673
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Advances of nanopore-based sensing techniques for contaminants evaluation of food and agricultural products

, &
Pages 10866-10879 | Published online: 10 Jun 2022

References

  • Acharya, S., A. Jiang, C. Kuo, R. Nazarian, K. Li, A. Ma, B. Siegal, C. Toh, and J. J. Schmidt. 2020. Improved measurement of proteins using a solid-state nanopore coupled with a hydrogel. ACS Sensors 5 (2):370–6. doi: 10.1021/acssensors.9b01928.
  • Akeson, M., D. Branton, J. J. Kasianowicz, E. Brandin, and D. W. Deamer. 1999. Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules. Biophysical Journal 77 (6):3227–33. doi: 10.1016/S0006-3495(99)77153-5.
  • Akhtarian, S., S. Miri, A. Doostmohammadi, S. K. Brar, and P. Rezai. 2021. Nanopore sensors for viral particle quantification: Current progress and future prospects. Bioengineered 12 (2):9189–215. doi: 10.1080/21655979.2021.1995991.
  • Asandei, A., I. Schiopu, S. Iftemi, L. Mereuta, and T. Luchian. 2013. Investigation of cu2+ binding to human and rat amyloid fragments Aβ (1-16) with a protein nanopore. Langmuir: The ACS Journal of Surfaces and Colloids 29 (50):15634–42. doi: 10.1021/la403915t.
  • Athreya, N., A. Sarathya, M. Xiong, and J. P. Leburton. 2020. 2D solid-state nanopore field-effect transistors: Comprehensive computational methodology for biosensing applications. IEEE Nanotechnology Magazine 14 (6):42–51. doi: 10.1109/MNANO.2020.3024388.
  • Balasubramanian, R., S. Pal, A. Rao, A. Naik, B. Chakraborty, P. K. Maiti, and M. M. Varma. 2021. DNA translocation through vertically stacked 2d layers of graphene and hexagonal boron nitride heterostructure nanopore. ACS Applied Bio Materials 4 (1):451–61. doi: 10.1021/acsabm.0c00929.
  • Bandara, Y., J. Saharia, B. I. Karawdeniya, J. T. Hagan, J. R. Dwyer, and J. K. Min. 2020. Beyond nanopore sizing: Improving solid-state single-molecule sensing performance, lifetime, and analyte scope for omics by targeting surface chemistry during fabrication. Nanotechnology 31 (33):335707–11pp. doi: 10.1088/1361-6528/ab8f4d.
  • Bell, N. A. W., C. R. Engst, M. Ablay, G. Divitini, C. Ducati, T. Liedl, and U. F. Keyser. 2012. DNA origami nanopores. Nano Letters 12 (1):512–7. doi: 10.1021/nl204098n.
  • Braha, O., L. Q. Gu, L. Zhou, X. Lu, S. Cheley, and H. Bayley. 2000. Simultaneous stochastic sensing of divalent metal ions. Nature Biotechnology 18 (9):1005–7. doi: 10.1038/79275.
  • Braha, O., B. Walker, S. Cheley, J. J. Kasianowicz, L. Song, J. E. Gouaux, and H. Bayley. 1997. Designed protein pores as components for biosensors. Chemistry & Biology 4 (7):497–505. doi: 10.1016/S1074-5521(97)90321-5.
  • Cao, J., W. Jia, J. Zhang, X. Xu, S. Yan, Y. Wang, P. Zhang, H. Y. Chen, and S. Huang. 2019. Giant single molecule chemistry events observed from a tetrachloroaurate(III) embedded Mycobacterium smegmatis porin A nanopore. Nature Communications 10 (1):5668. doi: 10.1038/s41467-019-13677-2.
  • Choi, S. S., M. J. Park, S. J. Oh, C. H. Han, Y. S. Kim, and N. K. Park. 2018. Plasmonic nanopore with nanopattern and nanoparticles for single molecule analysis. Physica Status Solidi 215 (3):1–5. doi: 10.1002/pssa.201700484.
  • Chou, Y. C., P. M. Das, D. S. Monos, and M. Drndic. 2020. Lifetime and stability of silicon nitride nanopores and nanopore arrays for ionic measurements. ACS Nano 14 (6):6715–28. doi: 10.1021/acsnano.9b09964.
  • Chung, N. X., H. K. Gatty, X. Lu, M. Zhang, and J. Linnros. 2021. Optimized electrochemical breakdown etching using temporal voltage variation for formation of nanopores in a silicon membrane. Sensors and Actuators B: Chemical 331 (2):129323. doi: 10.1016/j.snb.2020.129323.
  • Cressiot, B., H. Ouldali, M. Pastoriza-Gallego, L. Bacri, V. Gisou, and J. Pelta. 2019. Aerolysin, a powerful protein sensor for fundamental studies and development of upcoming applications. ACS Sensors 4 (3):530–48. doi: 10.1021/acssensors.8b01636.
  • Cui, M., Y. Ge, X. Zhuge, X. Zhou, D. Xi, and S. Zhang. 2021. Recent advances in nanopore sensing. Chinese Journal of Chemistry 39 (7):2035–43. doi: 10.1002/cjoc.202000721.
  • Das, N., N. Mandal, P. K. Sekhar, and C. Roychaudhuri. 2021. Signal processing for single biomolecule identification using nanopores: A review. IEEE Sensors Journal 21 (11):12808–20. doi: 10.1109/JSEN.2020.3032451.
  • Diederichs, T., and R. Tampé. 2021. Membrane-suspended nanopores in microchip arrays for stochastic transport recording and sensing. Frontiers in Nanotechnology 3:703673. doi: 10.3389/fnano.2021.703673.
  • Dou, J., A. A. Vorobieva, W. Sheffler, L. A. Doyle, H. Park, M. J. Bick, B. Mao, G. W. Foight, M. Y. Lee, L. A. Gagnon, et al. 2018. De novo design of a fluorescence-activating β-barrel. Nature 561 (7724):485–91. doi: 10.1038/s41586-018-0509-0.
  • Dutt, S., B. I. Karawdeniya, Y. M. Bandara, N. D. Y. Bandara, and P. Kluth. 2022. Controlled fabrication of thin silicon nitride membranes for nanopore sensing. Arxiv doi: 10.48550/arXiv.2201.09024.
  • Fahie, M. A., J. Candido, G. Andree, and M. Chen. 2021. Tuning protein discrimination through altering the sampling interface formed between the analyte and the OmpG nanopore. ACS Sensors 6 (3):1286–94. doi: 10.1021/acssensors.0c02580.
  • Fujii, S., A. Nobukawa, T. Osaki, Y. Morimoto, K. Kamiya, N. Misawa, and S. Takeuchi. 2017. Pesticide vapor sensing using an aptamer, nanopore, and agarose gel on a chip. Lab on a Chip 17 (14):2421–5. doi: 10.1039/c7lc00361g.
  • Gao, P., L. Hu, N. Liu, Z. Yang, X. Lou, T. Zhai, H. Li, and F. Xia. 2016. Functional "Janus" annulus in confined channels. Advanced Materials (Deerfield Beach, Fla.) 28 (3):460–5. doi: 10.1002/adma.201502344.
  • Gatty, H. K., C. X. Nguyen, M. Zhang, I. Sychugov, and J. Linnros. 2020. Wafer-level fabrication of individual solid-state nanopores for sensing single DNAs. Nanotechnology 31 (35):355505. doi: 10.1088/1361-6528/ab9474.
  • Ge, K., Y. Hu, Y. Zheng, P. Jiang, and G. Li. 2021. Aptamer/derivatization-based surface-enhanced Raman scattering membrane assembly for selective analysis of melamine and formaldehyde in migration of melamine kitchenware. Talanta 235:122743. doi: 10.1016/j.talanta.2021.122743.
  • Geng, J., S. Wang, H. Fang, and P. Guo. 2013. Channel size conversion of phi29 DNA-packaging nanomotor for discrimination of single- and double-stranded nucleic acids. ACS Nano 7 (4):3315–23. doi: 10.1021/nn400020z.
  • Habibi, M., Y. Dawji, E. Ghafar-Zadeh, and S. Magierowski. 2021. Nanopore-based DNA sequencing sensors and CMOS readout approaches. Sensor Review 41 (3):292–310. doi: 10.1108/SR-05-2020-0121.
  • Hammerstein, A., S. Shin, and H. Bayley. 2010. Single-molecule kinetics of two-step divalent cation chelation. Angewandte Chemie (International ed. in English) 49 (30):5085–90. doi: 10.1002/anie.200906601.
  • Haugland, M. M., S. Borsley, D. F. Cairns-Gibson, A. Elmi, and S. L. Cockroft. 2019. Synthetically diversified protein nanopores: Resolving click reaction mechanisms. ACS Nano 13 (4):4101–10. doi: 10.1021/acsnano.8b08691.
  • Heaton, I., and M. Platt. 2019. Peptide nanocarriers for Detection of Heavy Metal Ions Using Resistive Pulse Sensing. Analytical Chemistry 91 (17):11291–6. doi: 10.1021/acs.analchem.9b02353.
  • Heaton, I., and M. Platt. 2020. Multiuse nanopore platform with disposable paper analytical device for the detection of heavy metal ions. Industrial & Engineering Chemistry Research 59 (49):21403–12. doi: 10.1021/acs.iecr.0c04806.
  • Heinz, C., H. Engelhardt, and M. Niederweis. 2003. The Core of the Tetrameric Mycobacterial Porin MspA Is an Extremely Stable β-Sheet Domain. Journal of Biological Chemistry 278 (10):8678–85. doi: 10.1074/jbc.M212280200.
  • He, F., L. Liang, S. Zhou, W. Xie, S. He, Y. Wang, C. Tlili, S. Tong, and D. Wang. 2018. Label-free sensitive detection of microcystin-LR via aptamer-conjugated gold nanoparticles based on solid-state nanopores. Langmuir: The ACS Journal of Surfaces and Colloids 34 (49):14825–33. doi: 10.1021/acs.langmuir.8b00945.
  • He, Y., M. Tsutsui, Y. Zhou, and X. S. Miao. 2021. Solid-state nanopore systems: From materials to applications. NPG Asia Materials. 13 (1):48. doi: 10.1038/s41427-021-00313-z.
  • Iwabuchi, S., I. Kawamata, S. Murata, and S. I. Nomura. 2020. Sealable large pore by DNA origami on lipid membrane. Nanoscience doi: 10.26434/chemrxiv.12814544.v1.
  • Iwabuchi, S., I. Kawamata, S. Murata, and S. Nomura. 2021. A large, square-shaped, DNA origami nanopore with sealing function on a giant vesicle membrane. Chemical Communications (Cambridge, England) 57 (24):2990–3. doi: 10.1039/D0CC07412H.
  • Kasianowicz, J. J., E. Brandin, D. Branton, and D. W. Deamer. 1996. Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences of the United States of America 93 (24):13770–3. doi: 10.1073/pnas.93.24.13770.
  • Ketterer, P., A. N. Ananth, D. L. Trip, A. Mishra, E. Bertosin, M. Ganji, J. Torre, P. Onck, H. Dietz, and C. Dekker. 2018. DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex. Nature Communications 9 (1):902. doi: 10.1038/s41467-018-03313-w.
  • Liang, S., F. Xiang, Z. Tang, R. Nouri, X. He, M. Dong, and W. Guan. 2020. Noise in nanopore sensors: Sources, models, reduction, and benchmarking. Nanotechnology and Precision Engineering 3 (1):9–17. doi: 10.1016/j.npe.2019.12.008.
  • Li, J., M. Li, X. Li, X. Wu, Y. Ying, and Y. Long. 2022. Full width at half maximum of nanopore current blockage controlled by a single-biomolecule interface. Langmuir: The ACS Journal of Surfaces and Colloids 38 (3):1188–93. doi: 10.1021/acs.langmuir.1c02900.
  • Lin, B., J. A. Hui, and H. J. Mao. 2021. Nanopore Technology and Its Applications in Gene Sequencing. Biosensors 11 (7):214. doi: 10.3390/bios11070214.
  • Li, J., D. Stein, C. McMullan, D. Branton, M. J. Aziz, and J. A. Golovchenko. 2001. Ion-beam sculpting at nanometre length scales. Nature 412 (6843):166–9. doi: 10.1038/35084037.
  • Liu, L., Z. Fang, X. Zheng, and D. Xi. 2019. Nanopore-based strategy for sensing of Copper(II) Ion and Real-Time Monitoring of a Click Reaction. ACS Sensors 4 (5):1323–8. doi: 10.1021/acssensors.9b00236.
  • Liu, S., J. Tian, and W. Zhang. 2021. Fabrication and application of nanoporous anodic aluminum oxide: A review. Nanotechnology 32 (22):222001. doi: 10.1088/1361-6528/abe25f.
  • Liu, L., Y. You, K. Zhou, B. Guo, Z. Cao, Y. Zhao, and H. C. Wu. 2019. A Dual-Response DNA Probe for Simultaneously Monitoring Enzymatic Activity and Environmental pH Using a Nanopore. Angewandte Chemie (International ed. in English) 58 (42):14929–34. doi: 10.1002/ange.201907816.
  • Liu, G., L. Zhang, D. Dong, Y. Liu, and J. Li. 2016. A label-free DNAzyme-based nanopore biosensor for highly sensitive and selective lead ion detection. Analytical Methods 8 (39):7040–6. doi: 10.1039/C6AY02240E.
  • Ma, J., Q. Zeng, L. Zhan, J. Mo, Y. Zhang, and Z. Ni. 2020. Power generation from salinity gradient by reverse electrodialysis in silicon nitride nanopores. Nano 15 (11):2050148. doi: 10.1142/S1793292020501489.
  • Mereuta, L., A. Asandei, I. S. Dragomir, I. C. Bucataru, J. Park, C. H. Seo, Y. Park, and T. Luchian. 2020. Author correction: Sequence-specific detection of single-stranded DNA with a gold nanoparticle-protein nanopore approach. Scientific Reports 10 (1):16141. doi: 10.1038/s41598-020-73154-5.
  • Müller, L. K., I. Duznovic, D. Tietze, W. Weber, M. Ali, V. Stein, W. Ensinger, and A. A. Tietze. 2020. Ultrasensitive and selective Copper(II) Detection: Introducing a Bioinspired and Robust Sensor. Chemistry (Weinheim an Der Bergstrasse, Germany) 26 (39):8511–7. doi: 10.1002/chem.202001160.
  • Nguyen, Q. H., and M. I. Kim. 2021. Using nanomaterials in colorimetric toxin detection. BioChip Journal 15 (2):123–34. doi: 10.1007/s13206-021-00013-4.
  • Nobukawa, A. T. Osaki, T. Tonooka, Y. Morimoto, and S. Takeuchi. 2015. Electrical detection of pesticide vapors by biological nanopores with DNA aptamers. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 596–599. doi: 10.1109/MEMSYS.2015.7051026.
  • Ogden, R., N. Vasiljevic, and S. Prost. 2021. Nanopore sequencing in non-human forensic genetics. Emerging Topics in Life Sciences 5 (3):465–73. doi: 10.1042/ETLS20200287.
  • Piguet, F., H. Ouldali, M. Pastoriza-Gallego, P. Manivet, J. Pelta, and A. Oukhaled. 2018. Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore. Nature Communications 9 (1):966. doi: 10.1038/s41467-018-03418-2.
  • Robertson, J., M. L. Ghimire, and J. E. Reiner. 2021. Nanopore sensing: A physical-chemical approach. Biochimica et Biophysica Acta. Biomembranes 1863 (9):183644. doi: 10.1016/j.bbamem.2021.183644.
  • Roozbahani, G. M., X. Chen, Y. Zhang, O. Juarez, D. Li, and X. Guan. 2018. Computation-assisted nanopore detection of thorium ions. Analytical Chemistry 90 (9):5938–44. doi: 10.1021/acs.analchem.8b00848.
  • Roozbahani, G. M., X. Chen, Y. Zhang, R. Xie, R. Ma, D. Li, H. Li, and X. Guan. 2017. Peptide-mediated nanopore detection of uranyl ions in aqueous media. ACS Sensors 2 (5):703–9. doi: 10.1021/acssensors.7b00210.
  • Roozbahani, G. M., Y. Zhang, X. Chen, M. H. Soflaee, and X. Guan. 2019. Enzymatic reaction-based nanopore detection of zinc ions. The Analyst 144 (24):7432–6. doi: 10.1039/C9AN01784D.
  • Saharia, J., Y. Bandara, J. S. Lee, Q. Wang, M. J. Kim, and M. J. Kim. 2020. Fabrication of hexagonal boron nitride based 2D nanopore sensor for the assessment of electro-chemical responsiveness of human serum transferrin protein. Electrophoresis 41 (7-8):630–7. doi: 10.1002/elps.201900336.
  • Schmid, S., P. Stömmer, H. Dietz, and C. Dekker. 2021. Nanopore electro-osmotic trap for the label-free study of single proteins and their conformations. Nature Nanotechnology 16 (11):1244–50. doi: 10.1038/s41565-021-00958-5.
  • Shearman, J. R., and S. Tangphatsornruang. 2021. Nanopore sequencing in agricultural and food applications. Handbook of Nanotechnology Applications :443–59. doi: 10.1016/B978-0-12-821506-7.00018-1.
  • Shen, B., P. Piskunen, S. Nummelin, Q. Liu, M. A. Kostiainen, and V. Linko. 2020. Advanced DNA nanopore technologies. ACS Applied Bio Materials 3 (9):5606–19. doi: 10.1021/acsabm.0c00879.
  • Sheng, Y., Y. You, Z. Cao, L. Liu, and H. C. Wu. 2018. Rapid and selective DNA-based detection of melamine using α-hemolysin nanopores. The Analyst 143 (10):2411–5. doi: 10.1039/C8AN00580J.
  • Shi, H., Y. Ma, Y. Wang, F. Fang, and Z. Wu. 2022. Current pulse signature of native kanamycin aptamer and its implication for molecular interactions on a single protein nanopore sensing interface. Biosensors & Bioelectronics 201:113966. doi: 10.1016/j.bios.2022.113966.
  • Shimizu, K., B. Mijiddorj, M. Usami, I. Mizoguchi, S. Yoshida, S. Akayama, Y. Hamada, A. Ohyama, K. Usui, I. Kawamura, et al. 2022. De novo design of a nanopore for single-molecule detection that incorporates a beta-hairpin peptide. Nature Nanotechnology 17 (1):67–75. doi: 10.1038/s41565-021-01008-w.
  • Singh, H., A. Bamrah, S. K. Bhardwaj, A. Deep, M. Khatri, R. J. C. Brown, N. Bhardwaj, and K.-H. Kim. 2021. Recent advances in the application of noble metal nanoparticles in colorimetric sensors for lead ions. Environmental Science: Nano 8 (4):863–89. doi: 10.1039/D0EN00963F.
  • Skorjanc, T., D. Shetty, and M. Valant. 2021. Covalent organic polymers and frameworks for fluorescence-based sensors. ACS Sensors 6 (4):1461–81. doi: 10.1021/acssensors.1c00183.
  • Song, L., M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, and J. E. Gouaux. 1996. Structure of Staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science (New York, N.Y.) 274 (5294):1859–65. doi: 10.1126/science.274.5294.1859.
  • Su, S., X. Wang, and J. Xue. 2021. Nanopores in two-dimensional materials: Accurate fabrication. Materials Horizons 8 (5):1390–408. doi: 10.1039/D0MH01412E.
  • Tanimoto, I., B. Cressiot, N. Jarroux, J. Roman, G. Patriarche, B. L. Pioufle, J. Pelta, and L. Bacri. 2021. Selective target protein detection using a decorated nanopore into a microfluidic device. Biosensors & Bioelectronics 183:113195. doi: 10.1016/j.bios.2021.113195.
  • Thaker, H., S. Zhang, D. A. Diamond, and M. Dong. 2021. Beyond botulinum neurotoxin A for chemodenervation of the bladder. Current Opinion in Urology 31 (2):140–6. doi: 10.1097/MOU.0000000000000843.
  • Thakur, M., M. Macha, A. Chernev, M. Graf, M. Lihter, J. Deen, M. Tripathi, A. Kis, and A. Radenovic. 2020. Wafer-Scale fabrication of nanopore devices for single-molecule DNA biosensing using MoS2. Small Methods. 4 (11):2000072. doi: 10.1002/smtd.202000072.
  • Thomsen, R. P., M. G. Malle, A. H. Okholm, S. Krishnan, S. S.-R. Bohr, R. S. Sørensen, O. Ries, S. Vogel, F. C. Simmel, N. S. Hatzakis, et al. 2019. A Large size-selective DNA nanopore with sensing applications. Nature Communications 10 (1):5655. doi: 10.1038/s41467-019-13284-1.
  • Tian, Y., Z. Zhang, L. Wen, J. Ma, Y. Zhang, W. Liu, J. Zhai, and L. Jiang. 2013. A biomimetic mercury(II)-gated single nanochannel. Chemical Communications (Cambridge, England) 49 (91):10679–81. doi: 10.1039/C3CC42748J.
  • Tripathi, P., A. Benabbas, B. Mehrafrooz, H. Yamazaki, and M. Wanunu. 2021. Electrical unfolding of cytochrome c during translocation through a nanopore constriction. Proceedings of the National Academy of Science of the United States of America 118 (17):e2016262118. doi: 10.1073/pnas.2016262118.
  • Van der Verren, S. E., N. V. Gerven, W. Jonckheere, R. Hambley, P. Singh, J. Kilgour, M. Jordan, E. J. Wallace, L. Jayasinghe, and H. Remaut. 2020. A dual-constriction biological nanopore resolves homonucleotide sequences with high fidelity. Nature Biotechnology 38 (12):1415–20. doi: 10.1038/s41587-020-0570-8.
  • Venkatasami, G., and J. R. Sowa. Jr. 2010. A rapid, acetonitrile-free, HPLC method for determination of melamine in infant formula. Analytica Chimica Acta 665 (2):227–30. doi: 10.1016/j.aca.2010.03.037.
  • Venta, K., G. Shemer, M. Puster, J. A. Rodríguez-Manzo, A. Balan, J. K. Rosenstein, K. Shepard, and M. Drndic. 2013. Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores. ACS Nano 7 (5):4629–36. doi: 10.1021/nn4014388.
  • Ventra, M., and M. Taniguchi. 2016. Decoding DNA, RNA and peptides with quantum tunnelling. Nature Nanotechnology 11 (2):117–26. doi: 10.1038/nnano.2015.320.
  • Wang, S., J. Cao, W. Jia, W. Guo, S. Yan, Y. Wang, P. Zhang, H. Y. Chen, and S. Huang. 2019. Single molecule observation of hard-soft-acid-base (HSAB) interaction in engineered Mycobacterium smegmatis porin A (MspA) nanopores. Chemical Science 11 (3):879–87. doi: 10.1039/C9SC05260G.
  • Wang, Y., X. Guan, S. Zhang, Y. Liu, S. Wang, P. Fan, X. Du, S. Yan, P. Zhang, H.-Y. Chen, et al. 2021. Structural-profiling of low molecular weight RNAs by nanopore trapping/translocation using mycobacterium smegmatis porin A. Nature Communications 12 (1):3368. doi: 10.1038/s41467-021-23764-y.
  • Wang, Y., B. Q. Luan, Z. Yang, X. Zhang, B. Ritzo, K. Gates, and L. Q. Gu. 2014. Single molecule investigation of Ag+ interactions with single cytosine-, methylcytosine- and hydroxymethylcytosine-cytosine mismatches in a nanopore. Scientific Reports 4 (2):5883. doi: 10.1038/srep05883.
  • Wang, Y., V. Montana, V. Grubišić, R. F. Stout, V. Parpura, and L.-Q. Gu. 2015. Nanopore sensing of botulinum toxin type b by discriminating an enzymatically cleaved peptide from a synaptic protein synaptobrevin 2 derivative. ACS Applied Materials & Interfaces 7 (1):184–92. doi: 10.1021/am5056596.
  • Wang, G., L. Wang, Y. Han, S. Zhou, and X. Guan. 2014. Nanopore detection of copper ions using a polyhistidine probe. Biosensors & Bioelectronics 53:453–8. doi: 10.1016/j.bios.2013.10.013.
  • Wang, L., F. Yao, and X. Kang. 2017. Nanopore single-molecule analysis of metal ion-chelator chemical reaction. Analytical Chemistry 89 (15):7958–65. doi: 10.1021/acs.analchem.7b01119.
  • Wang, G., Q. Zhao, X. Kang, and X. Guan. 2013. Probing mercury(II)-DNA interactions by nanopore stochastic sensing. The Journal of Physical Chemistry. B 117 (17):4763–9. doi: 10.1021/jp309541h.
  • Wanunu, M., T. Dadosh, V. Ray, J. Jin, L. Mcreynolds, and M. Drndic. 2010. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nature Nanotechnology 5 (11):807–14. doi: 10.1038/nnano.2010.202.
  • Waugh, M., K. Briggs, D. Gunn, M. Gibeault, S. King, Q. Ingram, A. M. Jimenez, S. Berryman, D. Lomovtsev, L. Andrzejewski, et al. 2020. Solid-state nanopore fabrication by automated controlled breakdown. Nature Protocols 15 (1):122–43. doi: 10.1038/s41596-019-0255-2.
  • Wei, K., F. Yao, and X. F. Kang. 2018. Single-molecule porphyrin-metal ion interaction and sensing application. Biosensors & Bioelectronics 109:272–8. doi: 10.1016/j.bios.2018.03.002.
  • Wen, S., T. Zeng, L. Liu, K. Zhao, Y. Zhao, X. Liu, and H. C. Wu. 2011. Highly sensitive and selective DNA-based detection of mercury(II) with α-hemolysin nanopore. Journal of the American Chemical Society 133 (45):18312–7. doi: 10.1021/ja206983z.
  • Wen, C., and S. Zhang. 2021. Fundamentals and potentials of solid-state nanopores: A review. Journal of Physics D: Applied Physics 54 (2):023001. doi: 10.1088/1361-6463/ababce.
  • Wloka, C., N. S. Galenkamp, N. J. Van der Heide, F. L. R. Lucas, and G. Maglia. 2021. Strategies for enzymological studies and measurements of biological molecules with the cytolysin A nanopore. Methods in Enzymology 649:567–85. doi: 10.1016/bs.mie.2021.01.007.
  • Wu, R., Z. Zhu, X. Xu, C. Yu, and B. Li. 2019. An investigation of solid-state nanopores on label-free metal-ion signalling via the transition of RNA-cleavage DNAzyme and the hybridization chain reaction. Nanoscale 11 (21):10339–47. doi: 10.1039/C9NR01666J.
  • Yanagi, I., and K. I. Takeda. 2021. Sub-10-nm-thick sin nanopore membranes fabricated using the SiO2 sacrificial layer process. Nanotechnology 32 (41):415301. doi: 10.1088/1361-6528/ac10e3.
  • Yang, C., L. Liu, T. Zeng, D. Yang, Z. Yao, Y. Zhao, and H. C. Wu. 2013. Highly sensitive simultaneous detection of lead(II) and barium(II) with G-quadruplex DNA in α-hemolysin nanopore. Analytical Chemistry 85 (15):7302–7. doi: 10.1021/ac401198d.
  • Yang, C., F. Sesterhenn, J. Bonet, E. A. van Aalen, L. Scheller, L. A. Abriata, J. T. Cramer, X. Wen, S. Rosset, S. Georgeon, et al. 2021. Bottom-up de novo design of functional proteins with complex structural features. Nature Chemical Biology 17 (4):492–500. doi: 10.1038/s41589-020-00699-x.
  • Yan, S., L. Wang, X. Du, S. Zhang, S. Wang, J. Cao, J. Zhang, W. Jia, Y. Wang, P. Zhang, et al. 2021. Rapid and multiplex preparation of engineered Mycobacterium smegmatis porin A (MspA) nanopores for single molecule sensing and sequencing. Chemical Science 12 (27):9339–46. doi: 10.1039/D1SC01399H.
  • Yan, S., J. Zhang, Y. Wang, W. Guo, S. Zhang, Y. Liu, J. Cao, Y. Wang, L. Wang, F. Ma, et al. 2021. Single molecule ratcheting motion of peptides in a Mycobacterium smegmatis porin A (MspA) nanopore. Nano Letters 21 (15):6703–10. doi: 10.1021/acs.nanolett.1c02371.
  • Yin, Y. D., L. Zhang, X. Z. Leng, and Z. Y. Gu. 2020. Harnessing biological nanopore technology to track chemical changes. TrAC Trends in Analytical Chemistry 133:116091. doi: 10.1016/j.trac.2020.116091.
  • Yokley, R. A., L. C. Mayer, R. Rezaaiyan, M. E. Manuli, and M. W. Cheung. 2000. Analytical method for the determination of cyromazine and melamine residues in soil using LC-UV and GC-MSD. Journal of Agricultural and Food Chemistry 48 (8):3352–8. doi: 10.1021/jf991231w.
  • Zhang, Y., Y. Chen, Y. Fu, C. Ying, Y. Feng, Q. Huang, C. Wang, D. S. Pei, and D. Wang. 2016. Monitoring tetracycline through a solid-state nanopore sensor. Scientific Reports 6:27959. doi: 10.1038/srep27959.
  • Zhang, S., W. Chen, L. Song, X. Wang, W. Sun, P. Song, G. Ashraf, B. Liu, and Y.-D. Zhao. 2021. Recent advances in ionic current rectification based nanopore sensing: A mini-review. Sensors and Actuators Reports 3:100042. doi: 10.1016/j.snr.2021.100042.
  • Zhang, J., R. A. Lucas, Y. Gu, Y. Yang, K. Sun, and H. Li. 2021. Nanopore-based electrodes for quinotrione detection: Host-guest-induced electrochemical signal switching. Analytical Chemistry 93 (13):5430–6. doi: 10.1021/acs.analchem.0c05033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.