877
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Advanced screening and tailoring strategies of pesticide aptamer for constructing biosensor

, , , , &
Pages 10974-10994 | Published online: 14 Jun 2022

References

  • Abdul Hakeem, D., S. Su, Z. Mo, and H. Wen. 2021. Upconversion luminescent nanomaterials: A promising new platform for food safety analysis. Critical Reviews in Food Science and Nutrition :1–42. doi: 10.1080/10408398.2021.1937039. PMID: 34159870
  • Abnous, K., N. M. Danesh, M. Ramezani, M. Alibolandi, A. S. Emrani, P. Lavaee, and S. M. Taghdisi. 2018. A colorimetric gold nanoparticle aggregation assay for malathion based on target-induced hairpin structure assembly of complementary strands of aptamer. Mikrochimica Acta 185 (4):216. doi: 10.1007/s00604-018-2752-3.
  • Abraham, K. M., M. Roueinfar, A. T. Ponce, M. E. Lussier, D. B. Benson, and K. L. Hong. 2018. In vitro selection and characterization of a single-stranded DNA aptamer against the herbicide atrazine. ACS Omega 3 (10):13576–83. doi: 10.1021/acsomega.8b01859.
  • Bahreyni, A., R. Yazdian-Robati, M. Ramezani, K. Abnous, and S. M. Taghdisi. 2018. Fluorometric aptasensing of the neonicotinoid insecticide acetamiprid by using multiple complementary strands and gold nanoparticles. Mikrochimica Acta 185 (5):272. doi: 10.1007/s00604-018-2805-7.
  • Bai, W., C. Zhu, J. Liu, M. Yan, S. Yang, and A. Chen. 2015. Gold nanoparticle-based colorimetric aptasensor for rapid detection of six organophosphorous pesticides. Environmental Toxicology and Chemistry 34 (10):2244–9. doi: 10.1002/etc.3088.
  • Bala, R., S. Dhingra, M. Kumar, K. Bansal, S. Mittal, R. K. Sharma, and N. Wangoo. 2017. Detection of organophosphorus pesticide – Malathion in environmental samples using peptide and aptamer based nanoprobes. Chemical Engineering Journal 311:111–6. doi: 10.1016/j.cej.2016.11.070.
  • Bala, R., M. Kumar, K. Bansal, R. K. Sharma, and N. Wangoo. 2016. Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles. Biosensors & Bioelectronics 85:445–9. doi: 10.1016/j.bios.2016.05.042.
  • Bala, R., S. Mittal, R. K. Sharma, and N. Wangoo. 2018a. A supersensitive silver nanoprobe based aptasensor for low cost detection of malathion residues in water and food samples. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 196:268–73. doi: 10.1016/j.saa.2018.02.007.
  • Bala, R., A. Swami, I. Tabujew, K. Peneva, N. Wangoo, and R. K. Sharma. 2018b. Ultra-sensitive detection of malathion using quantum dots-polymer based fluorescence aptasensor. Biosensors & Bioelectronics 104:45–9. doi: 10.1016/j.bios.2017.12.034.
  • Bantz, K. C., A. F. Meyer, N. J. Wittenberg, H. Im, Ö. Kurtuluş, S. H. Lee, N. C. Lindquist, S.-H. Oh, and C. L. Haynes. 2011. Recent progress in SERS biosensing. Physical Chemistry Chemical Physics: PCCP 13 (24):11551–67. doi: 10.1039/C0CP01841D.
  • Barahona, F., C. L. Bardliving, A. Phifer, J. G. Bruno, and C. A. Batt. 2013. An aptasensor based on polymer-gold nanoparticle composite microspheres for the detection of malathion using surface-enhanced Raman spectroscopy. Industrial Biotechnology 9 (1):42–50. doi: 10.1089/ind.2012.0029.
  • Belinskaia, D. A., P. V. Avdonin, P. P. Avdonin, R. O. Jenkins, and N. V. Goncharov. 2019. Rational in silico design of aptamers for organophosphates based on the example of paraoxon. Computational Biology and Chemistry 80:452–62. doi: 10.1016/j.compbiolchem.2019.05.004.
  • Berezovski, M. V., M. U. Musheev, A. P. Drabovich, J. V. Jitkova, and S. N. Krylov. 2006. Non-SELEX: Selection of aptamers without intermediate amplification of candidate oligonucleotides. Nature Protocols 1 (3):1359–69. doi: 10.1038/nprot.2006.200.
  • Bernat, A., M. Samiwala, J. Albo, X. Jiang, and Q. Rao. 2019. Challenges in SERS-based pesticide detection and plausible solutions. Journal of Agricultural and Food Chemistry 67 (45):12341–7. doi: 10.1021/acs.jafc.9b05077.
  • Blidar, A., B. Feier, M. Tertis, R. Galatus, and C. Cristea. 2019. Electrochemical surface plasmon resonance (EC-SPR) aptasensor for ampicillin detection. Analytical and Bioanalytical Chemistry 411 (5):1053–65. doi: 10.1007/s00216-018-1533-5.
  • Bor, G., E. Man, O. Ugurlu, A. E. Ceylan, S. Balaban, C. Durmus, Z. Pinar Gumus, S. Evran, and S. Timur. 2020. In vitro selection of aptamer for imidacloprid recognition as model analyte and construction of a water analysis platform. Electroanalysis 32 (9):1922–9. doi: 10.1002/elan.202000075.
  • Bordin, A. B., L. Minetto, I. do Nascimento Filho, L. L. Beal, and S. Moura. 2017. Determination of pesticide residues in whole wheat flour using modified quechers and LC-MS/MS. Food Analytical Methods 10 (1):1–9. doi: 10.1007/s12161-016-0542-2.
  • Bottari, F., E. Daems, A.-M. de Vries, P. Van Wielendaele, S. Trashin, R. Blust, F. Sobott, A. Madder, J. C. Martins, K. De Wael, et al. 2020. Do aptamers always bind? The need for a multifaceted analytical approach when demonstrating binding affinity between aptamer and low molecular weight compounds. Journal of the American Chemical Society 142 (46):19622–30. doi: 10.1021/jacs.0c08691.
  • Boussebayle, A., D. Torka, S. Ollivaud, J. Braun, C. Bofill-Bosch, M. Dombrowski, F. Groher, K. Hamacher, and B. Suess. 2019. Next-level riboswitch development-implementation of Capture-SELEX facilitates identification of a new synthetic riboswitch . Nucleic Acids Research 47 (9):4883–95. doi: 10.1093/nar/gkz216.
  • Canoura, J., H. Yu, O. Alkhamis, D. Roncancio, R. Farhana, and Y. Xiao. 2021. Accelerating post-SELEX aptamer engineering using exonuclease digestion. Journal of the American Chemical Society 143 (2):805–16. doi: 10.1021/jacs.0c09559.
  • Cao, F., X. Lu, X. Hu, Y. Zhang, L. Zeng, L. Chen, and M. Sun. 2016. In vitro selection of DNA aptamers binding pesticide fluoroacetamide. Bioscience, Biotechnology, and Biochemistry 80 (5):823–32. doi: 10.1080/09168451.2015.1136876.
  • Chatterjee, B., N. Kalyani, A. Anand, E. Khan, S. Das, V. Bansal, A. Kumar, and T. K. Sharma. 2020. Gold SELEX: A novel SELEX approach for the development of high-affinity aptamers against small molecules without residual activity. Mikrochimica Acta 187 (11):618. doi: 10.1007/s00604-020-04577-0.
  • Chen, A., M. Yan, and S. Yang. 2016. Split aptamers and their applications in sandwich aptasensors. TrAC Trends in Analytical Chemistry 80:581–93. doi: 10.1016/j.trac.2016.04.006.
  • Chen, C., S. Zhou, Y. Cai, and F. Tang. 2017. Nucleic acid aptamer application in diagnosis and therapy of colorectal cancer based on cell-SELEX technology. NPJ Precision Oncology 1 (1):37. doi: 10.1038/s41698-017-0041-y.
  • Cheng, N., Y. Song, Q. Fu, D. Du, Y. Luo, Y. Wang, W. Xu, and Y. Lin. 2018. Aptasensor based on fluorophore-quencher nano-pair and smartphone spectrum reader for on-site quantification of multi-pesticides. Biosensors & Bioelectronics 117:75–83. doi: 10.1016/j.bios.2018.06.002.
  • Cialla-May, D., X. S. Zheng, K. Weber, and J. Popp. 2017. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: From cells to clinics. Chemical Society Reviews 46 (13):3945–61. doi: 10.1039/c7cs00172j.
  • Coonahan, E. S., K.-A. Yang, S. Pecic, M. D. Vos, T. E. Wellems, M. P. Fay, J. F. Andersen, J. Tarning, and C. A. Long. 2021. Structure-switching aptamer sensors for the specific detection of piperaquine and mefloquine. Science Translational Medicine 13 (585):eabe1535. doi: 10.1126/scitranslmed.abe1535.
  • Eissa, S., and M. Zourob. 2017. Selection and characterization of DNA aptamers for electrochemical biosensing of carbendazim. Analytical Chemistry 89 (5):3138–45. doi: 10.1021/acs.analchem.6b04914.
  • Fan, K., R. Yang, Y. Zhao, C. Zang, X. Miao, B. Qu, and L. Lu. 2020. A fluorescent aptasensor for sensitive detection of isocarbophos based on at-rich three-way junctions DNA templated copper nanoparticles and Fe3O4@GO. Sensors and Actuators B: Chemical 321:128515. doi: 10.1016/j.snb.2020.128515.
  • Fan, K., W. Kang, S. Qu, L. Li, B. Qu, and L. Lu. 2019. A label-free and enzyme-free fluorescent aptasensor for sensitive detection of acetamiprid based on AT-rich dsDNA-templated copper nanoparticles. Talanta 197:645–52. doi: 10.1016/j.talanta.2019.01.069.
  • Feng, D., F. Wei, Y. Wu, X. Tan, F. Li, Y. Lu, G. Fan, and H. Han. 2021. A novel signal amplified electrochemiluminescence biosensor based on MIL-53(al)@CdS QDs and SiO2@AuNPs for trichlorfon detection. The Analyst 146 (4):1295–302. doi: 10.1039/d0an02158j.
  • Fu, J., X. An, Y. Yao, Y. Guo, and X. Sun. 2019. Electrochemical aptasensor based on one step co-electrodeposition of aptamer and GO-CuNPs nanocomposite for organophosphorus pesticide detection. Sensors and Actuators B: Chemical 287:503–9. doi: 10.1016/j.snb.2019.02.057.
  • Fu, J., Y. Yao, X. An, G. Wang, Y. Guo, X. Sun, and F. Li. 2019. Voltammetric determination of organophosphorus pesticides using a hairpin aptamer immobilized in a graphene oxide-chitosan composite. Mikrochimica Acta 187 (1):36. doi: 10.1007/s00604-019-4022-4.
  • Fujii, S., A. Nobukawa, T. Osaki, Y. Morimoto, K. Kamiya, N. Misawa, and S. Takeuchi. 2017. Pesticide vapor sensing using an aptamer, nanopore, and agarose gel on a chip. Lab on a Chip 17 (14):2421–5. doi: 10.1039/C7LC00361G.
  • Gao, S., B. Hu, X. Zheng, Y. Cao, D. Liu, M. Sun, B. Jiao, and L. Wang. 2016. Gonyautoxin 1/4 aptamers with high-affinity and high-specificity: From efficient selection to aptasensor application. Biosensors & Bioelectronics 79:938–44. doi: 10.1016/j.bios.2016.01.032.
  • Gao, Y., W. Gao, M. Luo, H. Li, J. Huo, D. Lu, and X. Zhou. 2022. Detection of acetamiprid by aptamer based on a porous silicon microcavity. IEEE Photonics Journal 14 (1):1–6. doi: 10.1109/JPHOT.2021.3126630.
  • Glökler, J., T. S. Lim, J. Ida, and M. Frohme. 2021. Isothermal amplifications - A comprehensive review on current methods. Critical Reviews in Biochemistry and Molecular Biology 56 (6):543–86. doi: 10.1080/10409238.2021.1937927.
  • Guo, J., Y. Li, L. Wang, J. Xu, Y. Huang, Y. Luo, F. Shen, C. Sun, and R. Meng. 2016. Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of cdte quantum dots. Analytical and Bioanalytical Chemistry 408 (2):557–66. doi: 10.1007/s00216-015-9132-1.
  • Guo, Y., M. Girmatsion, H.-W. Li, Y. Xie, W. Yao, H. Qian, B. Abraha, and A. Mahmud. 2021a. Rapid and ultrasensitive detection of food contaminants using surface-enhanced Raman spectroscopy-based methods. Critical Reviews in Food Science and Nutrition 61 (21):3555–68. doi: 10.1080/10408398.2020.1803197.
  • Guo, Y., F. Yang, Y. Yao, J. Li, S. Cheng, H. Dong, H. Zhang, Y. Xiang, and X. Sun. 2021b. Novel Au-tetrahedral aptamer nanostructure for the electrochemiluminescence detection of acetamiprid. Journal of Hazardous Materials 401:123794. doi: 10.1016/j.jhazmat.2020.123794.
  • Gyllensten, U. B., and H. A. Erlich. 1988. Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proceedings of the National Academy of Sciences of the United States of America 85 (20):7652–6. doi: 10.1073/pnas.85.20.7652.
  • He, J., Y. Liu, M. Fan, and X. Liu. 2011. Isolation and identification of the DNA aptamer target to acetamiprid. Journal of Agricultural and Food Chemistry 59 (5):1582–6. doi: 10.1021/jf104189g.
  • Hong, K. L., and L. J. Sooter. 2017. In vitro selection of a single-stranded DNA molecular recognition element against the pesticide fipronil and sensitive detection in river water. International Journal of Molecular Sciences 19 (1):85. doi: 10.3390/ijms19010085.
  • Hu, W., Q. Chen, H. Li, Q. Ouyang, and J. Zhao. 2016. Fabricating a novel label-free aptasensor for acetamiprid by fluorescence resonance energy transfer between NH2-NaYF4: Yb, Ho@SiO2 and Au nanoparticles. Biosensors & Bioelectronics 80:398–404. doi: 10.1016/j.bios.2016.02.001.
  • Huang, Y. L., S. Mo, Z. F. Gao, J. R. Chen, J. L. Lei, H. Q. Luo, and N. B. Li. 2017. Amperometric biosensor for microrna based on the use of tetrahedral DNA nanostructure probes and guanine nanowire amplification. Microchimica Acta 184 (8):2597–604. doi: 10.1007/s00604-017-2246-8.
  • Jiang, M., C. Chen, J. He, H. Zhang, and Z. Xu. 2020. Fluorescence assay for three organophosphorus pesticides in agricultural products based on magnetic-assisted fluorescence labeling aptamer probe. Food Chemistry 307:125534. doi: 10.1016/j.foodchem.2019.125534.
  • Jo, M., J.-Y. Ahn, J. Lee, S. Lee, S. W. Hong, J.-W. Yoo, J. Kang, P. Dua, D.-K. Lee, S. Hong, et al. 2011. Development of single-stranded DNA aptamers for specific bisphenol a detection. Oligonucleotides 21 (2):85–91. doi: 10.1089/oli.2010.0267.
  • Jokar, M., M. H. Safaralizadeh, F. Hadizadeh, F. Rahmani, and M. R. Kalani. 2016. Design and evaluation of an apta-nano-sensor to detect acetamiprid in vitro and in silico. Journal of Biomolecular Structure & Dynamics 34 (11):2505–17. doi: 10.1080/07391102.2015.1123188.
  • Jokar, M., M. H. Safaralizadeh, F. Hadizadeh, F. Rahmani, and M. R. Kalani. 2017. Apta-nanosensor preparation and in vitro assay for rapid diazinon detection using a computational molecular approach. Journal of Biomolecular Structure & Dynamics 35 (2):343–53. doi: 10.1080/07391102.2016.1140594.
  • Kecskemeti, A., and A. Gaspar. 2018. Particle-based liquid chromatographic separations in microfluidic devices – A review. Analytica Chimica Acta 1021:1–19. doi: 10.1016/j.aca.2018.01.064.
  • Kong, Q., F. Yue, M. Liu, J. Huang, F. Yang, J. Liu, J. Li, F. Li, X. Sun, Y. Guo, et al. 2022. Non-immobilized GO-SELEX of aptamers for label-free detection of thiamethoxam in vegetables. Analytica Chimica Acta 1202:339677. doi: 10.1016/j.aca.2022.339677.
  • Kuitio, C., S. Klangprapan, N. Chingkitti, S. Boonthavivudhi, and K. Choowongkomon. 2021. Aptasensor for paraquat detection by gold nanoparticle colorimetric method. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 56 (4):370–7. doi: 10.1080/03601234.2021.1888615.
  • Kwon, Y. S., V. T. Nguyen, J. G. Park, and M. B. Gu. 2015. Detection of iprobenfos and edifenphos using a new multi-aptasensor. Analytica Chimica Acta 868:60–6. doi: 10.1016/j.aca.2015.02.020.
  • Lekei, E. E., A. V. Ngowi, and L. London. 2016. Undereporting of acute pesticide poisoning in tanzania: Modelling results from two cross-sectional studies. Environmental Health: A Global Access Science Source 15 (1):118. doi: 10.1186/s12940-016-0203-3.
  • Li, C., G. Zhang, S. Wu, and Q. Zhang. 2018a. Aptamer-based microcantilever-array biosensor for profenofos detection. Analytica Chimica Acta 1020:116–22. doi: 10.1016/j.aca.2018.02.072.
  • Li, S., C. Liu, B. Han, J. Luo, and G. Yin. 2017. An electrochemiluminescence aptasensor switch for aldicarb recognition via ruthenium complex-modified dendrimers on multiwalled carbon nanotubes. Microchimica Acta 184 (6):1669–75. doi: 10.1007/s00604-017-2177-4.
  • Li, S., J. Li, J. Luo, Z. Xu, and X. Ma. 2018b. A microfluidic chip containing a molecularly imprinted polymer and a DNA aptamer for voltammetric determination of carbofuran. Mikrochimica Acta 185 (6):295. doi: 10.1007/s00604-018-2835-1.
  • Li, X., J. Shi, C. Chen, W. Li, L. Han, L. Lan, Y. Guo, Y. Chang, J. Cai, Y. Ding, et al. 2018c. One-step, visual and sensitive detection of phorate in blood based on a DNA–AgNC aptasensor. New Journal of Chemistry 42 (8):6293–8. doi: 10.1039/C8NJ00958A.
  • Li, X., X. Tang, X. Chen, B. Qu, and L. Lu. 2018d. Label-free and enzyme-free fluorescent isocarbophos aptasensor based on MWCNTs and G-quadruplex. Talanta 188:232–7. doi: 10.1016/j.talanta.2018.05.092.
  • Liao, Z., J. Wang, P. Zhang, Y. Zhang, Y. Miao, S. Gao, Y. Deng, and L. Geng. 2018. Recent advances in microfluidic chip integrated electronic biosensors for multiplexed detection. Biosensors & Bioelectronics 121:272–80. doi: 10.1016/j.bios.2018.08.061.
  • Lim, E. S., M.-C. Lim, K. Park, G. Lee, J.-A. Lim, M.-A. Woo, N. Lee, S.-W. Choi, and H.-J. Chang. 2020. Selective binding and elution of aptamers for pesticides based on sol-gel-coated nanoporous anodized aluminum oxide membrane. Nanomaterials 10 (8):1533. doi: 10.3390/nano10081533.
  • Lin, B., Y. Yu, R. Li, Y. Cao, and M. Guo. 2016. Turn-on sensor for quantification and imaging of acetamiprid residues based on quantum dots functionalized with aptamer. Sensors and Actuators B: Chemical 229:100–9. doi: 10.1016/j.snb.2016.01.114.
  • Liu, B., Y. Ge, Y. Zhang, Y. Song, Y. Lv, X. Wang, and S. Wang. 2012. Production of the class-specific antibody and development of direct competitive ELISA for multi-residue detection of organophosphorus pesticides. Food and Agricultural Immunology 23 (2):157–68. doi: 10.1080/09540105.2011.608120.
  • Liu, D. L., Y. Li, R. Sun, J. Y. Xu, Y. Chen, and C. Y. Sun. 2020. Colorimetric detection of organophosphorus pesticides based on the broad-spectrum aptamer. Journal of Nanoscience and Nanotechnology 20 (4):2114–21. doi: 10.1166/jnn.2020.17358.
  • Liu, J., P. Chen, F. Xia, Z. Liu, H. Liu, J. Yi, and C. Zhou. 2020. Sensitive electrochemiluminescence aptasensor for chlorpyrifos detection based on resonance energy transfer between MoS2/Cds nanospheres and Ag/CQDs. Sensors and Actuators B: Chemical 315:128098. doi: 10.1016/j.snb.2020.128098.
  • Liu, K., H. Dong, and Y. Deng. 2016. Recent advances on rapid detection of pesticides based on enzyme biosensor of nanomaterials. Journal of Nanoscience and Nanotechnology 16 (7):6648–56. doi: 10.1166/jnn.2016.11392.
  • Liu, M., A. Khan, Z. Wang, Y. Liu, G. Yang, Y. Deng, and N. He. 2019. Aptasensors for pesticide detection. Biosensors & Bioelectronics 130:174–84. doi: 10.1016/j.bios.2019.01.006.
  • Liu, Y., G. Yang, T. Li, Y. Deng, Z. Chen, and N. He. 2021. Selection of a DNA aptamer for the development of fluorescent aptasensor for carbaryl detection. Chinese Chemical Letters 32 (6):1957–62. doi: 10.1016/j.cclet.2021.01.016.
  • Lu, Y., Y. Tan, Y. Xiao, Z. Li, E. Sheng, and Z. Dai. 2021. A silver@gold nanoparticle tetrahedron biosensor for multiple pesticides detection based on surface-enhanced Raman scattering. Talanta 234:122585. doi: 10.1016/j.talanta.2021.122585.
  • Luo, Q., J. Lai, P. Qiu, and X. Wang. 2018. An ultrasensitive fluorescent sensor for organophosphorus pesticides detection based on RB-Ag/Au bimetallic nanoparticles. Sensors and Actuators B: Chemical 263:517–23. doi: 10.1016/j.snb.2018.02.101.
  • Luo, Y., Z. Jin, J. Wang, P. Ding, and R. Pei. 2021. The isolation of a DNA aptamer to develop a fluorescent aptasensor for the thiamethoxam pesticide. The Analyst 146 (6):1986–95. doi: 10.1039/d0an01967d.
  • Lyu, C., I. M. Khan, and Z. Wang. 2021. Capture-SELEX for aptamer selection: A short review. Talanta 229:122274. doi: 10.1016/j.talanta.2021.122274.
  • Madianos, L., G. Tsekenis, E. Skotadis, L. Patsiouras, and D. Tsoukalas. 2018. A highly sensitive impedimetric aptasensor for the selective detection of acetamiprid and atrazine based on microwires formed by platinum nanoparticles. Biosensors & Bioelectronics 101:268–74. doi: 10.1016/j.bios.2017.10.034.
  • Mahmoudpour, M., Z. Karimzadeh, G. Ebrahimi, M. Hasanzadeh, and J. Ezzati Nazhad Dolatabadi. 2021. Synergizing functional nanomaterials with aptamers based on electrochemical strategies for pesticide detection: Current status and perspectives. Critical Reviews in Analytical Chemistry. Advance online publication. doi: 10.1080/10408347.2021.1919987.
  • Manimala, J. C., S. L. Wiskur, A. D. Ellington, and E. V. Anslyn. 2004. Tuning the specificity of a synthetic receptor using a selected nucleic acid receptor. Journal of the American Chemical Society 126 (50):16515–9. doi: 10.1021/ja0478476.
  • Marze, N. A., S. S. Roy Burman, W. Sheffler, and J. J. Gray. 2018. Efficient flexible backbone protein-protein docking for challenging targets. Bioinformatics (Oxford, England) 34 (20):3461–9. doi: 10.1093/bioinformatics/bty355.
  • Mendonsa, S. D., and M. T. Bowser. 2005. In vitro selection of aptamers with affinity for neuropeptide y using capillary electrophoresis. Journal of the American Chemical Society 127 (26):9382–3. doi: 10.1021/ja052406n.
  • Mosing, R. K, and M. T. Bowser. 2009. Isolating aptamers using capillary electrophoresis–SELEX (CE–SELEX). In Nucleic acid and peptide aptamers: Methods and protocols, ed. Mayer, G., 33–43. Totowa, NJ: Humana Press.
  • Nair, R. V., P. R. Chandran, A. P. Mohamed, and S. Pillai. 2021. Sulphur-doped graphene quantum dot based fluorescent turn-on aptasensor for selective and ultrasensitive detection of omethoate. Analytica Chimica Acta 1181:338893. doi: 10.1016/j.aca.2021.338893.
  • Najwa, B. O. 2014. Enzymatic biosensor associated with molecularly imprinted polymers for sensitive and selective detection of organophosphorus insecticides in olive oil. Science Innovation 2 (6):1–6. doi: 10.11648/j.si.s.2014020601.11.
  • Navien, T. N., R. Thevendran, H. Y. Hamdani, T.-H. Tang, and M. Citartan. 2021. In silico molecular docking in DNA aptamer development. Biochimie 180:54–67. doi: 10.1016/j.biochi.2020.10.005.
  • Neves, M. A. D., O. Reinstein, M. Saad, and P. E. Johnson. 2010. Defining the secondary structural requirements of a cocaine-binding aptamer by a thermodynamic and mutation study. Biophysical Chemistry 153 (1):9–16. doi: 10.1016/j.bpc.2010.09.009.
  • Nguyen, V.-T., Y. S. Kwon, J. H. Kim, and M. B. Gu. 2014. Multiple GO-SELEX for efficient screening of flexible aptamers. Chemical Communications (Cambridge, England) 50 (72):10513–6. doi: 10.1039/C4CC03953J.
  • Nie, Y., Y. Teng, P. Li, W. Liu, Q. Shi, and Y. Zhang. 2018. Label-free aptamer-based sensor for specific detection of malathion residues by surface-enhanced raman scattering. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 191:271–6. doi: 10.1016/j.saa.2017.10.030.
  • Ouyang, H., X. Tu, Z. Fu, W. Wang, S. Fu, C. Zhu, D. Du, and Y. Lin. 2018. Colorimetric and chemiluminescent dual-readout immunochromatographic assay for detection of pesticide residues utilizing g-C3N4/BiFeO3 nanocomposites. Biosensors & Bioelectronics 106:43–9. doi: 10.1016/j.bios.2018.01.033.
  • Ouyang, Q., L. Wang, W. Ahmad, Y. Rong, H. Li, Y. Hu, and Q. Chen. 2021. A highly sensitive detection of carbendazim pesticide in food based on the upconversion-MnO2 luminescent resonance energy transfer biosensor. Food Chemistry 349:129157. doi: 10.1016/j.foodchem.2021.129157.
  • Padlan, C. S., V. N. Malashkevich, S. C. Almo, M. Levy, M. Brenowitz, and M. E. Girvin. 2014. An rna aptamer possessing a novel monovalent cation-mediated fold inhibits lysozyme catalysis by inhibiting the binding of long natural substrates. RNA (New York, N.Y.) 20 (4):447–61. doi: 10.1261/rna.043034.113.
  • Pagratis, N. C. 1996. Rapid preparation of single stranded DNA from pcr products by streptavidin induced electrophoretic mobility shift. Nucleic Acids Research 24 (18):3645–6. doi: 10.1093/nar/24.18.3645.
  • Pang, S., T. P. Labuza, and L. He. 2014. Development of a single aptamer-based surface enhanced Raman scattering method for rapid detection of multiple pesticides. The Analyst 139 (8):1895–901. doi: 10.1039/C3AN02263C.
  • Picó, Y. 2003. Capillary electrophoresis for the determination of pesticide residues. TrAC Trends in Analytical Chemistry 22 (3):133–51. doi: 10.1016/S0165-9936(03)00302-9.
  • Qi, Y., F.-R. Xiu, M. Zheng, and B. Li. 2016. A simple and rapid chemiluminescence aptasensor for acetamiprid in contaminated samples: Sensitivity, selectivity and mechanism. Biosensors & Bioelectronics 83:243–9. doi: 10.1016/j.bios.2016.04.074.
  • Qi, Y., Y. Chen, F.-R. Xiu, and J. Hou. 2020. An aptamer-based colorimetric sensing of acetamiprid in environmental samples: Convenience, sensitivity and practicability. Sensors and Actuators B: Chemical 304:127359. doi: 10.1016/j.snb.2019.127359.
  • Qin, J., X. Cui, P. Wu, Z. Jiang, Y. Chen, R. Yang, Q. Hu, Y. Sun, and S. Zhao. 2017. Fluorescent sensor assay for β-lactamase in milk based on a combination of aptamer and graphene oxide. Food Control. 73:726–33. doi: 10.1016/j.foodcont.2016.09.023.
  • Rahimizadeh, K., H. AlShamaileh, M. Fratini, M. Chakravarthy, M. Stephen, S. Shigdar, and R. N. Veedu. 2017. Development of cell-specific aptamers: Recent advances and insight into the selection procedures. Molecules 22 (12):2070. doi: 10.3390/molecules22122070.
  • Ran, X. D., and Y. G. Wu. 2019. Screening aptamers and development of colorimetric detection method of paraquat pesticide. Chinese Journal of Analytical Chemistry 47 (4):567–75. doi: 10.19756/j.issn.0253.3820.191013.
  • Reinemann, C., R. Stoltenburg, and B. Strehlitz. 2009. Investigations on the specificity of DNA aptamers binding to ethanolamine. Analytical Chemistry 81 (10):3973–8. doi: 10.1021/ac900305y.
  • Rejczak, T., and T. Tuzimski. 2017. Quechers-based extraction with dispersive solid phase extraction clean-up using PSA and ZrO2-based sorbents for determination of pesticides in bovine milk samples by HPLC-DAD. Food Chemistry 217:225–33. doi: 10.1016/j.foodchem.2016.08.095.
  • Rong, Y., H. Li, Q. Ouyang, S. Ali, and Q. Chen. 2020. Rapid and sensitive detection of diazinon in food based on the fret between rare-earth doped upconversion nanoparticles and graphene oxide. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 239:118500. doi: 10.1016/j.saa.2020.118500.
  • Sanchez, P. E. 2012. DNA aptamer development for detection of atrazine and protective antigen toxin using fluorescence polarization: Electronic thesis. UC Riverside.
  • Sharma, A. K., and J. M. Heemstra. 2011. Small-molecule-dependent split aptamer ligation. Journal of the American Chemical Society 133 (32):12426–9. doi: 10.1021/ja205518e.
  • Shi, H., Q. Kou, P. Wu, Q. Sun, J. Wu, and T. Le. 2021. Selection and application of DNA aptamers against sulfaquinoxaline assisted by graphene oxide–based SELEX. Food Analytical Methods 14 (2):250–9. doi: 10.1007/s12161-020-01869-2.
  • Shi, H., G. Zhao, M. Liu, L. Fan, and T. Cao. 2013. Aptamer-based colorimetric sensing of acetamiprid in soil samples: Sensitivity, selectivity and mechanism. Journal of Hazardous Materials 260:754–61. doi: 10.1016/j.jhazmat.2013.06.031.
  • Song, K.-M., E. Jeong, W. Jeon, M. Cho, and C. Ban. 2012. Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Analytical and Bioanalytical Chemistry 402 (6):2153–61. doi: 10.1007/s00216-011-5662-3.
  • Song, M. Y., D. Nguyen, S. W. Hong, and B. C. Kim. 2017. Broadly reactive aptamers targeting bacteria belonging to different genera using a sequential toggle cell-SELEX. Scientific Reports 7 (1):43641. doi: 10.1038/srep43641.
  • Su, D., H. Li, X. Yan, Y. Lin, and G. Lu. 2021. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. TrAC Trends in Analytical Chemistry 134:116126. doi: 10.1016/j.trac.2020.116126.
  • Su, L., S. Wang, L. Wang, Z. Yan, H. Yi, D. Zhang, G. Shen, and Y. Ma. 2020. Fluorescent aptasensor for carbendazim detection in aqueous samples based on gold nanoparticles quenching rhodamine b. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 225:117511. doi: 10.1016/j.saa.2019.117511.
  • Sudakin, D. L., and D. L. Stone. 2011. Dialkyl phosphates as biomarkers of organophosphates: The current divide between epidemiology and clinical toxicology. Clinical Toxicology (Philadelphia, Pa.) 49 (9):771–81. doi: 10.3109/15563650.2011.624101.
  • Sun, Y., Z. Li, X. Huang, D. Zhang, X. Zou, J. Shi, X. Zhai, C. Jiang, X. Wei, T. Liu, et al. 2019. A nitrile-mediated aptasensor for optical anti-interference detection of acetamiprid in apple juice by surface-enhanced raman scattering. Biosensors & Bioelectronics 145:111672. doi: 10.1016/j.bios.2019.111672.
  • Svobodová, M., A. Pinto, P. Nadal, and C. K. O’ Sullivan. 2012. Comparison of different methods for generation of single-stranded DNA for SELEX processes. Analytical and Bioanalytical Chemistry 404 (3):835–42. doi: 10.1007/s00216-012-6183-4.
  • Swainson, N. M., P. Aiemderm, C. Saikaew, K. Theeraraksakul, P. Rimdusit, C. Kraiya, S. Unajak, and K. Choowongkomon. 2021. Biosensors for the detection of organophosphate exposure by a new diethyl thiophosphate-specific aptamer. Biotechnology Letters 43 (9):1869–81. doi: 10.1007/s10529-021-03158-2.
  • Talari, F. F., A. Bozorg, F. Faridbod, and M. Vossoughi. 2021. A novel sensitive aptamer-based nanosensor using rGQDs and MWCNTs for rapid detection of diazinon pesticide. Journal of Environmental Chemical Engineering 9 (1):104878. doi: 10.1016/j.jece.2020.104878.
  • Tang, T., J. Deng, M. Zhang, G. Shi, and T. Zhou. 2016. Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: A universal strategy for ratiometric detection of organophosphorus pesticides. Talanta 146:55–61. doi: 10.1016/j.talanta.2015.08.023.
  • Tian, Y., Y. Wang, Z. Sheng, T. Li, and X. Li. 2016. A colorimetric detection method of pesticide acetamiprid by fine-tuning aptamer length. Analytical Biochemistry 513:87–92. doi: 10.1016/j.ab.2016.09.004.
  • Trinh, K. H., U. S. Kadam, J. Song, Y. Cho, C. H. Kang, K. O. Lee, C. O. Lim, W. S. Chung, and J. C. Hong. 2021. Novel DNA aptameric sensors to detect the toxic insecticide fenitrothion. International Journal of Molecular Sciences 22 (19):10846. doi: 10.3390/ijms221910846.
  • Vendrell, M., K. K. Maiti, K. Dhaliwal, and Y.-T. Chang. 2013. Surface-enhanced Raman scattering in cancer detection and imaging. Trends in Biotechnology 31 (4):249–57. doi: 10.1016/j.tibtech.2013.01.013.
  • Wang, C., D. Chen, Q. Wang, and Q. Wang. 2016. Aptamer-based resonance light scattering for sensitive detection of acetamiprid. Analytical Sciences: The International Journal of the Japan Society for Analytical Chemistry 32 (7):757–62. doi: 10.2116/analsci.32.757.
  • Wang, H.-B., Y. Li, H.-Y. Bai, and Y.-M. Liu. 2018a. DNA-templated au nanoclusters and MnO2 sheets: A label-free and universal fluorescence biosensing platform. Sensors and Actuators B: Chemical 259:204–10. doi: 10.1016/j.snb.2017.12.048.
  • Wang, H., Y. Wang, S. Liu, J. Yu, W. Xu, Y. Guo, and J. Huang. 2015. Target-aptamer binding triggered quadratic recycling amplification for highly specific and ultrasensitive detection of antibiotics at the attomole level. Chemical Communications (Cambridge, England) 51 (39):8377–80. doi: 10.1039/C5CC01473E.
  • Wang, J., Y. Wu, P. Zhou, W. Yang, H. Tao, S. Qiu, and C. Feng. 2018b. A novel fluorescent aptasensor for ultrasensitive and selective detection of acetamiprid pesticide based on the inner filter effect between gold nanoparticles and carbon dots. The Analyst 143 (21):5151–60. doi: 10.1039/C8AN01166D.
  • Wang, J., L. Zhu, T. Li, X. Li, K. Huang, and W. Xu. 2022. Multiple functionalities of functional nucleic acids for developing high-performance lateral flow assays. TrAC Trends in Analytical Chemistry 148:116529. doi: 10.1016/j.trac.2022.116529.
  • Wang, L., X. Liu, Q. Zhang, C. Zhang, Y. Liu, K. Tu, and J. Tu. 2012. Selection of DNA aptamers that bind to four organophosphorus pesticides. Biotechnology Letters 34 (5):869–74. doi: 10.1007/s10529-012-0850-6.
  • Wang, R., Q. Zhang, Y. Zhang, H. Shi, K. T. Nguyen, and X. Zhou. 2019a. Unconventional split aptamers cleaved at functionally essential sites preserve biorecognition capability. Analytical Chemistry 91 (24):15811–7. doi: 10.1021/acs.analchem.9b04115.
  • Wang, S., C. Wang, Y. Lv, and S. Shen. 2018c. Fabrication of fluorescent biosensing platform based on graphene oxide-DNA and their application in biomolecule detection. TrAC Trends in Analytical Chemistry 106:53–61. doi: 10.1016/j.trac.2018.07.004.
  • Wang, T., C. Chen, L. M. Larcher, R. A. Barrero, and R. N. Veedu. 2019b. Three decades of nucleic acid aptamer technologies: Lessons learned, progress and opportunities on aptamer development. Biotechnology Advances 37 (1):28–50. doi: 10.1016/j.biotechadv.2018.11.001.
  • Wang, W., X. Wang, N. Cheng, Y. Luo, Y. Lin, W. Xu, and D. Du. 2020a. Recent advances in nanomaterials-based electrochemical (bio)sensors for pesticides detection. TrAC Trends in Analytical Chemistry 132:116041. doi: 10.1016/j.trac.2020.116041.
  • Wang, W., Y. Xu, N. Cheng, Y. Xie, K. Huang, and W. Xu. 2020b. Dual-recognition aptazyme-driven DNA nanomachine for two-in-one electrochemical detection of pesticides and heavy metal ions. Sensors and Actuators B: Chemical 321:128598. doi: 10.1016/j.snb.2020.128598.
  • Wang, X., Y. Yang, Y. Yin, N. Zeng, Y. Dong, J. Liu, L. Wang, Z. Yang, and C. Yang. 2022. High-throughput aptamer microarrays for fluorescent detection of multiple organophosphorus pesticides in food. Analytical Chemistry 94 (7):3173–9. doi: 10.1021/acs.analchem.1c04650.
  • Weerathunge, P., B. K. Behera, S. Zihara, M. Singh, S. N. Prasad, S. Hashmi, P. R. D. Mariathomas, V. Bansal, and R. Ramanathan. 2019. Dynamic interactions between peroxidase-mimic silver nanozymes and chlorpyrifos-specific aptamers enable highly-specific pesticide sensing in river water. Analytica Chimica Acta 1083:157–65. doi: 10.1016/j.aca.2019.07.066.
  • Weerathunge, P., R. Ramanathan, R. Shukla, T. K. Sharma, and V. Bansal. 2014. Aptamer-controlled reversible inhibition of gold nanozyme activity for pesticide sensing. Analytical Chemistry 86 (24):11937–41. doi: 10.1021/ac5028726.
  • Williams, R. M., C. L. Crihfield, S. Gattu, L. A. Holland, and L. J. Sooter. 2014a. In vitro selection of a single-stranded DNA molecular recognition element against atrazine. International Journal of Molecular Sciences 15 (8):14332–47. doi: 10.3390/ijms150814332.
  • Williams, R. M., A. R. Kulick, S. Yedlapalli, L. Battistella, C. J. Hajiran, and L. J. Sooter. 2014b. In vitro selection of a single-stranded DNA molecular recognition element specific for bromacil. Journal of Nucleic Acids 2014:102968. doi: 10.1155/2014/102968.
  • Williams, R. M., E. Maher, and L. J. Sooter. 2014. In vitro selection of a single-stranded DNA molecular recognition element for the pesticide malathion. Combinatorial Chemistry & High Throughput Screening 17 (8):694–702. doi: 10.2174/1386207317666140827123631.
  • Wondergem, J. A. J., H. Schiessel, and M. Tompitak. 2017. Performing SELEX experiments in silico. The Journal of Chemical Physics 147 (17):174101. doi: 10.1063/1.5001394.
  • Wu, H., J. Wu, H. Wang, Y. Liu, G. Han, and P. Zou. 2021. Sensitive and label-free chemiluminescence detection of malathion using exonuclease-assisted dual signal amplification and G-quadruplex/hemin DNAzyme. Journal of Hazardous Materials 411:124784. doi: 10.1016/j.jhazmat.2020.124784.
  • Xiao, X., L. Zhu, W. He, Y. Luo, and W. Xu. 2019. Functional nucleic acids tailoring and its application. TrAC Trends in Analytical Chemistry 118:138–57. doi: 10.1016/j.trac.2019.05.027.
  • Xie, M., F. Zhao, Y. Zhang, Y. Xiong, and S. Han. 2022. Recent advances in aptamer-based optical and electrochemical biosensors for detection of pesticides and veterinary drugs. Food Control. 131:108399. doi: 10.1016/j.foodcont.2021.108399.
  • Xiu, F., Y. Lu, Y. Qi, Y. Wang, and J. He. 2021. Ultrasensitive and practical chemiluminescence sensing pesticide residue acetamiprid in agricultural products and environment: Combination of synergistically coupled co-amplifying signal and smart interface engineering. Talanta 235:122811. doi: 10.1016/j.talanta.2021.122811.
  • Xu, G., D. Huo, C. Hou, Y. Zhao, J. Bao, M. Yang, and H. Fa. 2018. A regenerative and selective electrochemical aptasensor based on copper oxide nanoflowers-single walled carbon nanotubes nanocomposite for chlorpyrifos detection. Talanta 178:1046–52. doi: 10.1016/j.talanta.2017.08.086.
  • Xu, G., D. Huo, J. Hou, C. Zhang, Y. Zhao, C. Hou, J. Bao, X. Yao, and M. Yang. 2021. An electrochemical aptasensor of malathion based on ferrocene/DNA-hybridized mof, DNA coupling-gold nanoparticles and competitive DNA strand reaction. Microchemical Journal 162:105829. doi: 10.1016/j.microc.2020.105829.
  • Xu, M.-L., J.-B. Liu, and J. Lu. 2014. Determination and control of pesticide residues in beverages: A review of extraction techniques, chromatography, and rapid detection methods. Applied Spectroscopy Reviews 49 (2):97–120. doi: 10.1080/05704928.2013.803978.
  • Yan, X., H. Li, X. Han, and X. Su. 2015. A ratiometric fluorescent quantum dots based biosensor for organophosphorus pesticides detection by inner-filter effect. Biosensors & Bioelectronics 74:277–83. doi: 10.1016/j.bios.2015.06.020.
  • Yan, X., H. Li, and X. Su. 2018. Review of optical sensors for pesticides. TrAC Trends in Analytical Chemistry 103:1–20. doi: 10.1016/j.trac.2018.03.004.
  • Yang, G., C. Zhu, X.-H. Liu, Y. Wang, and F. Qu. 2018. Screening of clenbuterol hydrochloride aptamers based on capillary electrophoresis. Chinese Journal of Analytical Chemistry 46 (10):1595–603. doi: 10.1016/S1872-2040(18)61120-X.
  • Yang, J., and M. T. Bowser. 2013. Capillary electrophoresis-SELEX selection of catalytic DNA aptamers for a small-molecule porphyrin target . Analytical Chemistry 85 (3):1525–30. doi: 10.1021/ac302721j.
  • Yang, L., H. Sun, X. Wang, W. Yao, W. Zhang, and L. Jiang. 2019. An aptamer based aggregation assay for the neonicotinoid insecticide acetamiprid using fluorescent upconversion nanoparticles and DNA functionalized gold nanoparticles . Mikrochimica Acta 186 (5):308. doi: 10.1007/s00604-019-3422-9.
  • Yang, T., Z. Luo, Y. Tian, C. Qian, and Y. Duan. 2020. Design strategies of AuNPs-based nucleic acid colorimetric biosensors. TrAC Trends in Analytical Chemistry 124:115795. doi: 10.1016/j.trac.2019.115795.
  • Yang, Y., Y. Tang, C. Wang, B. Liu, and Y. Wu. 2021. Selection and identification of a DNA aptamer for ultrasensitive and selective detection of λ-cyhalothrin residue in food. Analytica Chimica Acta 1179:338837. doi: 10.1016/j.aca.2021.338837.
  • Yang, Z., J. Qian, X. Yang, D. Jiang, X. Du, K. Wang, H. Mao, and K. Wang. 2015. A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide. Biosensors & Bioelectronics 65:39–46. doi: 10.1016/j.bios.2014.10.004.
  • Yi, J., Z. Liu, J. Liu, H. Liu, F. Xia, D. Tian, and C. Zhou. 2020. A label-free electrochemical aptasensor based on 3D porous CS/rGO/GCE for acetamiprid residue detection. Biosensors & Bioelectronics 148:111827. doi: 10.1016/j.bios.2019.111827.
  • Zavyalova, E., A. Turashev, A. Novoseltseva, V. Legatova, O. Antipova, E. Savchenko, S. Balk, A. Golovin, G. Pavlova, and A. Kopylov. 2020. Pyrene-modified DNA aptamers with high affinity to wild-type egfr and egfrviii. Nucleic Acid Therapeutics 30 (3):175–87. doi: 10.1089/nat.2019.0830.
  • Zhang, C., L. Wang, Z. Tu, X. Sun, Q. He, Z. Lei, C. Xu, Y. Liu, X. Zhang, J. Yang, et al. 2014. Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay. Biosensors & Bioelectronics 55:216–9. doi: 10.1016/j.bios.2013.12.020.
  • Zhang, H., H. Zhang, A. Aldalbahi, X. Zuo, C. Fan, and X. Mi. 2017. Fluorescent biosensors enabled by graphene and graphene oxide. Biosensors & Bioelectronics 89 (Pt 1):96–106. doi: 10.1016/j.bios.2016.07.030.
  • Zhang, J., X. Lv, W. Feng, X. Li, K. Li, and Y. Deng. 2018. Aptamer-based fluorometric lateral flow assay for creatine kinase mb. Mikrochimica Acta 185 (8):364. doi: 10.1007/s00604-018-2905-4.
  • Zhang, W., D. Li, J. Zhang, L. Jiang, Z. Li, and J. S. Lin. 2020. Preparation and characterization of aptamers against O,p’-DDT. International Journal of Molecular Sciences 21 (6):2211. doi: 10.3390/ijms21062211.
  • Zhang, X., X. Huang, Z. Wang, Y. Zhang, X. Huang, Z. Li, M. Daglia, J. Xiao, J. Shi, X. Zou, et al. 2022. Bioinspired nanozyme enabling glucometer readout for portable monitoring of pesticide under resource-scarce environments. Chemical Engineering Journal 429:132243. doi: 10.1016/j.cej.2021.132243.
  • Zhang, Y., B. S. Lai, and M. Juhas. 2019. Recent advances in aptamer discovery and applications. Molecules 24 (5):941. doi: 10.3390/molecules24050941.
  • Zhao, M., M. Wang, X. Zhang, Y. Zhu, J. Cao, Y. She, Z. Cao, G. Li, J. Wang, A. M. Abd El-Aty, et al. 2021a. Recognition elements based on the molecular biological techniques for detecting pesticides in food: A review. Critical Reviews in Food Science and Nutrition. Advance online publication. doi: 10.1080/10408398.2021.2009762.
  • Zhao, X., X. Zhang, M. Qin, Y. Song, J. Zhang, X. Xia, X. Cui, K. Gao, and Q. Han. 2021b. Determination of carbendazim by aptamer-based fluorescence resonance energy transfer (FRET). Analytical Letters 54 (13):2198–210. doi: 10.1080/00032719.2020.1849250.
  • Zheng, X., B. Hu, S. X. Gao, D. J. Liu, M. J. Sun, B. H. Jiao, and L. H. Wang. 2015. A saxitoxin-binding aptamer with higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation. Toxicon: Official Journal of the International Society on Toxinology 101:41–7. doi: 10.1016/j.toxicon.2015.04.017.
  • Zhou, J., D. Wang, H. Yang, and F. Wang. 2022. Specific detection of acetamiprid with aptamer based on flexible and adhesive sers membrane. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 270:120801. doi: 10.1016/j.saa.2021.120801.
  • Zhou, N., J. Wang, J. Zhang, C. Li, Y. Tian, and J. Wang. 2013. Selection and identification of streptomycin-specific single-stranded DNA aptamers and the application in the detection of streptomycin in honey. Talanta 108:109–16. doi: 10.1016/j.talanta.2013.01.064.
  • Zhu, C., X. Wang, L. Li, C. Hao, Y. Hu, A. S. Rizvi, and F. Qu. 2018. Online reaction based single-step ce for protein-ssdna complex obtainment to assist aptamer selection. Biochemical and Biophysical Research Communications 506 (1):169–75. doi: 10.1016/j.bbrc.2018.08.189.
  • Zhu, C., G. Yang, M. Ghulam, L. Li, and F. Qu. 2019. Evolution of multi-functional capillary electrophoresis for high-efficiency selection of aptamers. Biotechnology Advances 37 (8):107432. doi: 10.1016/j.biotechadv.2019.107432.
  • Zong, C., and J. Liu. 2019. The arsenic-binding aptamer cannot bind arsenic: Critical evaluation of aptamer selection and binding. Analytical Chemistry 91 (16):10887–93. doi: 10.1021/acs.analchem.9b02789.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.