of wine yeast strains. Food Microbiology 14 (3):247–54. doi: 10.1006/fmic.1996.0091.
  • Rodríguez-Cousiño, N., M. Maqueda, J. Ambrona, E. Zamora, R. Esteban, and M. Ramírez. 2011. A new wine Saccharomyces cerevisiae killer toxin (Klus), encoded by a double-stranded RNA virus, with broad antifungal activity is evolutionarily related to a chromosomal host gene. Applied and Environmental Microbiology 77 (5):1822–32. doi:10.1128/AEM.02501-10/ASSET/53BA1920-44FF-4A1A-9D96-1E929958E527/ASSETS/GRAPHIC/ZAM9991018820007.JPEG.
  • Rodríguez, M. E., J. J. Infante, J. J. Mesa, L. Rebordinos, and J. M. Cantoral. 2013. Enological behaviour of biofilms formed by genetically-characterized strains of sherry yeast. The Open Biotechnology Journal 7 (1):23–9. doi: 10.2174/1874070701307010023.
  • Rodríguez, M. E., J. J. Infante, J. J. Mesa, L. Rebordinos, and J. M. Cantoral. 2013. Enological behaviour of biofilms formed by genetically-characterized strains of sherry yeast. The Open Biotechnology Journal 7 (1):23–9. doi: 10.2174/1874070701307010023.
  • Rojas, V., J. V. Gil, F. Piñaga, and P. Manzanares. 2001. Studies on acetate ester production by non-Saccharomyces wine yeasts. International Journal of Food Microbiology 70 (3):283–9. doi: 10.1016/S0168-1605(01)00552-9.
  • Rojas, V., J. V. Gil, F. Piñaga, and P. Manzanares. 2003. Acetate ester formation in wine by mixed cultures in laboratory fermentations. International Journal of Food Microbiology 86 (1-2):181–8. Elsevier doi: 10.1016/S0168-1605(03)00255-1.
  • Romani, C., L. Lencioni, M. Gobbi, I. Mannazzu, M. Ciani, and P. Domizio. 2018. Schizosaccharomyces japonicus: A polysaccharide-overproducing yeast to be used in winemaking. Fermentation 4 (1):14. doi: 10.3390/fermentation4010014.
  • Roudil, L., P. Russo, C. Berbegal, W. Albertin, G. Spano, and V. Capozzi. 2020. Non-Saccharomyces commercial starter cultures: Scientific trends, recent patents and innovation in the wine sector. Recent Patents on Food, Nutrition & Agriculture 11 (1):27–39. doi: 10.2174/2212798410666190131103713.
  • Ruíz-Muñoz, M., M. C. Bernal-Grande, G. Cordero-Bueso, M. González, D. Hughes-Herrera, and J. Manuel Cantoral. 2017. A microtiter plate assay as a reliable method to assure the identification and classification of the veil-forming yeasts during sherry wines ageing. Fermentation 3 (4):58. doi: 10.3390/fermentation3040058.
  • Ruiz-Muñoz, M., G. Cordero-Bueso, F. Benítez-Trujillo, S. Martínez, F. Pérez, and J. M. Cantoral. 2020. Rethinking about flor yeast diversity and its dynamic in the “Criaderas and Soleras” biological aging system. Food Microbiology 92 (December):103553. doi: 10.1016/J.FM.2020.103553.
  • Ruiz-Muñoz, M., G. Cordero-Bueso, F. Benítez-Trujillo, S. Martínez, F. Pérez, and J. M. Cantoral. 2020. Rethinking about flor yeast diversity and its dynamic in the "criaderas and soleras" biological aging system. Food Microbiology 92 (December):103553. doi: 10.1016/J.FM.2020.103553.
  • Santamaría, P. 2009. Ecología de La Fermentación Alcohólica En La D.O.Ca. Rioja. Selección de Levaduras Para La Elaboración de Vinos Tintos. Logroño: Universidad de la Rioja.
  • Santamaría, P., P. Garijo, R. López, C. Tenorio, and A. R. Gutiérrez. 2005. Analysis of yeast population during spontaneous alcoholic fermentation: effect of the age of the cellar and the practice of inoculation. International Journal of Food Microbiology 103 (1):49–56. doi: 10.1016/J.IJFOODMICRO.2004.11.024.
  • Santamaría, P. R. López, M. P. Garijo, Ro. Escribano, L. González-Arenzana, I. López-Alfaro, and A. R. Gutiérrez. 2019. Biodiversity of Saccharomyces cerevisiae yeasts in spontaneous alcoholic fermentations: typical cellar or zone strains? In Advances in grape and wine biotechnology, ed. A. Morata. Vol. 1st. London, U.K.: IntechOpen. doi: 10.5772/INTECHOPEN.84870.
  • Schuller, D., M. Corte-Real, and C. Leao. 2000. A differential medium for the enumeration of the spoilage yeast Zygosaccharomyces bailii in wine. Journal of Food protection 63 (11):1570–5. doi: 10.4315/0362-028X-63.11.1570.
  • Schüller, H. J. 2003. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Current Genetics 43 (3):139–60. doi: 10.1007/S00294-003-0381-8.
  • Somavilla, J. F. P. Tienda, V. Arroyo, and B. Iñigo. 1971. Agentes de Fermentación de Los Mostos de Uva de La Región Levantina. In Agricultura, La Pesca y La Alimentación Españolas, ed. Ministerio de Agricultura, vol. 476, 771–4. Madrid, Spain: Ministerio de Agricultura.
  • Suárez-Lepe, J. A, and B. I. Leal. 1990. Microbiología Enológica. Fundamentos de Vinificación. 3rd ed. Madrid: Ediciones Mundi-Prensa.
  • Suárez-Lepe, J. A., and A. Morata. 2012. New trends in yeast selection for winemaking. Trends in Food Science & Technology 23 (1):39–50. doi: 10.1016/j.tifs.2011.08.005.
  • Suárez-Lepe, J. A., F. Palomero, S. Benito, F. Calderón, and A. Morata. 2012. Oenological versatility of Schizosaccharomyces Spp. European Food Research and Technology 235 (3):375–83. doi: 10.1007/s00217-012-1785-9.
  • Tello, J., G. Cordero-Bueso, I. Aporta, J. M. Cabellos, and T. Arroyo. 2012. Genetic diversity in commercial wineries: Effects of the farming system and vinification management on wine yeasts. Journal of Applied Microbiology 112 (2):302–15. doi: 10.1111/J.1365-2672.2011.05202.X.
  • Tufariello, M., M. Fragasso, J. Pico, A. Panighel, S. D. Castellarin, R. Flamini, and F. Grieco. 2021. Influence of non-Saccharomyces on wine chemistry: A focus on aroma-related compounds. Molecules 26 (3):644. doi: 10.3390/molecules26030644.
  • Ut, C., C. Berbegal, V. Lizama, L. Polo, M. J. García, L. Andrés, I. Pardo, and I. Álvarez. 2021. Isolation and characterisation of autochthonous Saccharomyces cerevisiae from ‘Pago’ merlot wines of Utiel-Requena (Spain) Origin. Australian Journal of Grape and Wine Research :12536. doi: 10.1111/ajgw.12536.
  • van Uden, N. 1967. Transport-limited fermentation and growth of Saccharomyces cerevisiae and its competitive inhibition. Archiv fur Mikrobiologie 58 (2):155–68. doi: 10.1007/BF00406676.
  • Vaquero, C., P. M. Izquierdo-Cañas, A. Mena-Morales, L. Marchante-Cuevas, J. M. Heras, and A. Morata. 2021. Use of Lachancea thermotolerans for biological vs. chemical acidification at pilot-scale in white wines from warm areas. Fermentation 7 (3):193. doi: 10.3390/fermentation7030193.
  • Vaquero, C., I. Loira, M. A. Bañuelos, J. M. Heras, R. Cuerda, and A. Morata. 2020. Industrial performance of several Lachancea thermotolerans strains for Ph Control in white wines from warm areas. Microorganisms 8 (6):830–45. doi: 10.3390/microorganisms8060830.
  • Vaquero, C., I. Loira, J. M. Heras, F. Carrau, C. González, and A. Morata. 2021. Biocompatibility in ternary fermentations with Lachancea thermotolerans, other non-Saccharomyces and Saccharomyces cerevisiae to control PH and improve the sensory profile of wines from warm areas. Frontiers in Microbiology 12 (April):656262–78. doi: 10.3389/FMICB.2021.656262/FULL.
  • Velázquez, R., A. Martínez, E. Zamora, M. L. Álvarez, J. Bautista-Gallego, L. M. Hernández, and M. Ramírez. 2020. Genetic improvement of Torulaspora delbrueckii for wine fermentation: eliminating recessive growth-retarding alleles and obtaining new mutants resistant to SO2, ethanol, and high CO2 pressure. Microorganisms 8 (9):1372. doi: 10.3390/microorganisms8091372.
  • Velázquez, R., E. Zamora, M. Álvarez, M. L. Álvarez, and M. Ramírez. 2016. Using mixed inocula of Saccharomyces cerevisiae killer strains to improve the quality of traditional sparkling-wine. Food Microbiology 59 (October):150–60. doi: 10.1016/j.fm.2016.06.006.
  • Velázquez, R., E. Zamora, M. L. Álvarez, L. M. Hernández, and M. Ramírez. 2015. Effects of new Torulaspora delbrueckii killer yeasts on the must fermentation kinetics and aroma compounds of white table wine. Frontiers in Microbiology 6 (NOV)Frontiers Research Foundation: 1222. doi:10.3389/FMICB.2015.01222/BIBTEX.
  • Velázquez, R., E. Zamora, M. L. Álvarez, and M. Ramírez. 2019. Using Torulaspora delbrueckii killer yeasts in the elaboration of base wine and traditional sparkling wine. International Journal of Food Microbiology 289 (January):134–44. doi: 10.1016/J.IJFOODMICRO.2018.09.010.
  • Viana, F., C. Belloch, S. Vallés, and P. Manzanares. 2011. Monitoring a mixed starter of Hanseniaspora vineae-Saccharomyces cerevisiae in natural must: impact on 2-phenylethyl acetate production . International Journal of Food Microbiology 151 (2):235–40. doi: 10.1016/J.IJFOODMICRO.2011.09.005.
  • Viana, F., J. V. Gil, S. Genovés, S. Vallés, and P. Manzanares. 2008. Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiology 25 (6):778–85. doi: 10.1016/j.fm.2008.04.015.
  • Vilela-Moura, A., D. Schuller, A. Mendes-Faia, and M. Côrte-Real. 2008. Reduction of volatile acidity of wines by selected yeast strains. Applied Microbiology and Biotechnology 80 (5):881–90. doi:10.1007/S00253-008-1616-X/TABLES/6.
  • Vilela-Moura, A., D. Schuller, A. Mendes-Faia, R. D. Silva, S. R. Chaves, M. J. Sousa, and M. Côrte-Real. 2011. The impact of acetate metabolism on yeast fermentative performance and wine quality: Reduction of volatile acidity of grape musts and wines. Applied Microbiology and Biotechnology 89 (2):271–80. doi: 10.1007/s00253-010-2898-3.
  • Vilela, A. 2018. Lachancea thermotolerans, the non-Saccharomyces yeast that reduces the volatile acidity of wines. Fermentation 4 (3):56. doi: 10.3390/fermentation4030056.
  • Vilela, A., C. Amaral, D. Schuller, A. Mendes-Faia, and M. Corte-Real. 2015. Combined use of wallerstein and Zygosaccharomyces bailii modified differential media to isolate yeasts for the controlled reduction of volatile acidity of grape musts and wines. Journal of Biotech Research 6:43–53.
  • Zoecklein, B. W. K. C. Fugelsang, B. H. Gump, and F. S. Nury. 1995. Wine analysis and production. Wine analysis and production, eds. B. W. Zoecklein, K. C. Fugelsang, B. H. Gump, and F. S Nury, 1st ed. Boston: Springer US. doi: 10.1007/978-1-4757-6967-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.