616
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Advances in dietary proteins binding with co-existed anthocyanins in foods: Driving forces, structure-affinity relationship, and functional and nutritional properties

, &
Pages 10792-10813 | Published online: 24 Jun 2022

References

  • Agboola, S., D. Ng, and D. Mills. 2005. Characterisation and functional properties of Australian rice protein isolates. Journal of Cereal Science 41 (3):283–90. doi: 10.1016/j.jcs.2004.10.007.
  • Amagliani, L., J. O’Regan, A. L. Kelly, and J. A. O’Mahony. 2017. The composition, extraction, functionality and applications of rice proteins: A review. Trends in Food Science & Technology 64:1–12. doi: 10.1016/j.tifs.2017.01.008.
  • Ansari, J. A., S. Naz, O. M. Tarar, R. Siddiqi, M. S. Haider, and K. Jamil. 2015. Binding effect of proline-rich-proteins (PRPs) on in vitro antimicrobial activity of the flavonoids. Brazilian Journal of Microbiology 46 (1):183–8. doi: 10.1590/S1517-838246120130280.
  • Arroyo-Maya, I. J., J. Campos-Terán, A. Hernández-Arana, and D. J. McClements. 2016. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins. Food Chemistry 213:431–9. doi: 10.1016/j.foodchem.2016.06.105.
  • Asakura, T., K. Okushita, and M. P. Williamson. 2015. Analysis of the structure of Bombyx mori silk fibroin by NMR. Macromolecules 48 (8):2345–57. doi: 10.1021/acs.macromol.5b00160.
  • Attaribo, T., X. Jiang, G. Huang, B. Zhang, X. Xin, Y. Zhang, N. Zhang, and Z. Gui. 2020. Studies on the interactional characterization of preheated silkworm pupae protein (SPP) with anthocyanins (C3G) and their effect on anthocyanin stability. Food Chemistry 326:126904. doi: 10.1016/j.foodchem.2020.126904.
  • Baba, W. N., D. J. McClements, and S. Maqsood. 2021. Whey protein-polyphenol conjugates and complexes: Production, characterization, and applications. Food Chemistry 365:130455. doi: 10.1016/j.foodchem.2021.130455.
  • Bakkialakshmi, S., and D. Chandrakala. 2012. A spectroscopic investigations of anticancer drugs binding to bovine serum albumin. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 88:2–9. doi: 10.1016/j.saa.2011.10.076.
  • Bamba, B. S. B., J. Shi, C. C. Tranchant, S. J. Xue, C. F. Forney, L. T. Lim, W. Xu, and G. Xu. 2018. Coencapsulation of polyphenols and anthocyanins from blueberry pomace by double emulsion stabilized by whey proteins: Effect of homogenization parameters. Molecules 23 (10):2525. doi: 10.3390/molecules23102525.
  • Basu, A, and G. S. Kumar. 2018. Binding of food colorants to functional protein hemoglobin. In Natural and artificial flavoring agents and food dyes, 133–63. London, UK: Academic Press. doi: 10.1016/B978-0-12-811518-3.00005-3.
  • Betz, M., and U. Kulozik. 2011. Whey protein gels for the entrapment of bioactive anthocyanins from bilberry extract. International Dairy Journal 21 (9):703–10. doi: 10.1016/j.idairyj.2011.04.003.
  • Bueno, J. M., P. Sáez-Plaza, F. Ramos-Escudero, A. M. Jiménez, R. Fett, and A. G. Asuero. 2012. Analysis and antioxidant capacity of anthocyanin pigments. Part II: Chemical structure, color, and intake of anthocyanins. Critical Reviews in Analytical Chemistry 42 (2):126–51. doi: 10.1080/10408347.2011.632314.
  • Cahyana, Y., and M. H. Gordon. 2013. Interaction of anthocyanins with human serum albumin: Influence of pH and chemical structure on binding. Food Chemistry 141 (3):2278–85. doi: 10.1016/j.foodchem.2013.05.026.
  • Cao, H., X. Jing, D. Wu, and Y. Shi. 2013. Methylation of genistein and kaempferol improves their affinities for proteins. International Journal of Food Sciences and Nutrition 64 (4):437–43. doi: 10.3109/09637486.2012.759186.
  • Carrillo, C., C. Buvé, A. Panozzo, T. Grauwet, and M. Hendrickx. 2017. Role of structural barriers in the in vitro bioaccessibility of anthocyanins in comparison with carotenoids. Food Chemistry 227:271–9. doi: 10.1016/j.foodchem.2017.01.062.
  • Carter, D. C., and J. X. Ho. 1994. Structure of serum albumin. Advances in Protein Chemistry 45:153–203. 10.1016/S0065-3233(08)60640-3.
  • Casanova, F., A.-L. Chapeau, P. Hamon, A. F. de Carvalho, T. Croguennec, and S. Bouhallab. 2018. pH- and ionic strength-dependent interaction between cyanidin-3-O-glucoside and sodium caseinate. Food Chemistry 267:52–9. doi: 10.1016/j.foodchem.2017.06.081.
  • Cevallos-Casals, B. A., and L. Cisneros-Zevallos. 2003. Stoichiometric and kinetic studies of phenolic antioxidants from Andean purple corn and red-fleshed sweet potato. Journal of Agricultural and Food Chemistry 51 (11):3313–9. doi: 10.1021/jf034109c.
  • Chang, C., T. G. Meikle, Y. Su, X. Wang, C. Dekiwadia, C. J. Drummond, C. E. Conn, and Y. Yang. 2019. Encapsulation in egg white protein nanoparticles protects anti-oxidant activity of curcumin. Food Chemistry 280:65–72. doi: 10.1016/j.foodchem.2018.11.124.
  • Chen, Z., C. Wang, X. Gao, Y. Chen, R. Kumar Santhanam, C. Wang, L. Xu, and H. Chen. 2019. Interaction characterization of preheated soy protein isolate with cyanidin-3-O-glucoside and their effects on the stability of black soybean seed coat anthocyanins extracts. Food Chemistry 271:266–73. doi: 10.1016/j.foodchem.2018.07.170.
  • Cheng, J., J. H. Liu, G. Prasanna, and P. Jing. 2017. Spectrofluorimetric and molecular docking studies on the interaction of cyanidin-3-O-glucoside with whey protein, β-lactoglobulin. International Journal of Biological Macromolecules 105 (Pt 1):965–72. doi: 10.1016/j.ijbiomac.2017.07.119.
  • Cho, J. M., D. Yoo, J. Y. Lee, M. S. Oh, K. C. Ha, H. I. Baek, S. M. Lee, J. H. Lee, and H. J. Yoo. 2021. Supplementation with a natural source of amino acids, Sil-Q1 (silk peptide), enhances natural killer cell activity: A redesigned clinical trial with a reduced supplementation dose and minimized seasonal effects in a larger population. Nutrients 13 (9):2930. doi: 10.3390/nu13092930.
  • Chung, C., T. Rojanasasithara, W. Mutilangi, and D. J. McClements. 2015. Enhanced stability of anthocyanin-based color in model beverage systems through whey protein isolate complexation. Food Research International 76 (Pt 3):761–8. doi: 10.1016/j.foodres.2015.07.003.
  • Cirkovic Velickovic, T. D., and D. J. Stanic-Vucinic. 2018. The role of dietary phenolic compounds in protein digestion and processing technologies to improve their antinutritive properties. Comprehensive Reviews in Food Science and Food Safety 17 (1):82–103. doi: 10.1111/1541-4337.12320.
  • Cortez, R., D. A. Luna-Vital, D. Margulis, and E. Gonzalez de Mejia. 2017. Natural pigments: Stabilization methods of anthocyanins for food applications. Comprehensive Reviews in Food Science and Food Safety 16 (1):180–98. doi: 10.1111/1541-4337.12244.
  • Cui, H., X. Si, J. Tian, Y. Lang, N. Gao, H. Tan, Y. Bian, Z. Zang, Q. Jiang, Y. Bao, et al. 2022. Anthocyanins-loaded nanocomplexes comprising casein and carboxymethyl cellulose: Stability, antioxidant capacity, and bioaccessibility. Food Hydrocolloids. 122:107073. doi: 10.1016/j.foodhyd.2021.107073.
  • Dai, T., R. Li, C. Liu, W. Liu, T. Li, J. Chen, M. Kharat, and D. J. McClements. 2019. Effect of rice glutelin-resveratrol interactions on the formation and stability of emulsions: A multiphotonic spectroscopy and molecular docking study. Food Hydrocolloids. 97:105234. doi: 10.1016/j.foodhyd.2019.105234.
  • Dai, T., X. Yan, Q. Li, T. Li, C. Liu, D. J. McClements, and J. Chen. 2017. Characterization of binding interaction between rice glutelin and gallic acid: Multi-spectroscopic analyses and computational docking simulation. Food Research International 102:274–81. doi: 10.1016/j.foodres.2017.09.020.
  • Das, A. B., V. V. Goud, and C. Das. 2017. Extraction of phenolic compounds and anthocyanin from black and purple rice bran (Oryza sativa L.) using ultrasound: A comparative analysis and phytochemical profiling. Industrial Crops and Products 95:332–41. doi:10.1016/j.indcrop.2016.10.041.
  • Das, S., N. Bora, M. A. Rohman, R. Sharma, A. N. Jha, and A. S. Roy. 2018. Molecular recognition of bio-active flavonoids quercetin and rutin by bovine hemoglobin: An overview of the binding mechanism, thermodynamics and structural aspects through multi-spectroscopic and molecular dynamics simulation studies. Physical Chemistry Chemical Physics 20 (33):21668–84. doi: 10.1039/C8CP02760A.
  • de Pascual-Teresa, S., and M. T. Sanchez-Ballesta. 2008. Anthocyanins: From plant to health. Phytochemistry Reviews 7 (2):281–99. doi: 10.1007/s11101-007-9074-0.
  • Ding, Y., J. Tang, and F. Guo. 2017. Identification of protein-ligand binding sites by sequence information and ensemble classifier. Journal of Chemical Information and Modeling 57 (12):3149–61. doi: 10.1021/acs.jcim.7b00307.
  • Dumitrașcu, L., N. Stănciuc, and I. Aprodu. 2021. Encapsulation of anthocyanins from cornelian cherry fruits using heated or non-heated soy proteins. Foods 10 (6):1342. doi: 10.3390/foods10061342.
  • Fabian, C., and Y. H. Ju. 2011. A review on rice bran protein: Its properties and extraction methods. Critical Reviews in Food Science and Nutrition 51 (9):816–27. 10.1080/10408398.2010.482678.
  • Fu, X., T. Belwal, Y. He, Y. Xu, L. Li, and Z. Luo. 2020. Interaction and binding mechanism of cyanidin-3-O-glucoside to ovalbumin in varying pH conditions: A spectroscopic and molecular docking study. Food Chemistry 320:126616. doi: 10.1016/j.foodchem.2020.126616.
  • Gianibelli, M. C., O. R. Larroque, F. MacRitchie, and C. W. Wrigley. 2001. Biochemical, genetic, and molecular characterization of wheat glutenin and its component subunits. Cereal Chemistry Journal 78 (6):635–46. http://doi.org/10.1094/cchem.2001.78.6.635.
  • Gong, S., C. Yang, J. Zhang, Y. Yu, X. Gu, W. Li, and Z. Wang. 2021. Study on the interaction mechanism of purple potato anthocyanins with casein and whey protein. Food Hydrocolloids. 111:106223. doi: 10.1016/j.foodhyd.2020.106223.
  • Gowd, V., N. Karim, L. Xie, M. R. I. Shishir, Y. Xu, and W. Chen. 2020. In vitro study of bioaccessibility, antioxidant, and α-glucosidase inhibitory effect of pelargonidin-3-O-glucoside after interacting with beta-lactoglobulin and chitosan/pectin. International Journal of Biological Macromolecules 154:380–9. doi: 10.1016/j.ijbiomac.2020.03.126.
  • Hammann, F., and M. Schmid. 2014. Determination and quantification of molecular interactions in protein films: A review. Materials 7 (12):7975–96. doi: 10.3390/ma7127975.
  • Han, F., P. Yang, H. Wang, I. Fernandes, N. Mateus, and Y. Liu. 2019. Digestion and absorption of red grape and wine anthocyanins through the gastrointestinal tract. Trends in Food Science & Technology 83:211–24. doi: 10.1016/j.tifs.2018.11.025.
  • He, W., K. He, F. Sun, L. Mu, S. Liao, Q. Li, J. Yi, Z. Liu, and X. Wu. 2021. Effect of heat, enzymatic hydrolysis and acid-alkali treatment on the allergenicity of silkworm pupa protein extract. Food Chemistry 343:128461. doi: 10.1016/j.foodchem.2020.128461.
  • He, W., H. Mu, Z. Liu, M. Lu, F. Hang, J. Chen, M. Zeng, F. Qin, and Z. He. 2018. Effect of preheat treatment of milk proteins on their interactions with cyanidin-3-O-glucoside. Food Research International 107:394–405. doi: 10.1016/j.foodres.2018.02.064.
  • He, W., Z. Yin, S. Liu, Y. Chen, X. Qie, J. Chen, M. Zeng, F. Qin, and Z. He. 2021. Effect of preheated milk proteins and bioactive compounds on the stability of cyanidin-3-O-glucoside. Food Chemistry 345:128829. doi: 10.1016/j.foodchem.2020.128829.
  • He, Z., M. Xu, M. Zeng, F. Qin, and J. Chen. 2016a. Interactions of milk α- and β-casein with malvidin-3-O-glucoside and their effects on the stability of grape skin anthocyanin extracts. Food Chemistry 199:314–22. doi: 10.1016/j.foodchem.2015.12.035.
  • He, Z., M. Xu, M. Zeng, F. Qin, and J. Chen. 2016b. Preheated milk proteins improve the stability of grape skin anthocyanins extracts. Food Chemistry 210:221–7. doi: 10.1016/j.foodchem.2016.04.116.
  • He, Z., H. Zhu, M. Xu, M. Zeng, F. Qin, and J. Chen. 2016. Complexation of bovine β-lactoglobulin with malvidin-3-O-glucoside and its effect on the stability of grape skin anthocyanin extracts. Food Chemistry 209:234–40. doi: 10.1016/j.foodchem.2016.04.048.
  • Hegde, A. H., B. Sandhya, and J. Seetharamappa. 2013. Investigations to reveal the nature of interactions of human hemoglobin with curcumin using optical techniques. International Journal of Biological Macromolecules 52:133–8. doi: 10.1016/j.ijbiomac.2012.09.015.
  • Holland, C., K. Numata, J. Rnjak‐Kovacina, and F. P. Seib. 2019. The biomedical use of silk: Past, present, future. Advanced Healthcare Materials 8 (1):1800465. doi: 10.1002/adhm.201800465.
  • Hornedo-Ortega, R., Z. Rasines-Perea, A. B. Cerezo, P.-L. Teissedre, and M. Jourdes. 2021. Anthocyanins: Dietary sources, bioavailability, human metabolic pathways, and potential anti-neuroinflammatory activity. In Phenolic compounds-chemistry, synthesis, diversity, non-conventional industrial, pharmaceutical and therapeutic applications, ed. F. A, Badria, 95-117. London, UK: IntechOpen.
  • Hossain, M., Khan, A. Y., and Kumar, G. S. 2011. Interaction of the anticancer plant alkaloid sanguinarine with bovine serum albumin. PLoS One 6 (4):e18333. doi: 10.1371/journal.pone.0018333.
  • Huang, Y., S. Zhou, G. Zhao, and F. Ye. 2021. Destabilisation and stabilisation of anthocyanins in purple-fleshed sweet potatoes: A review. Trends in Food Science & Technology 116:1141–54. doi: 10.1016/j.tifs.2021.09.013.
  • Inada, K. O. P., T. B. R. Silva, L. A. Lobo, R. M. C. P. Domingues, D. Perrone, and M. Monteiro. 2020. Bioaccessibility of phenolic compounds of jaboticaba (Plinia jaboticaba) peel and seed after simulated gastrointestinal digestion and gut microbiota fermentation. Journal of Functional Foods 67:103851. doi: 10.1016/j.jff.2020.103851.
  • Jahromi, S. H. R., R. Farhoosh, B. Hemmateenejad, and M. Varidi. 2020. Characterization of the binding of cyanidin-3-glucoside to bovine serum albumin and its stability in a beverage model system: A multispectroscopic and chemometrics study. Food Chemistry 311:126015. doi: 10.1016/j.foodchem.2019.126015.
  • Jiang, Y., Z. Yin, Y. Wu, X. Qie, Y. Chen, M. Zeng, Z. Wang, J. Chen, and Z. He. 2021. Inhibitory effects of soy protein and its hydrolysate on the degradation of anthocyanins in mulberry extract. Food Bioscience 40:100911. doi: 10.1016/j.fbio.2021.100911.
  • Kasaai, M. R. 2018. Zein and zein -based nano-materials for food and nutrition applications: A review. Trends in Food Science & Technology 79:184–97. doi: 10.1016/j.tifs.2018.07.015.
  • Khalifa, I., R. Sobhy, A. Nawaz, W. Xiaoou, Z. Li, and X. Zou. 2020. Cyanidin 3-rutinoside defibrillated bovine serum albumin under the glycation-promoting conditions: A study with multispectral, microstructural, and computational analysis. International Journal of Biological Macromolecules 162:1195–203. doi: 10.1016/j.ijbiomac.2020.06.243.
  • Khoo, H. E., A. Azlan, S. T. Tang, and S. M. Lim. 2017. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research 61 (1):1361779. doi: 10.1080/16546628.2017.1361779.
  • Klimaviciute, R., V. Navikaite, V. Jakstas, and L. Ivanauskas. 2015. Complexes of dextran sulfate and anthocyanins from Vaccinium myrtillus: Formation and stability. Carbohydrate Polymers 129:70–8. doi: 10.1016/j.carbpol.2015.04.038.
  • Koh, L.-D., Y. Cheng, C.-P. Teng, Y.-W. Khin, X.-J. Loh, S.-Y. Tee, M. Low, E. Ye, H.-D. Yu, Y.-W. Zhang, et al. 2015. Structures, mechanical properties and applications of silk fibroin materials. Progress in Polymer Science 46:86–110. doi: 10.1016/j.progpolymsci.2015.02.001.
  • Lai, L. F., and H. X. Guo. 2011. Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. International Journal of Pharmaceutics 404 (1-2):317–23. doi: 10.1016/j.ijpharm.2010.11.025.
  • Lang, Y., H. Gao, J. Tian, C. Shu, R. Sun, B. Li, and X. Meng. 2019. Protective effects of α-casein or β-casein on the stability and antioxidant capacity of blueberry anthocyanins and their interaction mechanism. LWT 115:108434. doi: 10.1016/j.lwt.2019.108434.
  • Lang, Y., B. Li, E. Gong, C. Shu, X. Si, N. Gao, W. Zhang, H. Cui, and X. Meng. 2021. Effects of α-casein and β-casein on the stability, antioxidant activity and bioaccessibility of blueberry anthocyanins with an in vitro simulated digestion. Food Chemistry 334:127526. doi: 10.1016/j.foodchem.2020.127526.
  • Lang, Y., E. Li, X. Meng, J. Tian, X. Ran, Y. Zhang, Z. Zang, W. Wang, and B. Li. 2019. Protective effects of bovine serum albumin on blueberry anthocyanins under illumination conditions and their mechanism analysis. Food Research International 122:487–95. doi: 10.1016/j.foodres.2019.05.021.
  • Lang, Y., J. Tian, X. Meng, X. Si, H. Tan, Y. Wang, C. Shu, Y. Chen, Z. Zang, Y. Zhang, et al. 2021. Effects of alpha-casein on the absorption of blueberry anthocyanins and metabolites in rat plasma based on pharmacokinetic analysis. Journal of Agricultural and Food Chemistry 69 (22):6200–13. doi: 10.1021/acs.jafc.1c00082.
  • Lee, Y. M., Y. Yoon, H. Yoon, H. M. Park, S. Song, and K. J. Yeum. 2017. Dietary Anthocyanins against Obesity and Inflammation. Nutrients 9 (10):1089. doi: 10.3390/nu9101089.
  • Li, T., L. Wang, Z. Chen, X. Zhang, and Z. Zhu. 2020. Functional properties and structural changes of rice proteins with anthocyanins complexation. Food Chemistry 331:127336. doi: 10.1016/j.foodchem.2020.127336.
  • Li, T., L. Wang, X. Zhang, P. Yu, and Z. Chen. 2021. Complexation of rice glutelin fibrils with cyanidin-3-O-glucoside at acidic condition: Thermal stability, binding mechanism and structural characterization. Food Chemistry 363:130367. doi: 10.1016/j.foodchem.2021.130367.
  • Li, S., L. Tang, and H. Bi. 2016. Study on the interaction between pelargonidin-3-O-glucoside and bovine serum albumin using spectroscopic, transmission electron microscopy and molecular modeling techniques. Luminescence 31 (2):442–52. doi: 10.1002/bio.2980.
  • Li, Y., L. Yao, L. Zhang, Y. Zhang, T. Zheng, L. Liu, and L. Zhang. 2021. Enhanced physicochemical stabilities of cyanidin-3-O-glucoside via combination with silk fibroin peptide. Food Chemistry 355:129479. doi: 10.1016/j.foodchem.2021.129479.
  • Liu, J., J. Cheng, Z. Ma, T. Liang, and P. Jing. 2022. Interaction characterization of zein with cyanidin-3-O-glucoside and its effect on the stability of mulberry anthocyanins and protein digestion. Journal of Food Science 87 (1):141–52. doi:10.1111/1750-3841.16024. PMID:34954830
  • Liu, L., D. Zhang, X. Song, M. Guo, Z. Wang, F. Geng, X. Zhou, and S. Nie. 2022. Compound hydrogels derived from gelatin and gellan gum regulates the release of anthocyanins in simulated digestion. Food Hydrocolloids. 127:107487. doi: 10.1016/j.foodhyd.2022.107487.
  • Liu, L., L. Zhang, L. Ren, and Y. Xie. 2020. Advances in structures required of polyphenols for xanthine oxidase inhibition. Food Frontiers 1 (2):152–67. doi: 10.1002/fft2.27.
  • Lozano-Perez, A. A., H. C. Rivero, M. D. C. Perez Hernandez, A. Pagan, M. G. Montalban, G. Villora, and J. L. Cenis. 2017. Silk fibroin nanoparticles: Efficient vehicles for the natural antioxidant quercetin. International Journal of Pharmaceutics 518 (1-2):11–9. doi: 10.1016/j.ijpharm.2016.12.046.
  • Ma, Z., and P. Jing. 2020. Stabilization of black rice anthocyanins by self-assembled silk fibroin nanofibrils: Morphology, spectroscopy and thermal protection. International Journal of Biological Macromolecules 146:1030–9. doi: 10.1016/j.ijbiomac.2019.10.052.
  • Ma, Z., G. Prasanna, L. Jiang, and P. Jing. 2019. Molecular interaction of cyanidin-3- O-glucoside with ovalbumin: insights from spectroscopic, molecular docking and in vitro digestive studies. Journal of Biomolecular Structure and Dynamics 38 (6):1–10. doi:10.1080/07391102.2019.1618735.
  • Makori, S. I., T. H. Mu, and H. N. Sun. 2022. Functionalization of sweet potato leaf polyphenols by nanostructured composite β-lactoglobulin particles from molecular level complexations: A review. Food Chemistry 372:131304. doi: 10.1016/j.foodchem.2021.131304.
  • Mateos, B., C. Conrad-Billroth, M. Schiavina, A. Beier, G. Kontaxis, R. Konrat, I. C. Felli, and R. Pierattelli. 2020. The ambivalent role of proline residues in an intrinsically disordered protein: From disorder promoters to compaction facilitators. Journal of Molecular Biology 432 (9):3093–111. doi: 10.1016/j.jmb.2019.11.015.
  • Mazzaracchio, P., S. Tozzi, C. Boga, L. Forlani, P. G. Pifferi, and G. Barbiroli. 2011. Interaction between gliadins and anthocyan derivatives. Food Chemistry 129 (3):1100–7. doi: 10.1016/j.foodchem.2011.05.084.
  • Mazzoni, L., F. Giampieri, J. M. Alvarez Suarez, M. Gasparrini, B. Mezzetti, T. Y. Forbes Hernandez, and M. A. Battino. 2019. Isolation of strawberry anthocyanin-rich fractions and their mechanisms of action against murine breast cancer cell lines. Food & Function 10 (11):7103–20. doi: 10.1039/C9FO01721F.
  • Meng, Y., L. Hao, Y. Tan, Y. Yang, L. Liu, C. Li, and P. Du. 2021. Noncovalent interaction of cyanidin-3-O-glucoside with whey protein isolate and β-lactoglobulin: Focus on fluorescence quenching and antioxidant properties. LWT 137:110386. doi: 10.1016/j.lwt.2020.110386.
  • Mensi, A., Y. Choiset, H. Rabesona, T. Haertle, P. Borel, and J. M. Chobert. 2013. Interactions of β-lactoglobulin variants A and B with Vitamin A. Competitive binding of retinoids and carotenoids . Journal of Agricultural and Food Chemistry 61 (17):4114–9. doi: 10.1021/jf400711d.
  • Mondal, S., A. Banerjee, and B. Das. 2020. Spectroscopic and interfacial investigation on the interaction of hemoglobin with conventional and ionic liquid surfactants. Journal of Molecular Liquids 301:112450. doi: 10.1016/j.molliq.2020.112450.
  • Moras, B., S. Rey, G. Vilarem, and P. Y. Pontalier. 2017. Pressurized water extraction of isoflavones by experimental design from soybean flour and Soybean Protein Isolate. Food Chemistry 214:9–15. doi: 10.1016/j.foodchem.2016.07.053.
  • Mottaghitalab, F., M. Farokhi, M. A. Shokrgozar, F. Atyabi, and H. Hosseinkhani. 2015. Silk fibroin nanoparticle as a novel drug delivery system. Journal of Controlled Release 206:161–76. doi: 10.1016/j.jconrel.2015.03.020.
  • Nisbet, A. D., R. H. Saundry, A. J. Moir, L. A. Fothergill, and J. E. Fothergill. 1981. The complete amino-acid sequence of hen ovalbumin . European Journal of Biochemistry 115 (2):335–45. doi: 10.1111/j.1432-1033.1981.tb05243.x.
  • Oancea, A.-M., I. Aprodu, G. Râpeanu, G. Bahrim, and N. Stanciuc. 2017. The Binding mechanism of anthocyanins from sour cherries (Prunus cerasus L) skins to bovine β-lactoglobulin: A fluorescence and in silico-based approach. International Journal of Food Properties 20 (sup3):S3096–S111. doi: 10.1080/10942912.2017.1343347.
  • Oancea, A.-M., M. Hasan, A. M. Vasile, V. Barbu, E. Enachi, G. Bahrim, G. Râpeanu, S. Silvi, and N. Stănciuc. 2018. Functional evaluation of microencapsulated anthocyanins from sour cherries skins extract in whey proteins isolate. LWT 95:129–34. doi: 10.1016/j.lwt.2018.04.083.
  • Ouyang, Y., L. Chen, L. Qian, X. Lin, X. Fan, H. Teng, and H. Cao. 2020. Fabrication of caseins nanoparticles to improve the stability of cyanidin 3-O-glucoside. Food Chemistry 317:126418. doi: 10.1016/j.foodchem.2020.126418.
  • Pan, F., J. Li, L. Zhao, T. Tuersuntuoheti, A. Mehmood, N. Zhou, S. Hao, C. Wang, Y. Guo, and W. Lin. 2021. A molecular docking and molecular dynamics simulation study on the interaction between cyanidin-3-O-glucoside and major proteins in cow’s milk. Journal of Food Biochemistry 45 (1):e13570. doi: 10.1111/jfbc.13570.
  • Poklar Ulrih, N. 2017. Analytical techniques for the study of polyphenol-protein interactions. Critical Reviews in Food Science and Nutrition 57 (10):2144–61. doi: 10.1080/10408398.2015.1052040.
  • Quan, T. H., S. Benjakul, T. Sae-leaw, A. K. Balange, and S. Maqsood. 2019. Protein-polyphenol conjugates: Antioxidant property, functionalities, and their applications. Trends in Food Science & Technology 91:507–17. doi: 10.1016/j.tifs.2019.07.049.
  • Quan, W., W. He, X. Qie, Y. Chen, M. Zeng, F. Qin, J. Chen, and Z. He. 2020. Effects of β-cyclodextrin, whey protein, and soy protein on the thermal and storage stability of anthocyanins obtained from purple-fleshed sweet potatoes. Food Chemistry 320:126655. doi: 10.1016/j.foodchem.2020.126655.
  • Rahimi Yazdi, S., and M. Corredig. 2012. Heating of milk alters the binding of curcumin to casein micelles. A fluorescence spectroscopy study. Food Chemistry 132 (3):1143–9. doi: 10.1016/j.foodchem.2011.11.019.
  • Rangacharyulu, P. V., S. S. Giri, B. N. Paul, K. P. Yashoda, R. J. Rao, N. S. Mahendrakar, S. N. Mohanty, and P. K. Mukhopadhyay. 2003. Utilization of fermented silkworm pupae silage in feed for carps. Bioresource Technology 86 (1):29–32. doi: 10.1016/S0960-8524(02)00113-X.
  • Ren, C., W. Xiong, and B. Li. 2019. Binding interaction between β-conglycinin/glycinin and cyanidin-3-O-glucoside in acidic media assessed by multi-spectroscopic and thermodynamic techniques. International Journal of Biological Macromolecules 137:366–73. doi: 10.1016/j.ijbiomac.2019.07.004.
  • Ren, C., W. Xiong, J. Li, and B. Li. 2019. Comparison of binding interactions of cyanidin-3-O-glucoside to β-conglycinin and glycinin using multi-spectroscopic and thermodynamic methods. Food Hydrocolloids 92:155–62. doi: 10.1016/j.foodhyd.2019.01.053.
  • Ren, S., and M. M. Giusti. 2021a. The effect of whey protein concentration and preheating temperature on the color and stability of purple corn, grape and black carrot anthocyanins in the presence of ascorbic acid. Food Research International 144:110350. doi: 10.1016/j.foodres.2021.110350.
  • Ren, S., and M. M. Giusti. 2021b. Monitoring the interaction between thermally induced whey protein and anthocyanin by fluorescence quenching spectroscopy. Foods 10 (2):310. doi: 10.3390/foods10020310.
  • Ren, S., Jiménez-Flores, R, and Giusti, M. M. 2021. The interactions between anthocyanin and whey protein: A review. Comprehensive Reviews in Food Science and Food Safety 20 (6):5992–6011. doi: 10.1111/1541-4337.12854.
  • Rodriguez-Amaya, D. B. 2019. Update on natural food pigments—A mini-review on carotenoids, anthocyanins, and betalains. Food Research International 124:200–5. doi: 10.1016/j.foodres.2018.05.028.
  • Roufik, S., S. F. Gauthier, X. Leng, and S. L. Turgeon. 2006. Thermodynamics of binding interactions between bovine beta-lactoglobulin A and the antihypertensive peptide beta-Lg f142-148. Biomacromolecules 7 (2):419–26. doi: 10.1021/bm050229c.
  • Salah, M., M. Mansour, D. Zogona, and X. Xu. 2020. Nanoencapsulation of anthocyanins-loaded β-lactoglobulin nanoparticles: Characterization, stability, and bioavailability in vitro. Food Research International (Ottawa, Ont.) 137:109635 doi:10.1016/j.foodres.2020.109635. PMC: 33233214
  • Salah, M., and X. Xu. 2021. Anthocyanin-β-lactoglobulin nanoparticles in acidic media: Synthesis, characterization and interaction study. Journal of Molecular Structure 1232:129995. doi: 10.1016/j.molstruc.2021.129995.
  • Sharif, N., S. Khoshnoudi-Nia, and S. M. Jafari. 2020. Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Research International 132:109077. doi: 10.1016/j.foodres.2020.109077.
  • Shen, Y., A. Levin, A. Kamada, Z. Toprakcioglu, M. Rodriguez-Garcia, Y. Xu, and T. P. J. Knowles. 2021. From protein building blocks to functional materials. ACS Nano 15 (4):5819–37. doi: 10.1021/acsnano.0c08510.
  • Singh, G., G. Singh, S. Kancharla, and T. S. Kang. 2019. Complexation behavior of β-lactoglobulin with surface active ionic liquids in aqueous solutions: An experimental and computational approach. The Journal of Physical Chemistry. B 123 (9):2169–81. doi: 10.1021/acs.jpcb.8b11610.
  • Sponton, O. E., A. A. Perez, C. R. Carrara, and L. G. Santiago. 2015. Impact of environment conditions on physicochemical characteristics of ovalbumin heat-induced nanoparticles and on their ability to bind PUFAs. Food Hydrocolloids 48:165–73. doi: 10.1016/j.foodhyd.2015.02.011.
  • Stănciuc, N., M. Turturică, A. M. Oancea, V. Barbu, E. Ioniţă, I. Aprodu, and G. Râpeanu. 2017. Microencapsulation of anthocyanins from grape skins by whey protein isolates and different polymers. Food and Bioprocess Technology 10 (9):1715–26. doi: 10.1007/s11947-017-1938-8.
  • Stein, P. E., A. G. Leslie, J. T. Finch, and R. W. Carrell. 1991. Crystal structure of uncleaved ovalbumin at 1.95 Å resolution. Journal of Molecular Biology 221 (3):941–59. doi: 10.1016/0022-2836(91)80185-W.
  • Sui, X., H. Sun, B. Qi, M. Zhang, Y. Li, and L. Jiang. 2018. Functional and conformational changes to soy proteins accompanying anthocyanins: Focus on covalent and non-covalent interactions. Food Chemistry 245:871–8. doi: 10.1016/j.foodchem.2017.11.090.
  • Tang, C. H. 2017. Emulsifying properties of soy proteins: A critical review with emphasis on the role of conformational flexibility. Critical Reviews in Food Science and Nutrition 57 (12):2636–79. doi: 10.1080/10408398.2015.1067594.
  • Tang, L., S. Li, H. Bi, and X. Gao. 2016. Interaction of cyanidin-3-O-glucoside with three proteins. Food Chemistry 196:550–9. doi: 10.1016/j.foodchem.2015.09.089.
  • Tang, L., D. Zhang, S. Xu, H. Zuo, C. Zuo, and Y. Li. 2014. Different spectroscopic and molecular modeling studies on the interaction between cyanidin-3-O-glucoside and bovine serum albumin. Luminescence 29 (2):168–75. doi: 10.1002/bio.2524.
  • Tang, L., H. Zuo, and L. Shu. 2014. Comparison of the interaction between three anthocyanins and human serum albumins by spectroscopy. Journal of Luminescence 153:54–63. doi: 10.1016/j.jlumin.2014.03.004.
  • Tena, N., J. Martin, and A. G. Asuero. 2020. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 9 (5):451. doi: 10.3390/antiox9050451.
  • Torskangerpoll, K., and Ø. M. Andersen. 2005. Colour stability of anthocyanins in aqueous solutions at various pH values. Food Chemistry 89 (3):427–40. doi: 10.1016/j.foodchem.2004.03.002.
  • Trouillas, P., J. C. Sancho-Garcia, V. De Freitas, J. Gierschner, M. Otyepka, and O. Dangles. 2016. Stabilizing and modulating color by copigmentation: Insights from theory and experiment. Chemical Reviews 116 (9):4937–82. doi: 10.1021/acs.chemrev.5b00507.
  • Uranga, J., A. Etxabide, P. Guerrero, and K. de la Caba. 2018. Development of active fish gelatin films with anthocyanins by compression molding. Food Hydrocolloids. 84:313–20. doi: 10.1016/j.foodhyd.2018.06.018.
  • Vardin, H., and H. Fenercioğlu. 2003. Study on the development of pomegranate juice processing technology: Clarification of pomegranate juice. Die Nahrung 47 (5):300–3. doi: 10.1002/food.200390070.
  • Viljanen, K., P. Kylli, E. M. Hubbermann, K. Schwarz, and M. Heinonen. 2005. Anthocyanin antioxidant activity and partition behavior in whey protein emulsion. Journal of Agricultural and Food Chemistry 53 (6):2022–7. doi: 10.1021/jf047975d.
  • Vuong, T. T., and P. Hongsprabhas. 2021. Influences of pH on binding mechanisms of anthocyanins from butterfly pea flower (Clitoria ternatea) with whey powder and whey protein isolate. Cogent Food & Agriculture 7 (1):1889098. doi: 10.1080/23311932.2021.1889098.
  • Wang, C., and Y. Xie. 2019. Interaction of protein isolate with anthocyanin extracted from black soybean and its effect on the anthocyanin stability. Journal of Food Science 84 (11):3140–6. doi: 10.1111/1750-3841.14816.
  • Wang, S., M. Marcone, S. Barbut, and L. T. Lim. 2012. The impact of anthocyanin-rich red raspberry extract (ARRE) on the properties of edible soy protein isolate (SPI) films. Journal of Food Science 77 (4):C497–505. doi: 10.1111/j.1750-3841.2012.02655.x.
  • Wang, Y. H., Z. L. Wan, X. Q. Yang, J. M. Wang, J. Guo, and Y. Lin. 2016. Colloidal complexation of zein hydrolysate with tannic acid: Constructing peptides-based nanoemulsions for alga oil delivery. Food Hydrocolloids 54:40–8. doi: 10.1016/j.foodhyd.2015.09.020.
  • Wang, Y., J. Zhang, and L. Zhang. 2021. Anthocyanin-dietary proteins interaction and its current applications in food industry. Food Reviews International, 37, 1–13. doi: 10.1080/87559129.2021.2012189.
  • Wani, T. A., A. H. Bakheit, M. A. Abounassif, and S. Zargar. 2018. Study of interactions of an anticancer drug neratinib with bovine serum albumin: Spectroscopic and molecular docking approach. Frontiers in Chemistry 6:47. doi: 10.3389/fchem.2018.00047.
  • Wei, J., D. Xu, J. Yang, X. Zhang, T. Mu, and Q. Wang. 2018. Analysis of the interaction mechanism of anthocyanins (Aronia melanocarpa Elliot) with β-casein. Food Hydrocolloids 84:276–81. doi: 10.1016/j.foodhyd.2018.06.011.
  • Wu, X., G. R. Beecher, J. M. Holden, D. B. Haytowitz, S. E. Gebhardt, and R. L. Prior. 2006. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry 54 (11):4069–75. doi: 10.1021/jf060300l.
  • Wu, Y., Z. Yin, X. Qie, Y. Chen, M. Zeng, Z. Wang, F. Qin, J. Chen, and Z. He. 2021. Interaction of soy protein isolate hydrolysates with cyanidin-3-O-glucoside and its effect on the in vitro antioxidant capacity of the complexes under neutral condition. Molecules 26 (6):1721. doi: 10.3390/molecules26061721.
  • Xiao, J. B., J. L. Huo, F. Yang, and X. Q. Chen. 2011. Noncovalent interaction of dietary polyphenols with bovine hemoglobin in vitro: Molecular structure/property-affinity relationship aspects. Journal of Agricultural and Food Chemistry 59 (15):8484–90. doi: 10.1021/jf201536v.
  • Xiong, S., L. D. Melton, A. J. Easteal, and D. Siew. 2006. Stability and antioxidant activity of black currant anthocyanins in solution and encapsulated in glucan gel. Journal of Agricultural and Food Chemistry 54 (17):6201–8. doi: 10.1021/jf060889o.
  • Xiong, Y. L., S. P. Blanchard, T. Ooizumi, and Y. Ma. 2010. Hydroxyl radical and ferryl-generating systems promote gel network formation of myofibrillar protein. Journal of Food Science 75 (2):C215–21. doi: 10.1111/j.1750-3841.2009.01511.x.
  • Xu, J., M. Hao, Q. Sun, and L. Tang. 2019. Comparative studies of interaction of β-lactoglobulin with three polyphenols. International Journal of Biological Macromolecules 136:804–12. doi: 10.1016/j.ijbiomac.2019.06.053.
  • Yildirim-Elikoglu, S., and Y. K. Erdem. 2018. Interactions between milk proteins and polyphenols: Binding mechanisms, related changes, and the future trends in the dairy industry. Food Reviews International 34 (7):665–97. doi: 10.1080/87559129.2017.1377225.
  • Yin, Z., Y. Wu, Y. Chen, X. Qie, M. Zeng, Z. Wang, F. Qin, J. Chen, and Z. He. 2021. Analysis of the interaction between cyanidin-3-O-glucoside and casein hydrolysates and its effect on the antioxidant ability of the complexes. Food Chemistry 340:127915. doi: 10.1016/j.foodchem.2020.127915.
  • Zaffino, C., B. Russo, and S. Bruni. 2015. Surface-enhanced Raman scattering (SERS) study of anthocyanidins. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 149:41–7. doi: 10.1016/j.saa.2015.04.039.
  • Zang, Z., S. Chou, L. Geng, X. Si, Y. Ding, Y. Lang, H. Cui, N. Gao, Y. Chen, M. Wang, et al. 2021. Interactions of blueberry anthocyanins with whey protein isolate and bovine serum protein: Color stability, antioxidant activity, in vitro simulation, and protein functionality. LWT 152:112269. doi: 10.1016/j.lwt.2021.112269.
  • Zang, Z., S. Chou, J. Tian, Y. Lang, Y. Shen, X. Ran, N. Gao, and B. Li. 2021. Effect of whey protein isolate on the stability and antioxidant capacity of blueberry anthocyanins: A mechanistic and in vitro simulation study. Food Chemistry 336:127700. doi: 10.1016/j.foodchem.2020.127700.
  • Zhang, B., Z. Hu, Y. Zhang, Y. Li, S. Zhou, and G. Chen. 2012. A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica Oleracea var. acephala f. tricolor). Plant Cell Reports 31 (2):281–9. doi: 10.1007/s00299-011-1162-3.
  • Zhang, G., X. Chen, J. Guo, and J. Wang. 2009. Spectroscopic investigation of the interaction between chrysin and bovine serum albumin. Journal of Molecular Structure 921 (1-3):346–51. doi: 10.1016/j.molstruc.2009.01.036.
  • Zhang, J., B. Zuo, P. U. Nata, P. K. Sengupta, X. Zheng, and J. Xiao. 2018. Structure-affinity relationship of dietary anthocyanin-HSA interaction. Journal of Berry Research 8 (1):1–9. doi: 10.3233/JBR-170167.
  • Zhang, Q., Z. Cheng, Y. Wang, and L. Fu. 2021. Dietary protein-phenolic interactions: characterization, biochemical-physiological consequences, and potential food applications. Critical Reviews in Food Science and Nutrition 61 (21):3589–615. doi: 10.1080/10408398.2020.1803199.
  • Zhang, Q., Z. Cheng, R. Chen, Y. Wang, S. Miao, Z. Li, S. Wang, and L. Fu. 2021. Covalent and non-covalent interactions of cyanidin-3-O-glucoside with milk proteins revealed modifications in protein conformational structures, digestibility, and allergenic characteristics. Food & Function 12 (20):10107–20. doi: 10.1039/D1FO01946E.
  • Zhang, Q., Y. Zhou, W. Yue, W. Qin, H. Dong, and T. Vasanthan. 2021. Nanostructures of protein-polysaccharide complexes or conjugates for encapsulation of bioactive compounds. Trends in Food Science & Technology 109:169–96. doi: 10.1016/j.tifs.2021.01.026.
  • Zhang, Y., S. Chen, B. Qi, X. Sui, and L. Jiang. 2018. Complexation of thermally-denatured soybean protein isolate with anthocyanins and its effect on the protein structure and in vitro digestibility. Food Research International 106:619–25. doi: 10.1016/j.foodres.2018.01.040.
  • Zhao, C.-L., Y.-Q. Yu, Z.-J. Chen, G.-S. Wen, F.-G. Wei, Q. Zheng, C.-D. Wang, and X.-L. Xiao. 2017. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chemistry 214:119–28. 10.1016/j.foodchem.2016.07.073.
  • Zou, H., Z. Xu, L. Zhao, Y. Wang, and X. Liao. 2019. Effects of high pressure processing on the interaction of α-lactalbumin and pelargonidin-3-glucoside. Food Chemistry 285:22–30. doi: 10.1016/j.foodchem.2019.01.129.
  • Zuo, H., L. Tang, S. Li, and J. Huang. 2015. Combined multispectroscopic and molecular docking investigation on the interaction between delphinidin-3-O-glucoside and bovine serum albumin. Luminescence 30 (1):110–7. doi: 10.1016/j.tifs.2017.01.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.