1,060
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Recent advancements in encapsulation of chitosan-based enzymes and their applications in food industry

, , , , , & show all
Pages 11044-11062 | Published online: 13 Jun 2022

References

  • Akamatsu, K., Y. Ikeuchi, A. Nakao, and S-i. Nakao. 2012. Size-controlled and monodisperse enzyme-encapsulated chitosan microspheres developed by the SPG membrane emulsification technique. Journal of Colloid and Interface Science 371 (1):46–51. doi: 10.1016/j.jcis.2011.12.078.
  • Akbari-Alavijeh, S., R. Shaddel, and S. M. Jafari. 2020. Encapsulation of food bioactives and nutraceuticals by various chitosan-based nanocarriers. Food Hydrocolloids 105:105774. doi: 10.1016/j.foodhyd.2020.105774.
  • Algharib, S. A., A. Dawood, K. X. Zhou, D. M. Chen, C. Li, K. Y. Meng, A. X. Zhang, W. H. Luo, S. Ahmed, L. L. Huang, et al. 2022. Preparation of chitosan nanoparticles by ionotropic gelation technique: Effects of formulation parameters and in vitro characterization. Journal of Molecular Structure 1252:132129. doi: 10.1016/j.molstruc.2021.132129.
  • Alsarra, I. A., S. H. Neau, and M. A. Howard. 2004. Effects of preparative parameters on the properties of chitosan hydrogel beads containing candida rugosa lipase. Biomaterials 25 (13):2645–55. doi: 10.1016/j.biomaterials.2003.09.051.
  • Amid, M., Y. Manap, and N. K. Zohdi. 2014. Microencapsulation of purified amylase enzyme from pitaya (Hylocereus polyrhizus) peel in arabic gum-chitosan using freeze drying. Molecules (Basel, Switzerland) 19 (3):3731–43. doi: 10.3390/molecules19033731.
  • Amor, G., M. Sabbah, L. Caputo, M. Idbella, V. D. Feo, R. Porta, T. Fechtaliand, and G. Mauriello. 2021. Basil essential oil: Composition, antimicrobial properties, and microencapsulation to produce active chitosan films for food packaging. Foods 10 (1):121. doi: 10.3390/foods10010121.
  • Anjani, A., K. Kailasapathy, and M. Phillips. 2007. Microencapsulation of enzymes for potential application in acceleration of cheese ripening. International Dairy Journal 17 (1):79–86. doi: 10.1016/j.idairyj.2006.01.005.
  • Apetrei, I. M., and C. Apetrei. 2019. Development of a novel biosensor based on tyrosinase/platinum nanoparticles/chitosan/graphene nanostructured layer with applicability in bioanalysis. Materials 12 (7):1009. doi: 10.3390/ma12071009.
  • Aranaz, I., N. Acosta, M. E. Férnandez-Valle, and A. Heras. 2015. Optimization of d-amino acid production catalyzed by immobilized multi-enzyme system in polyelectrolyte complex gel capsules. Journal of Molecular Catalysis B: Enzymatic 121:45–52. doi: 10.1016/j.molcatb.2015.06.003.
  • Ataide, J. A., E. F. Gérios, L. C. Cefali, A. R. Fernandes, M. Teixeira, N. R. Ferreira, et al. 2019. Effect of polysaccharide sources on the physicochemical properties of bromelain-chitosan nanoparticles. Ploymers 11:168.
  • Auwal, S. M., M. Zarei, C. P. Tan, M. Basri, and N. Saari. 2018. Enhanced physicochemical stability and efficacy of angiotensin I-converting enzyme (ACE)—Inhibitory biopeptides by chitosan nanoparticles optimized using Box-Behnken design. Scientific Reports 8 (1):10411. doi: 10.1038/s41598-018-28659-5.
  • Azarnia, S., B. H. Lee, N. Robert, and C. P. Champagne. 2008. Microencapsulation of a recombinant aminopeptidase (PEPN) from Lactobacillus rhamnosuss 93 in chitosan-coated alginate beads. Journal of Microencapsulation 25 (1):46–58. doi: 10.1080/02652040701776620.
  • Baharifar, H., M. Khoobi, S. A. Bidgoli, and A. Amani. 2020. Preparation of PEG-grafted chitosan/streptokinase nanoparticles to improve biological half-life and reduce immunogenicity of the enzyme. International Journal of Biological Macromolecules 143:181–9. doi: 10.1016/j.ijbiomac.2019.11.157.
  • Bahreini, E., K. Aghaiypour, R. Abbasalipourkabir, A. R. Mokarram, M. T. Goodarzi, and M. Saidijam. 2014. Preparation and nanoencapsulation of L-asparaginase II in chitosan-tripolyphosphate nanoparticles and in vitro release study. Nanoscale Research Letters 9 (1):340–57. doi: 10.1186/1556-276X-9-340.
  • Barsan, M. M., M. David, M. Florescu, L. Ţugulea, and C. M. Brett. 2014. A new self-assembled layerby-layer glucose biosensor based on chitosan biopolymer entrapped enzyme with nitrogen doped graphene. Bioelectrochemistry 99:46–52. doi: 10.1016/j.bioelechem.2014.06.004.
  • Batista, K. A., F. M. Lopes, F. Yamashita, and K. F. Fernandes. 2013. Lipase entrapment in PVA/chitosan biodegradable film for reactor coatings. Materials Science & Engineering. C, Materials for Biological Applications 33 (3):1696–701. doi: 10.1016/j.msec.2012.12.082.
  • Bayat, S., N. Amiri, E. Pishavar, F. Kalalinia, J. Movaffagh, and M. Hashemi. 2019. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sciences 229:57–66. doi: 10.1016/j.lfs.2019.05.028.
  • Bialas, F., D. Reichinger, and C. F. W. Becker. 2021. Biomimetic and biopolymer-based enzyme encapsulation. Enzyme and Microbial Technology 150:109864. doi: 10.1016/j.enzmictec.2021.109864.
  • Bilal, M., and H. M. N. Iqbal. 2019. Naturally-derived biopolymers: Potential platforms for enzyme immobilization. International Journal of Biological Macromolecules 130:462–82. doi: 10.1016/j.ijbiomac.2019.02.152.
  • Bilal, M., M. Asgher, H. M. N. Iqbal, H. Hu, and X. Zhang. 2017. Delignification and fruit juice clarification properties of alginate-chitosan-immobilized ligninolytic cocktail. LWT - Food Science and Technology 80:348–54. doi: 10.1016/j.lwt.2017.02.040.
  • Bilal, M., M. Asgher, R. Parra-saldivar, H. Hu, W. Wang, X. Zhang, and H. M. N. Iqbal. 2017. Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants—A review. The Science of the Total Environment 576:646–59. doi: 10.1016/j.scitotenv.2016.10.137.
  • Bilal, M., T. Rasheed, Y. Zhao, and M. N. Hafiz. 2019. Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. International Journal of Biological Macromolecules 124:742–9. doi: 10.1016/j.ijbiomac.2018.11.220.
  • Boadi, D. K., and R. J. Neufeld. 2001. Encapsulation of tannase for the hydrolysis of tea tannins. Enzyme and Microbial Technology 28 (7–8):590–5. doi: 10.1016/S0141-0229(01)00295-2.
  • Bobone, S., E. Miele, B. Cerroni, D. Roversi, A. Bocedi, E. Nicolai, A. Di Venere, E. Placidi, G. Ricci, N. Rosato, et al. 2015. Liposome-templated hydrogel nanoparticles as vehicles for enzyme-based therapies. Langmuir 31 (27):7572–80. doi: 10.1021/acs.langmuir.5b01442.
  • Boostani, S., and S. M. Jafari. 2021. A comprehensive review on the controlled release of encapsulated food ingredients; fundamental concepts to design and applications. Trends in Food Science & Technology 109:303–21. doi: 10.1016/j.tifs.2021.01.040.
  • Boubezari, I., F. Bessueille, A. Bonhomme, G. Raimondi, A. Zazoua, A. Errachid, and N. Jaffrezic-Renault. 2020. Laccase-based biosensor encapsulated in a galactomannan-chitosan composite for the evaluation of phenolic compounds. Biosensors 10 (6):70–80. doi: 10.3390/bios10060070.
  • Bourgat, Y., B. Tiersch, J. Koetz, and H. Menzel. 2021. Enzyme degradable polymersomes from chitosan‐g‐[poly‐l‐lysine‐block‐ε‐caprolactone] copolymer. Macromolecular Bioscience 21 (1):2000259. doi: 10.1002/mabi.202000259.
  • Briones, A. V., and T. Sato. 2010. Encapsulation of glucose oxidase (GOD) in polyelectrolyte complexes of chitosan-carrageenan. Reactive and Functional Polymers 70 (1):19–27. doi: 10.1016/j.reactfunctpolym.2009.09.009.
  • Broadhead, J., S. K. Rouan, I. Hau, and C. T. Rhodes. 1994. The effect of process and formulation variables on the properties of spray-dried beta-galactosidase. The Journal of Pharmacy and Pharmacology 46 (6):458–67. doi: 10.1111/j.2042-7158.1994.tb03828.x.
  • Buamard, N., R. E. Aluko, and S. Benjakul. 2020. Stability of tuna trypsin‐loaded alginate‐chitosan beads in acidic stomach fluid and the release of active enzyme in a simulated intestinal tract environment. Journal of Food Biochemistry 44 (11):e13455. doi: 10.1111/jfbc.13455.
  • Buffo, M. M., M. N. Esperança, C. S. Farinas, and A. C. Badino. 2020. Relation between pellet fragmentation kinetics and cellulolytic enzymes production by aspergillus niger in conventional bioreactor with different impellers. Enzyme and Microbial Technology 139:109587. doi: 10.1016/j.enzmictec.2020.109587.
  • Buwalda, S. J., K. W. M. Boere, P. J. Dijkstra, J. Feijen, T. Vermonden, and W. E. Hennink. 2014. Hydrogels in a historical perspective: From simple networks to smart materials. Journal of Controlled Release 190:254–73. doi: 10.1016/j.jconrel.2014.03.052.
  • Çamurlu, D., and S. Önal. 2021. Encapsulation and characterization of cellulase purified with three-phase partitioning technique. Biocatalysis and Biotransformation 39 (4):292–301. doi: 10.1080/10242422.2021.1883005.
  • Cao, X., C. Chen, H. Yu, and P. Wang. 2015. Horseradish peroxidase-encapsulated chitosan nanoparticles for enzyme-prodrug cancer therapy. Biotechnology Letters 37 (1):81–8.
  • Cho, H.-J., I.-S. Yoon, H. Y. Yoon, H. Koo, Y.-J. Jin, S.-H. Ko, J.-S. Shim, K. Kim, I. C. Kwon, and D.-D. Kim. 2012. Polyethylene glycol-conjugated hyaluronic acid-ceramide self-assembled nanoparticles for targeted delivery of doxorubicin. Biomaterials 33 (4):1190–200. doi: 10.1016/j.biomaterials.2011.10.064.
  • Choi, W. I., A. Sahu, C. Vilos, J. H. Lee, S. Kim, Y. K. Hong, D. Sul, S. W. Hwang, S. H. Lee, and G. Tae. 2016. Chitosan functionalized thermosponge nano-carriers for prolonged retention and local delivery of chymopapain at the nucleus pulposus in porcine discs ex vivo. RSC Advances 6 (93):90967–72. doi: 10.1039/C6RA17848K.
  • Coelho, S. C., B. N. Estevinho, and F. Rocha. 2021. Encapsulation in food industry with emerging electrohydrodynamic techniques: Electrospinning and electrospraying—A review. Food Chemistry 339:127850. doi: 10.1016/j.foodchem.2020.127850.
  • Costa-Silva, T. A., P. S. Marques, C. R. F. Souza, S. Said, and W. P. Oliveira. 2015. Enzyme encapsulation in magnetic chitosan-Fe3O4 microparticles. Journal of Microencapsulation 32 (1):16–21. doi: 10.3109/02652048.2014.940013.
  • Decher, G. 1997. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277 (5330):1232–7. doi: 10.1126/science.277.5330.1232.
  • Dekina, S., I. Romanovska, O. Sevastyanov, Y. Shesterenko, A. Ryjak, L. Varbanets, D. Natalia, and E. Muratov. 2020. Development and characterization of chitosan/polyvinyl alcohol polymer material with elastolytic and collagenolytic activities. Enzyme and Microbial Technology 132:109399. doi: 10.1016/j.enzmictec.2019.109399.
  • Devi, N., M. Sarmah, B. Khatun, and T. K. Maji. 2017. Encapsulation of active ingredients in polysaccharide-protein complex coacervates. Advances in Colloid and Interface Science 239:136–45. doi: 10.1016/j.cis.2016.05.009.
  • Dohendou, M., K. Pakzad, Z. Nezafat, M. Nasrollahzadeh, and M. G. Dekamin. 2021. Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. International Journal of Biological Macromolecules 192:771–819.
  • Drosou, G. G., M. K. Krokida, and C. G. Biliaderis. 2017. Encapsulation of bioactive compounds through electrospinning/electrospraying and spray drying: A comparative assessment of food-related applications. Drying Technology 35 (2):139–62. doi: 10.1080/07373937.2016.1162797.
  • Dwamena, A. K., S. H. Woo, and S. K. Chang. 2020. Enzyme immobilization on porous chitosan hydrogel capsules formed by anionic surfactant gelation. Biotechnology Letters 42 (5):845–52. doi: 10.1007/s10529-020-02829-w.
  • Elella, M. H. A., E. S. Goda, M. A. Gab-Allah, S. E. Hong, B. Pandit, S. Lee, H. Gamal, A. Rehman, and K. R. Yoon. 2021. Xanthan gum-derived materials for applications in environment and eco-friendly materials: A review. Journal of Environmental Chemical Engineering 9 (1):104702. doi: 10.1016/j.jece.2020.104702.
  • Ellatif, S. A., S. A. Galil, R. S. Ahmed, and N. A. Soliman. 2020. Encapsulation of protease enzymes for domestic application. Al-Azhar Journal of Pharmaceutical Sciences 61:117–32.
  • Estevinho, B. N., A. M. Damas, P. Martins, and F. Rocha. 2014. Microencapsulation of β-galactosidase with different biopolymers by a spray-drying process. Food Research International (Ottawa, Ont.) 64:134–40. doi: 10.1016/j.foodres.2014.05.057.
  • Estevinho, B. N., I. Ramos, and F. Rocha. 2015. Effect of the pH in the formation of β-galactosidase microparticles produced by a spray-drying process. International Journal of Biological Macromolecules 78:238–42. doi: 10.1016/j.ijbiomac.2015.03.049.
  • Facin, B. R., B. Moret, D. Baretta, L. A. Belfiore, and A. T. Paulino. 2015. Immobilization and controlled release of β-galactosidase from chitosan-grafted hydrogels. Food Chemistry 179:44–51. doi: 10.1016/j.foodchem.2015.01.088.
  • Fredenberg, S., M. Wahlgren, M. Reslow, and A. Axelsson. 2011. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—A review. International Journal of Pharmaceutics 415 (1-2):34–52. doi: 10.1016/j.ijpharm.2011.05.049.
  • Furtado, A. F. M., M. A. P. Nunes, and M. H. L. Ribeiro. 2012. Hesperidinase encapsulation towards hesperitin production targeting improved bioavailability. Journal of Molecular Recognition: JMR 25 (11):595–603. doi: 10.1002/jmr.2224.
  • Galai, H. C., N. Rahmouni, P. Namour, A. Bonhomme, F. Bessueille, S. B. Hentati, and N. Jaffrezic-Renault. 2020. Highly sensitive voltammetric catechol biosensor based on electroaddressing of laccase encapsulated in modified chitosan. Sensor Letters 18 (3):165–72. doi: 10.1166/sl.2020.4210.
  • Ge, L., Y. S. Zhao, T. Mo, J. R. Li, and P. Li. 2012. Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation. Food Control 26 (1):188–93. doi: 10.1016/j.foodcont.2012.01.022.
  • Haghju, S., M. R. Bari, and M. A. Khaled-Abad. 2018. Affecting parameters on fabrication of β-D-galactosidase immobilized chitosan/poly (vinyl alcohol) electrospun nanofibers. Carbohydrate Polymers 200:137–43. doi: 10.1016/j.carbpol.2018.07.096.
  • Hahn, T., E. Tafi, A. Paul, R. Salvia, P. Falabella, and S. Zibek. 2020. Current state of chitin purification and chitosan production from insects. Journal of Chemical Technology and Biotechnology 95:6533.
  • Han, P., X. Song, H. Wu, Z. Jiang, J. Shi, X. Wang, W. Zhang, and Q. Ai. 2015. Enhancing catalytic activity and stability of yeast alcohol dehydrogenase by encapsulation in chitosan-calcium phosphate hybrid beads. Industrial & Engineering Chemistry Research 54 (2):597–604. doi: 10.1021/ie503294a.
  • Hansupalak, N., P. Kitsongsermthon, and R. Jiraratananon. 2010. Immobilized flavourzyme on chitosan beads for seasoning sauce production: Covalent binding vs entrapment. Contemporary Science of Polymeric Material 4:53–62.
  • Hategekimana, J., K. G. Masamba, J. Ma, and F. Zhong. 2015. Encapsulation of vitamin e: Effect of physicochemical properties of wall material on retention and stability. Carbohydrate Polymers 124:172–9. doi: 10.1016/j.carbpol.2015.01.060.
  • Horne, A. D, and J. A. Lucey. 2017. Cheese: Physics, chemistry and microbiology, 115–43. Cambridge, MA: Academic Press.
  • Hosseini, S., and M. Varidi. 2021. Optimization of microbial rennet encapsulation in alginate-chitosan nanoparticles. Food Chemistry 352:129325. doi: 10.1016/j.foodchem.2021.129325.
  • Housseiny, M. M., and H. I. Aboelmagd. 2019. Nano-encapsulation of naringinase produced by Trichoderma longibrachiatum ATCC18648 on thermally stable biopolymers for citrus juice debittering. Journal of Microbiology (Seoul, Korea) 57 (6):521–31. doi: 10.1007/s12275-019-8528-6.
  • Hu, Q., and Y. C. Luo. 2021. Chitosan-based nanocarriers for encapsulation and delivery of curcumin: A review. International Journal of Biological Macromolecules 179:125–35. doi: 10.1016/j.ijbiomac.2021.02.216.
  • Hua, Y. J., Z. H. Wei, and C. H. Xue. 2021. Chitosan and its compositesbased delivery systems: Advances and applications in food science and nutrition sector. Critical Reviews in Food Science and Nutrition 2021:1–20. doi: 10.1080/10408398.2021.2004992.
  • Huang, W. J., H. Xu, Y. Xue, R. Huang, H. B. Deng, and S. Pan. 2012. Layer-by-layer immobilization of lysozyme-chitosan-organic rectorite composites on electrospun nanofibrous mats for pork preservation. Food Research International 48 (2):784–91. doi: 10.1016/j.foodres.2012.06.026.
  • Huang, X., Z. Luo, J. Guo, Q. Ruan, J. M. Wang, and X. Yang. 2020. Enzyme-adsorbed chitosan nanogel particles as edible Pickering interfacial biocatalysts and lipase-responsive phase inversion of emulsions. Journal of Agricultural and Food Chemistry 68 (33):8890–9. doi: 10.1021/acs.jafc.0c00116.
  • Huopalahti, R., R. López-Fandiño, M. Anton, and R. Schade. 2007. Bioactive egg compounds II structure and formation of the eggshell. Chapter 15:99–102.
  • Jackson, L. S., and K. Lee. 1991. Microencapsulation and the food industries. Lebensmittel Wissenschaft und -Technologie 24 (4):289–97.
  • Jasour, M. S., A. Ehsani, L. Mehryar, and S. S. Naghibi. 2015. Chitosan coating incorporated with the lactoperoxidase system: An active edible coating for fish preservation. Journal of the Science of Food and Agriculture 95 (6):1373–8. doi: 10.1002/jsfa.6838.
  • Jiang, H., M. Zhang, S. McKnight, and B. Adhikari. 2013. Microencapsulation of α-Amylase by carrying out complex coacervation and drying in a single step using a novel three-fluid nozzle spray drying. Drying Technology 31 (16):1901–10. doi: 10.1080/07373937.2013.771365.
  • Jiang, L., J. Zong, C. Ma, S. Chen, H. Li, and D. Zhang. 2020. Characterization of sustained-release chitosan film loaded with rutin-β-cyclodextrin complex and glucoamylase. Journal of Food Science and Technology 57 (2):734–44. doi: 10.1007/s13197-019-04106-9.
  • Jonassen, H., A. L. Kjøniksen, and M. Hiorth. 2012. Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacromolecules 13 (11):3747–56. doi: 10.1021/bm301207a.
  • Kadri, T., A. Cuprys, T. Rouissi, S. K. Brar, R. Daghrir, and J. M. Lauzon. 2018. Nanoencapsulation and release study of enzymes from Alkanivorax borkumensis in chitosan-tripolyphosphate formulation. Biochemical Engineering Journal 137:1–10. doi: 10.1016/j.bej.2018.05.013.
  • Kakkar, P., and B. Madhan. 2016. Fabrication of keratin-silica hydrogel for biomedical applications. Materials Science and Engineering: C 66:178–84. doi: 10.1016/j.msec.2016.04.067.
  • Kamaci, U. D., and A. Peksel. 2020. Fabrication of PVA-chitosan-based nanofibers for phytase immobilization to enhance enzymatic activity. International Journal of Biological Macromolecules 164:3315–22.
  • Kashyap, P. L., X. Xiang, and X. Heiden. 2015. Chitosan nanoparticle based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules 77:36–51. doi: 10.1016/j.ijbiomac.2015.02.039.
  • Katrolia, P., X. Liu, J. Li, and N. K. Kopparapu. 2019. Enhanced elimination of non‐digestible oligosaccharides from soy milk by immobilized α-galactosidase: A comparative analysis. Journal of Food Biochemistry 43 (11):13005. doi: 10.1111/jfbc.13005.
  • Kha, T. C., M. H. Nguyen, P. D. Roach, and C. E. Stathopoulo. 2014. Microencapsulation of Gac oil: Optimisation of spray drying conditions using response surface methodology. Powder Technology 264:298–309. doi: 10.1016/j.powtec.2014.05.053.
  • Kim, M. H., S. An, K. Won, H. J. Kim, and S. H. Lee. 2012. Entrapment of enzymes into cellulose-biopolymer composite hydrogel beads using biocompatible ionic liquid. Journal of Molecular Catalysis B: Enzymatic 75:68–72. doi: 10.1016/j.molcatb.2011.11.011.
  • Kim, S., Z. K. Cui, B. Koo, J. Zheng, T. Aghaloo, and M. Lee. 2018. Chitosan-lysozyme conjugates for enzyme-triggered hydrogel degradation in tissue engineering applications. ACS Applied Materials & Interfaces 10 (48):41138–45. doi: 10.1021/acsami.8b15591.
  • Koorabbasloo, A. S. 2008. Proteolysis enhancement of cheddar cheese and enzyme-modified cheese by free or encapsulated form of natural and recombinant enzymes of Lactobacillus rhamnosus S93. Doctoral dissertation, McGill University, Canada.
  • Koukaras, E. N., S. A. Papadimitriou, D. N. Bikiaris, and G. E. Froudakis. 2012. Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate. Molecular Pharmaceutics 9 (10):2856–86. doi: 10.1021/mp300162j.
  • Koyani, R. D., and R. Vazquez-Duhalt. 2016. Laccase encapsulation in chitosan nanoparticles enhances the protein stability against microbial degradation. Environmental Science and Pollution Research International 23 (18):18850–7. doi: 10.1007/s11356-016-7072-8.
  • Kuddus, M. 2019. Chapter 1-Introduction to food enzymes. In Enzymes in food biotechnology, 1–18. Cambridge, MA: Academic Press.
  • Kumar, S., A. Mukherjee, and J. Dutta. 2020. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends in Food Science & Technology 97:196–209. doi: 10.1016/j.tifs.2020.01.002.
  • Kumari, R., S. Gupta, A. R. Singh, S. Ferosekhan, D. C. Kothari, A. K. Pal, and S. B. Jadhao. 2013. Chitosan nanoencapsulated exogenous trypsin biomimics zymogen-like enzyme in fish gastrointestinal tract. PLoS One. 8 (9):e74743. doi: 10.1371/journal.pone.0074743.
  • Leichner, C., M. Jelkmann, F. Prüfert, F. Laffleur, and A. Bernkop-Schnürch. 2019. Intestinal enzyme delivery: Chitosan/tripolyphosphate nanoparticles providing a targeted release behind the mucus gel barrier. European Journal of Pharmaceutics and Biopharmaceutics 144:125–31. doi: 10.1016/j.ejpb.2019.09.012.
  • Leonida, M., S. Belbekhouche, F. Adams, U. K. Bijja, D.-A. Choudhary, and I. Kumar. 2019. Enzyme nanovehicles: Histaminase and catalase delivered in nanoparticulate chitosan. International Journal of Pharmaceutics. 557:145–53. doi: 10.1016/j.ijpharm.2018.12.050.
  • Li, Y., M. Hu, Y. Du, H. Xiao, and D. J. McClements. 2011. Control of lipase digestibility of emulsified lipids by encapsulation within calcium alginate beads. Food Hydrocolloids. 25 (1):122–30. doi: 10.1016/j.foodhyd.2010.06.003.
  • Lim, H. P., K. W. Ho, C. K. S. Singh, C. W. Ooi, B. T. Tey, and E. S. Chan. 2020. Pickering emulsion hydrogel as a promising food delivery system: Synergistic effects of chitosan Pickering emulsifier and alginate matrix on hydrogel stability and emulsion delivery. Food Hydrocolloids 103:105659. doi: 10.1016/j.foodhyd.2020.105659.
  • Lino, P. R., J. Leandro, M. Amaro, L. M. D. Gonçalves, P. Leandro, and A. J. Almeida. 2021. In silico and in vitro tailoring of a chitosan nanoformulation of a human metabolic enzyme. Pharmaceutics 13 (3):329. doi: 10.3390/pharmaceutics13030329.
  • Liu, X., Y. Zhang, D. Ma, H. Tang, L. Tan, Q. Xie, and S. Yao. 2013. Biocompatible multi-walled carbon nanotube-chitosan–folic acid nanoparticle hybrids as GFP gene delivery materials. Colloids and Surfaces B: Biointerfaces 111:224–31. doi: 10.1016/j.colsurfb.2013.06.010.
  • Liu, H., K. Nakagawa, D. Kato, D. Chaudhary, and M. O. Tadé. 2011. Enzyme encapsulation in freeze-dried bionanocomposites prepared from chitosan and xanthan gum blend. Materials Chemistry and Physics 129 (1–2):488–94. doi: 10.1016/j.matchemphys.2011.04.043.
  • Liu, Y., Y. Sun, Y. L. Li, S. C. Xu, J. W. Tang, J. T. Ding, and Y. X. Xu. 2011. Preparation and characterization of α-galactosidase-loaded chitosan nanoparticles for use in foods. Carbohydrate Polymers 83 (3):1162–8. doi: 10.1016/j.carbpol.2010.09.050.
  • Lončar, N., H. J. Rozeboom, L. E. Franken, M. C. A. Stuart, and M. W. Fraaije. 2020. Structure of a robust bacterial protein cage and its application as a versatile biocatalytic platform through enzyme encapsulation. Biochemical and Biophysical Research Communications 529 (3):548–53. doi: 10.1016/j.bbrc.2020.06.059.
  • Long, J., B. Zhang, X. F. Li, X. B. Zhan, X. M. Xu, Z. J. Xie, and Z. Y. Jin. 2018. Effective production of resistant starch using pullulanase immobilized onto magnetic chitosan/Fe3O4 nanoparticles. Food Chemistry 239:276–86. doi: 10.1016/j.foodchem.2017.06.117.
  • Long, J., X. Li, X. Zhan, X. Xu, Y. Tian, Z. Xie, and Z. Jin. 2017. Sol-gel encapsulation of pullulanase in the presence of hybrid magnetic (Fe3O4-chitosan) nanoparticles improves thermal and operational stability. Bioprocess and Biosystems Engineering 40 (6):821–31. doi: 10.1007/s00449-017-1747-5.
  • Lopez-Barbosa, N., A. L. Campaña, J. C. Cruz, N. Ornelas-Soto, and J. F. Osma. 2020. Enhanced catalytic dye decolorization by microencapsulation of laccase from P. Sanguineus CS43 in natural and synthetic polymers. Polymers 12 (6):1353. doi: 10.3390/polym12061353.
  • Ma, Y. Y., J. J. Xu, S. S. Jiang, and M. Y. Zeng. 2022. Effect of chitosan coating on the properties of nanoliposomes loaded with oyster protein hydrolysates: Stability during spray-drying and freeze-drying. Food Chemistry 385:132603. doi: 10.1016/j.foodchem.2022.132603.
  • Madaci, A., G. Raffin, M. Hangouet, C. Pages, C. Jose, M. Martin, H. Ferkous, A. Bouzid, J. Bausells, A. Alcacer, et al. 2021. A microconductometric ethanol sensor prepared through encapsulation of alcohol dehydrogenase in chitosan: Application to the determination of alcoholic content in headspace above beverages. Journal of Materials Science: Materials in Electronics 32 (13):17752–63. doi: 10.1007/s10854-021-06311-9.
  • Maleki, G., E. J. Woltering, and M. R. Mozafari. 2022. Applications of chitosan-based carrier as an encapsulating agent in food industry. Trends in Food Science & Technology 120:88–99. doi: 10.1016/j.tifs.2022.01.001.
  • Matteis, L., R. Germani, M. V. Mancini, F. D. Renzo, and N. Spreti. 2015. Encapsulation of chloroperoxidase in novel hybrid polysaccharide-silica biocomposites: Catalytic efficiency, re-use and thermal stability. Applied Catalysis A: General 492:23–30. doi: 10.1016/j.apcata.2014.12.016.
  • Maurya, S. S., S. S. Nadar, and V. K. Rathod. 2020. A rapid self-assembled hybrid bio-microflowers of alpha-amylase with enhanced activity. Journal of Biotechnology 317:27–33. doi: 10.1016/j.jbiotec.2020.04.010.
  • Mcclemens, D. 2014. Nanoparticle-and microparticle-based delivery systems: Encapsulation, protection and release of active compounds. Boca Raton, FL: CRC Press.
  • McClements, D. J. 2015. Food emulsions: Principles, practices, and techniques. Boca Raton, FL: CRC Press.
  • Melo, A., F. F. M. Silva, J. C. S. dos Santos, R. Fernández-Lafuente, T. L. G. Lemos, and F. A. D. Filho. 2017. Synthesis of benzyl acetate catalyzed by lipase immobilized in nontoxic chitosan-polyphosphate beads. Molecules 22 (12):2165. doi: 10.3390/molecules22122165.
  • Melo, M. N., F. M. Pereira, M. A. Rocha, J. G. Ribeiro, F. M. Diz, W. F. Monteiro, R. A. Ligabue, P. Severino, and A. T. Fricks. 2020. Immobilization and characterization of horseradish peroxidase into chitosan and chitosan/PEG nanoparticles: A comparative study. Process Biochemistry 98:160–71. doi: 10.1016/j.procbio.2020.08.007.
  • Miao, Z., L. Guo, Y. Liu, W. Zhao, and J. Zhang. 2020. Effects of dietary supplementation of chitosan on immune function in growing Huoyan geese. Poultry Science 99 (6):3079–85. doi: 10.1016/j.psj.2020.03.025.
  • Mohapatra, B. R. 2020. Biocatalytic characteristics of chitosan nanoparticle-immobilized alginate lyase extracted from a novel Arthrobacter species AD-10. Biocatalysis and Agricultural Biotechnology 23:101458. doi: 10.1016/j.bcab.2019.101458.
  • Monier, M., I. Youssef, and D. A. Abdel-latif. 2018. Synthesis of photo-crosslinkable chitosan-cinnamate for efficient entrapment of β-galactosidase enzyme. Reactive and Functional Polymers 124:129–38. doi: 10.1016/j.reactfunctpolym.2018.01.012.
  • Müller, C., D. Hartig, K. Vorländer, A. C. Sass, S. Scholl, and H. J. Jördening. 2017. Chitosan-based hybrid immobilization in bienzymatic reactions and its application to the production of laminaribiose. Bioprocess and Biosystems Engineering 40 (9):1399–410. doi: 10.1007/s00449-017-1797-8.
  • Naghdi, M., M. Taheran, S. K. Brar, A. Kermanshahi-Pour, M. Verma, and R. Y. Surampalli. 2019. Fabrication of nanobiocatalyst using encapsulated laccase onto chitosan-nanobiochar composite. International Journal of Biological Macromolecules 124:530–6. doi: 10.1016/j.ijbiomac.2018.11.234.
  • Nair, M. S., M. Tomar, S. Punia, W. Kukula-Koch, and M. Kumar. 2020. Enhancing the functionality of chitosan- and alginate-based active edible coatings/films for the preservation of fruits and vegetables: A review. International Journal of Biological Macromolecules 164:304–20. doi: 10.1016/j.ijbiomac.2020.07.083.
  • Nayeri, H., A. Fattahi, M. Iranpoormobarakeh, and P. Nori. 2015. Stabilization of lactoperoxidase by tragacanth-chitosan nano biopolymer. International Journal of Biosciences 6:418–26.
  • Niu, X., L. Zhu, L. Xi, L. Guo, and H. Wang. 2020. An antimicrobial agent prepared by N-succinyl chitosan immobilized lysozyme and its application in strawberry preservation. Food Control. 108:106829. doi: 10.1016/j.foodcont.2019.106829.
  • Nunes, Y. L., F. L. de Menezes, I. G. de Sousa, A. L. G. Cavalcante, F. T. T. Cavalcante, K. da Silva Moreira, A. L. B. de Oliveira, G. F. Mota, J. E. da Silva Souza, I. R. de Aguiar Falcão, et al. 2021. Chemical and physical chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? International Journal of Biological Macromolecules 181:1124–70. doi: 10.1016/j.ijbiomac.2021.04.004.
  • Nupur, N., E. Y. Ashish, and M. Debnath. 2016. Preparation and biochemical property of penicillin-G-amidase-loaded alginate and alginate/chitosan hydrogel beads. Recent Patents on Biotechnology 10 (1):121–32. doi: 10.2174/1872208310666160805112515.
  • Oliveira, U. M. F., L. J. B. L. Lima, M. C. M. Souza, B. B. Pinheiro, J. C. S. Santos, and L. R. B. Gonçalves. 2019. Efficient biotechnological synthesis of flavor esters using a low-cost biocatalyst with immobilized Rhizomucor miehei lipase. Molecular Biology Reports 46 (1):597–608. doi: 10.1007/s11033-018-4514-z.
  • Ospina, V., C. Bernal, and M. Mesa. 2019. Thermal hyperactivation and stabilization of β-galactosidase from Bacillus circulans through a silica sol-gel process mediated by chitosan-metal chelates. ACS Applied Bio Materials 2 (8):3380–92. doi: 10.1021/acsabm.9b00371.
  • Ozaltin, K., P. S. Postnikov, M. E. Trusova, V. Sedlarik, and D. A. Martino. 2019. Polysaccharides based microspheres for multiple encapsulations and simultaneous release of proteases. International Journal of Biological Macromolecules 132:24–31. doi: 10.1016/j.ijbiomac.2019.03.189.
  • Pant, B., M. Park, and S. J. Park. 2019. Drug delivery applications of core-sheath nanofibers prepared by coaxial electrospinning: A review. Pharmaceutics 11 (7):305–21. doi: 10.3390/pharmaceutics11070305.
  • Pellá, M. C. G., M. K. Lima-Tenório, E. T. Tenório-Neto, M. R. Guilherme, E. C. Muniz, and A. F. Rubira. 2018. Chitosan-based hydrogels: From preparation to biomedical applications. Carbohydrate Polymers 196:233–45. doi: 10.1016/j.carbpol.2018.05.033.
  • Priyanka, B. S., and N. K. Rastogi. 2020. Encapsulation of β-amylase in water-oil-water enzyme emulsion liquid membrane (EELM) bioreactor for enzymatic conversion of starch to maltose. Preparative Biochemistry & Biotechnology 50 (2):172–8. doi: 10.1080/10826068.2019.1679172.
  • Putranto, M. A., E. Budianto, and S. Hudoyon. 2018. Encapsulation and dissolution study of bromelain in chitosan-methyl cellulose semi-IPN hydrogel. The 3rd International Seminar on Chemistry 2049:020033.
  • Qu, B., and Y. C. Luo. 2020. Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors—A review. International Journal of Biological Macromolecules 152:437–48. doi: 10.1016/j.ijbiomac.2020.02.240.
  • Raghu, S., and G. Pennathur. 2018. Enhancing the stability of a carboxylesterase by entrapment in chitosan coated alginate beads. Turkish Journal of Biology = Turk Biyoloji Dergisi 42 (4):307–18., and doi: 10.3906/biy-1805-28.
  • Rashwan, A. K., N. Karim, Y. Xu, J. Xie, H. Cui, M. R. Mozafari, and W. Chen. 2021. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review. Critical Reviews in Food Science and Nutrition :1–24. doi: 10.1080/10408398.2021.1987858.
  • Rassas, I., M. Braiek, A. Bonhomme, F. Bessueille, G. Raffin, H. Majdoub, and N. Jaffrezic-Renault. 2019. Highly sensitive voltammetric glucose biosensor based on glucose oxidase encapsulated in a chitosan/kappa-carrageenan/gold nanoparticle bionanocomposite. Sensors 19 (1):154. doi: 10.3390/s19010154.
  • Ray, S., U. Raychaudhuriand, and R. Chakraborty. 2016. An overview of encapsulation of active compounds used in food products by drying technology. Food Bioscience 13:76–83. doi: 10.1016/j.fbio.2015.12.009.
  • Reyes-Avalos, M. C., A. Femenia, R. Minjares-Fuentes, J. C. Contreras-Esquivel, C. N. Aguilar-González, J. R. Esparza-Rivera, and J. A. Meza-Velázquez. 2016. Improvement of the quality and the shelf life of figs (Ficus carica) using an alginate-chitosan edible films. Food and Bioprocess Technology 9 (12):2114–24. doi: 10.1007/s11947-016-1796-9.
  • Robichaud, J. L., and A. C. Noble. 1990. Astringency and bitterness of selected phenolics in wine. Journal of the Science of Food and Agriculture 53 (3):343–53. doi: 10.1002/jsfa.2740530307.
  • Rousta, L. K., S. Bodbodak, M. Nejatian, A. P. Yazdi, Z. Rafiee, J. B. Xiao, and S. M. Jafari. 2021. Use of encapsulation technology to enrich and fortify bakery, pasta, and cereal-based products. Trends in Food Science & Technology 118:688–710. doi: 10.1016/j.tifs.2021.10.029.
  • Sakr, O. S., and G. Borchard. 2013. Encapsulation of enzymes in layer-by-layer (LbL) structures: Latest advances and applications. Biomacromolecules 14 (7):2117–35. doi: 10.1021/bm400198p.
  • Santagapita, P. R., M. F. Mazzobre, and M. P. Buera. 2015. Stabilization and controlled release of invertase through the addition of trehalose in wet and dried alginate-chitosan beads. Water Stress in Biological, Chemical, Pharmaceutical and Food Systems 3:353–60.
  • Santos, V. P., N. S. S. Marques, P. C. S. V. Maia, M. A. B. D. Lima, L. Franco, and G. M. Campos-Takaki. 2020. Seafood waste as attractive source of chitin and chitosan production and their applications. International Journal of Molecular Sciences 21 (12):4290. doi: 10.3390/ijms21124290.
  • Sharma, V., S. Ayothiraman, and V. Dhakshinamoorthy. 2019. Production of highly thermo-tolerant laccase from novel thermophilic bacterium Bacillus sp. PC-3 and its application in functionalization of chitosan films. Journal of Bioscience and Bioengineering 127 (6):672–8. doi: 10.1016/j.jbiosc.2018.11.008.
  • Sheila, R. S., A. V. María, G. R. Esteban, L. R. Héctor, and B. P. Ana. 2014. Immobilization of β-glucosidase and its application for enhancement of aroma precursors in muscat wine. Food and Bioprocess Technology 7:1381–92.
  • Sheldon, R. A., and S. Pelt. 2013. Enzyme immobilisation in biocatalysis: Why, what and how. Chemical Society Reviews 42 (15):6223–35. doi: 10.1039/c3cs60075k.
  • Shrestha, B. K., R. Ahmad, H. M. Mousa, I. G. Kim, J. I. Kim, M. P. Neupane, C. H. Park, and C. S. Kim. 2016. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid films. Journal of Colloid and Interface Science 482:39–47. doi: 10.1016/j.jcis.2016.07.067.
  • Si, Y., J. W. Park, S. Jung, G. Hwang, Y. E. Park, J. E. Lee, and H. J. Lee. 2019. Voltammetric layer-by-layer biosensor featuring purine nucleoside phosphorylase and chitosan for inosine in human serum solutions. Sensors and Actuators B: Chemical 298:126840. doi: 10.1016/j.snb.2019.126840.
  • Siebert, K. J. 2006. Haze formation in beverages. LWT - Food Science and Technology 39 (9):987–94. doi: 10.1016/j.lwt.2006.02.012.
  • Sindhu, R. S. Shiburaj, A. Sabu, P. Fernandes, R. Singhal, and G. M. Mathew. 2021. Enzyme technology in food processing: Recent developments and future prospects. In Innovative food processing technologies, eds. K. Knoerzer, and K. Muthukumarappan, 191–215. Cambridge, MA: Academic Press.
  • Singh, R. S. A. Pandey, R. R. Singhania, and C. Larroche. 2020. Biomass, biofuels, and biochemicals. In Advances in enzyme technology, 169–200. New York, NY: Elsevier.
  • Singh, T. A., A. Jajoo, and S. Bhasin. 2020. Optimization of various encapsulation systems for efficient immobilization of actinobacterial glucose isomerase. Biocatalysis and Agricultural Biotechnology 29:101766. doi: 10.1016/j.bcab.2020.101766.
  • Siqueira, N. M., K. C. Garcia, R. Bussamara, F. S. Both, M. H. Vainstein, and R. M. D. Soares. 2015. Poly (lactic acid)/chitosan fiber mats: Investigation of effects of the support on lipase immobilization. International Journal of Biological Macromolecules 72:998–1004.
  • Sturkenboom, M. G. P. D. Levita, and D. A. A. Gerardus Van. 2005. Process for producing bread with extended shelf life, bread dough and bread improver composition for producing such bread. US, US20050202144 A1.
  • Sun, Q., F. Chen, F. Geng, Y. Luo, S. Gong, and Z. Jiang. 2018. A novel aspartic protease from Rhizomucor meihei expressed in Pitchia pastoris and its application in meat tenderization and turtle peptides. Food Chemistry 245:570–7. doi: 10.1016/j.foodchem.2017.10.113.
  • Ta, Q., J. Ting, S. Harwood, N. Browning, A. Simm, K. Ross, I. Olier, and R. Al-Kassas. 2021. Chitosan nanoparticles for enhancing drugs and cosmetic components penetration through the skin. European Journal of Pharmaceutical Sciences 160:105765.
  • Tallian, C., G. Tegl, L. Quadlbauer, R. Vielnascher, S. Weinberger, R. Cremers, A. Pellis, J. W. O. Salari, and G. M. Guebitz. 2019. Lysozyme responsive spray-dried chitosan particles for early detection of wound infection. ACS Applied Bio Materials 2 (3):1331–9. doi: 10.1021/acsabm.9b00023.
  • Tang, D. W., S. H. Yu, W. S. Wu, H. Y. Hsieh, Y. C. Tsai, and F. L. Mi. 2014. Hydrogel microspheres for stabilization of an antioxidant enzyme: Effect of emulsion cross-linking of a dual polysaccharide system on the protection of enzyme activity. Colloids and Surfaces. B, Biointerfaces 113:59–68. doi: 10.1016/j.colsurfb.2013.09.002.
  • Tavares, L., H. L. B. Barros, J. C. P. V. Vaghetti, and C. P. Z. Noreña. 2019. Microencapsulation of garlic extract by complex coacervation using whey protein isolate/chitosan and gum Arabic/chitosan as wall materials: Influence of anionic biopolymers on the physicochemical and structural properties of microparticles. Food and Bioprocess Technology 12 (12):2093–106. doi: 10.1007/s11947-019-02375-y.
  • Tavernini, L., C. Ottone, A. Illanes, and L. Wilson. 2020. Entrapment of enzyme aggregates in chitosan beads for aroma release in white wines. International Journal of Biological Macromolecules 154:1082–90. doi: 10.1016/j.ijbiomac.2020.03.031.
  • Thu, T. T. M., and W. Krasaekoopt. 2016. Encapsulation of protease from aspergillus oryzae and lipase from thermomyces lanuginoseus using alginate and different copolymer types. Agriculture and Natural Resources 50 (3):155–61. doi: 10.1016/j.anres.2016.06.002.
  • Tomasz, J, and., and F. Urszula. 2021. The use of air-lift adsorber with a floating filling from a cross-linked chitosan hydrogels for Reactive Black 5 removal. Scientific Reports 11:13382.
  • Tsai, Y. C., S. Y. Chen, and H. W. Liaw. 2007. Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors. Sensors and Actuators B: Chemical 125 (2):474–81. doi: 10.1016/j.snb.2007.02.052.
  • Vatsyayan, P., and P. Goswami. 2011. Acidic pH conditions induce dissociation of the haem from the protein and destabilise the catalase isolated from Aspergillus terreus. Biotechnology Letters 33 (2):347–51. doi: 10.1007/s10529-010-0442-2.
  • Vimal, A., and A. Kumar. 2021. Antimicrobial potency evaluation of free and immobilized L-asparaginase using chitosan nanoparticles. Journal of Drug Delivery Science and Technology 61:102231. doi: 10.1016/j.jddst.2020.102231.
  • Walters, R. H., B. Bhatnagar, S. Tchessalov, K. I. Izutsu, K. Tsumoto, and S. Ohtake. 2014. Next generation drying technologies for pharmaceutical applications. Journal of Pharmaceutical Sciences 103 (9):2673–95. doi: 10.1002/jps.23998.
  • Wang, X., K. X. Zhu, and H. M. Zhou. 2011. Immobilization of glucose oxidase in alginate-chitosan microcapsules. International Journal of Molecular Sciences 12 (5):3042–54. doi: 10.3390/ijms12053042.
  • Wang, Z., B. Ma, C. Shen, and L. Z. Cheong. 2019. Direct, selective and ultrasensitive electrochemical biosensing of methyl parathion in vegetables using Burkholderia cepacia lipase@MOF nanofibers-based biosensor. Talanta 197:356–62.
  • Wani, T. U., A. H. Pandith, and F. A. Sheikh. 2021. Polyelectrolytic nature of chitosan: Influence on physicochemical properties and synthesis of nanoparticles. Journal of Drug Delivery Science and Technology 65:102730. doi: 10.1016/j.jddst.2021.102730.
  • Wen, P., M. Zong, R. J. Linhardt, K. Feng, and H. Wu. 2017. Electrospinning: A novel nano-encapsulation approach for bioactive compounds. Trends in Food Science & Technology 70:56–68. doi: 10.1016/j.tifs.2017.10.009.
  • Wu, T., C. Wu, S. Fu, L. Wang, C. Yuan, S. Chen, and Y. Hu. 2017. Integration of lysozyme into chitosan nanoparticles for improving antibacterial activity. Carbohydrate Polymers 155:192–200. doi: 10.1016/j.carbpol.2016.08.076.
  • Xu, C., J. Ma, W. Wang, Z. Liu, L. Gu, S. Qian, J. Hou, and Z. Jiang. 2022. Preparation of pectin-based nanofibers encapsulating Lactobacillus rhamnosus 1.0320 by electrospinning. Food Hydrocolloids. 124:107216. doi: 10.1016/j.foodhyd.2021.107216.
  • Yagar, H., and U. Balkan. 2017. Entrapment of laurel lipase in chitosan hydrogel beads. Artificial Cells, Nanomedicine, and Biotechnology 45 (5):864–70. doi: 10.1080/21691401.2016.1182920.
  • Yang, H., S. Luan, J. Zhao, H. Shi, X. Li, L. Song, J. Jin, Q. Shi, J. Yin, D. Shi, et al. 2012. Improving hemocompatibility of styrene-b-(ethylene-co-butylene)-b-styrene elastomer via N-vinyl pyrrolidone-assisted grafting of poly (ethylene glycol) methacrylate. Polymer 53 (8):1675–83. doi: 10.1016/j.polymer.2012.02.033.
  • Yoo, H. S., J. E. Lee, H. Chung, I. C. Kwon, and S. Y. Jeong. 2005. Self-assembled nanoparticles containing hydrophobically modified glycol chitosan for gene delivery. Journal of Controlled Release 103 (1):235–43. doi: 10.1016/j.jconrel.2004.11.033.
  • Yu, D. W., Z. J. Yu, W. Y. Zhao, J. M. Regenstein, and W. S. Xia. 2022. Advances in the application of chitosan as a sustainable bioactive material in food preservation. Critical Reviews in Food Science and Nutrition 62 (14):3782–97. doi: 10.1080/10408398.2020.1869920.
  • Yu, Q., Y. Song, X. Shi, C. Xu, and Y. Bin. 2011. Preparation and properties of chitosan derivative/poly(vinyl alcohol) blend films crosslinked with glutaraldehyde. Carbohydrate Polymers 84 (1):465–70. doi: 10.1016/j.carbpol.2010.12.006.
  • Yusuf, M. 2021. Formulation and cognitive evaluation of self-assembled phosphatidylserine-chitosan nanoparticles of lycopene, an innovative technique to lessen STZ-induced oxidative stress: A vital persuader of major neurological diseases. Journal of Drug Delivery Science and Technology 63:102534. doi: 10.1016/j.jddst.2021.102534.
  • Zhang, H. C., H. N. Yu, J. Mei, Y. F. Zhang, and Z. L. Deng. 2018. Preparation, characterization and in vitro release of β-galactosidase loaded polyelectrolyte nanoparticles. International Journal of Biological Macromolecules 115:1–9.
  • Zhang, H. C., M. M. Feng, S. S. Chen, W. Z. Shi, and X. C. Wang. 2020. Incorporation of lysozyme into cellulose nanocrystals stabilized β-chitosan nanoparticles with enhanced antibacterial activity. Carbohydrate Polymers 236:115974. doi: 10.1016/j.carbpol.2020.115974.
  • Zhang, H. C., S. Y. Yun, L. L. Song, Y. W. Zhang, and Y. Y. Zhao. 2017. The preparation and characterization of chitin and chitosan under large-scale submerged fermentation level using shrimp by-products as substrate. International Journal of Biological Macromolecules 96:334–9. doi: 10.1016/j.ijbiomac.2016.12.017.
  • Zhang, Y., X. Rui, and B. K. Simpson. 2021. Trends in nanozymes development versus traditional enzymes in food science. Current Opinion in Food Science 37:10–6. doi: 10.1016/j.cofs.2020.08.001.
  • Zhao, H., Q. Cui, V. Shah, J. Xu, and T. Wang. 2016. Enhancement of glucose isomerase activity by immobilizing on silica/chitosan hybrid microspheres. Journal of Molecular Catalysis B: Enzymatic 126:18–23. doi: 10.1016/j.molcatb.2016.01.013.
  • Zhao, J. X., M. M. Ma, X. H. Yan, D. M. Wan, Z. L. Zeng, P. Yu, and D. Gong. 2022. Immobilization of lipase on β-cyclodextrin grafted and aminopropyl-functionalized chitosan/Fe3O4 magnetic nanocomposites: An innovative approach to fruity flavor esters esterification. Food Chemistry 366:130616. doi: 10.1016/j.foodchem.2021.130616.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.