946
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

The control of Fusarium growth and decontamination of produced mycotoxins by lactic acid bacteria

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 11125-11152 | Published online: 16 Jun 2022

References

  • Abdolmaleki, K., S. Khedri, L. Alizadeh, F. Javanmardi, C. A. F. Oliveira, and A. Mousavi Khaneghah. 2021. The mycotoxins in edible oils: An overview of prevalence, concentration, toxicity, detection and decontamination techniques. Trends in Food Science & Technology 115:500–11. doi: 10.1016/j.tifs.2021.06.057.
  • Abedi, E., K. Pourmohammadi, M. Mousavifard, and M. Sayadi. 2022. Comparison between surface hydrophobicity of heated and thermosonicated cells to detoxify aflatoxin B1 by co-culture Lactobacillus plantarum and Lactobacillus rhamnosus in sourdough: Modeling studies. LWT 154:112616. doi: 10.1016/j.lwt.2021.112616.
  • Abouloifa, H., S. Gaamouche, Y. Rokni, I. Hasnaoui, R. Bellaouchi, N. Ghabbour, S. Karboune, M. Brasca, G. D’Hallewin, R. Ben Salah, et al. 2021. Antifungal activity of probiotic Lactobacillus strains isolated from natural fermented green olives and their application as food bio-preservative. Biological Control 152:104450. doi: 10.1016/j.biocontrol.2020.104450.
  • Acuña-Gutiérrez, C., S. Schock, V. M. Jiménez, and J. Müller. 2021. Detecting fumonisin B1 in black beans (Phaseolus vulgaris L.) by near-infrared spectroscopy (NIRS). Food Control. 130:108335. doi: 10.1016/j.foodcont.2021.108335.
  • Agriopoulou, S. 2016. Enniatins: An emerging food safety issue. EC Nutr 3:1142–6. E-Cronicon.
  • Agriopoulou, S. 2021. Ergot alkaloids mycotoxins in cereals and cereal-derived food products: Characteristics, toxicity, prevalence, and control strategies. Agronomy 11 (5):931. doi: 10.3390/agronomy11050931.
  • Agriopoulou, S., A. Koliadima, G. Karaiskakis, and J. Kapolos. 2016. Kinetic study of aflatoxins’ degradation in the presence of ozone. Food Control. 61:221–6. doi: 10.1016/j.foodcont.2015.09.013.
  • Agriopoulou, S., E. Stamatelopoulou, and T. Varzakas. 2020a. Advances in occurrence, importance, and mycotoxin control strategies: Prevention and detoxification in foods. Foods 9 (2):137. doi: 10.3390/foods9020137.
  • Agriopoulou, S., E. Stamatelopoulou, and T. Varzakas. 2020b. Advances in Analysis and Detection of Major Mycotoxins in Foods. Foods, 9 9 (4):518. doi: 10.3390/foods9040518.
  • Agriopoulou, S., E. Stamatelopoulou, M. Sachadyn-Król, and T. Varzakas. 2020c. Lactic acid bacteria as antibacterial agents to extend the shelf life of fresh and minimally processed fruits and vegetables: Quality and safety aspects. Microorganisms 8 (6):952. doi: 10.3390/microorganisms8060952.
  • Alizadeh, A. M., F. Hashempour-Baltork, M. Alizadeh-Sani, M. Maleki, M. Azizi-Lalabad, and K. Khosravi-Darani. 2020. Inhibition of Clostridium (C.) botulinum and its toxins by probiotic bacteria and their metabolites: An update review. Quality Assurance and Safety of Crops & Foods 12 (SP1):59–68. doi: 10.15586/qas.v12iSP1.823.
  • Amiri, S., Z. M. Moghanjougi, M. R. Bari, and A. M. Khaneghah. 2021. Natural protective agents and their applications as biopreservatives in the food industry: An overview of current and future applications. Italian Journal of Food Science 33 (SP1):55–60. doi: 10.15586/ijfs.v33iSP1.2045.
  • Amri, E., and S. O. Lenoi. 2016. Aflatoxin and fumonisin contamination of sun-dried sweet potato (Ipomoea batatas L.) chips in Kahama district. Tanzania. J. Appl. Env. Microbiol 4 (3):55–62.
  • AOAC. 2019. ISPAM Guidelines for Validation of Qualitative Binary Chemistry Methods (2019) Official Methods of Analysis of AOAC INTERNATIONAL. 21st ed. AOAC INTERNATIONAL, Rockville, MD, USA. http://www.eoma.aoac.org/app_n.pdf.
  • Arasu, M. V., and N. A. Al‐Dhabi. 2017. In vitro antifungal, probiotic, and antioxidant functional properties of a novel Lactobacillus paraplantarum isolated from fermented dates in Saudi Arabia. Journal of the Science of Food and Agriculture 97 (15):5287–95. doi: 10.1002/jsfa.8413.
  • Arata, G. J., M. Martínez, C. Elguezábal, D. Rojas, D. Cristos, M. I. Dinolfo, and A. F. Arata. 2022. Effects of sowing date, nitrogen fertilization, and Fusarium graminearum in an Argentinean bread wheat: Integrated analysis of disease parameters, mycotoxin contamination, grain quality, and seed deterioration. Journal of Food Composition and Analysis 107:104364. doi: 10.1016/j.jfca.2021.104364.
  • Arya, G. C., and H. Cohen. 2022. The Multifaceted Roles of Fungal Cutinases during Infection. Journal of Fungi 8 (2):199. doi: 10.3390/jof8020199.
  • Bagheri, N., A. Khataee, B. Habibi, and J. Hassanzadeh. 2018. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 179:710–8. doi: 10.1016/j.talanta.2017.12.009.
  • Bangar, S. P., N. Sharma, A. Bhardwaj, and Y. Phimolsiripol. 2022. Lactic acid bacteria: A bio-green preservative against mycotoxins for food safety and shelf-life extension. Quality Assurance and Safety of Crops & Foods 14 (2):13–31. doi: 10.15586/qas.v14i2.1014.
  • Bangar, S. P., N. Sharma, M. Kumar, F. Ozogul, S. S. Purewal, and M. Trif. 2021. Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination. Food Bioscience 44:101444. doi: 10.1016/j.fbio.2021.101444.
  • Bartkiene, E., V. Lele, M. Ruzauskas, K. J. Domig, V. Starkute, P. Zavistanaviciute, V. Bartkevics, I. Pugajeva, D. Klupsaite, G. Juodeikiene, et al. 2019. Lactic acid bacteria isolation from spontaneous sourdough and their characterization including antimicrobial and antifungal properties evaluation. Microorganisms 8 (1):64. doi: 10.3390/microorganisms8010064.
  • Bazukyan, I., L. Matevosyan, A. Toplaghaltsyan, and A. Trchounian. 2018. Antifungal activity of lactobacilli isolated from Armenian dairy products: An effective strain and its probable nature. AMB Express 8 (1):1–8. doi: 10.1186/s13568-018-0619-y.
  • Ben Braïek, O., H. Ghomrassi, P. Cremonesi, S. Morandi, Y. Fleury, P. Le Chevalier, K. Hani, O. Bel Hadj, and T. Ghrairi. 2017. Isolation and characterisation of an enterocin P-producing Enterococcus lactis strain from a fresh shrimp (Penaeus vannamei). Antonie Van Leeuwenhoek 110 (6):771–86. doi: 10.1007/s10482-017-0847-1.
  • Ben Braïek, O., P. Cremonesi, S. Morandi, S. Smaoui, K. Hani, and T. Ghrairi. 2018a. Safety characterisation and inhibition of fungi and bacteria by a novel multiple enterocin-producing Enterococcus lactis 4CP3 strain. Microbial Pathogenesis 118:32–8. doi: 10.1016/j.micpath.2018.03.005.
  • Ben Braïek, O., S. Morandi, P. Cremonesi, S. Smaoui, K. Hani, and T. Ghrairi. 2018b. Biotechnological potential, probiotic and safety properties of newly isolated enterocin-producing Enterococcus lactis strains. LWT 92:361–70. doi: 10.1016/j.lwt.2018.02.045.
  • Bernhoft, A., M. Torp, P. E. Clasen, A. K. Løes, and A. B. Kristoffersen. 2012. Influence of agronomic and climatic factors on Fusarium infestation and mycotoxin contamination of cereals in Norway. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 29 (7):1129–40. doi: 10.1080/19440049.2012.672476.
  • Berthiller, F., C. Crews, C. Dall’Asta, S. D. Saeger, G. Haesaert, P. Karlovsky, I. P. Oswald, W. Seefelder, G. Speijers, and J. Stroka. 2013. Masked mycotoxins: A review. Molecular Nutrition & Food Research 57 (1):165–86. doi: 10.1002/mnfr.201100764.
  • Birr, T., M. Hasler, J. A. Verreet, and H. Klink. 2020. Composition and predominance of Fusarium species causing Fusarium head blight in winter wheat grain depending on cultivar susceptibility and ­meteorological factors. Microorganisms 8 (4):617. doi: 10.3390/microorganisms8040617.
  • Birr, T., T. Jensen, N. Preußke, F. D. Sönnichsen, M. De Boevre, S. De Saeger, M. Hasler, J.-A. Verreet, and H. Klink. 2021. Occurrence of Fusarium mycotoxins and their modified forms in forage maize cultivars. Toxins 13 (2):110. doi: 10.3390/toxins13020110.
  • Blandino, M., A. Reyneri, and F. Vanara. 2008. Influence of nitrogen fertilization on mycotoxin contamination of maize kernels. Crop Protection 27 (2):222–30. doi: 10.1016/j.cropro.2007.05.008.
  • Boško, R., M. Pernica, S. Běláková, M. Bjelková, and H. Pluháčková. 2022. Determination of T-2 and HT-2 Toxins in Seed of Milk Thistle [Silybum marianum (L.) Gaertn.] Using Immunoaffinity Column by UPLC-MS/MS. Toxins 14 (4):258. doi: 10.3390/toxins14040258.
  • Bouajila, A., M. Lamine, Z. Hamdi, A. Ghorbel, and P. Gangashetty. 2022. A nutritional survey of local barley populations based on the mineral bioavailability, fatty acid profile, and geographic distribution of Fusarium species and the mycotoxin zearalenone (ZEN). Agronomy 12 (4):916. doi: 10.3390/agronomy12040916.
  • Broberg, A., K. Jacobsson, K. Ström, and J. Schnürer. 2007. Metabolite profiles of lactic acid bacteria in grass silage. Applied and Environmental Microbiology 73 (17):5547–52. doi: 10.1128/AEM.02939-06.
  • Cao, H., D. Meng, W. Zhang, T. Ye, M. Yuan, J. Yu, X. Wu, Y. Li, F. Yin, C. Fu, et al. 2021. Growth inhibition of Fusarium graminearum and deoxynivalenol detoxification by lactic acid bacteria and their application in sourdough bread. International Journal of Food Science & Technology 56 (5):2304–14. doi: 10.1111/ijfs.14852.
  • Carere, J., Y. I. Hassan, D. Lepp, and T. Zhou. 2018a. The enzymatic detoxification of the mycotoxin deoxynivalenol: Identification of DepA from the DON epimerization pathway. Microbial Biotechnology 11 (6):1106–11. doi: 10.1111/1751-7915.12874.
  • Carere, J., Y. I. Hassan, D. Lepp, and T. Zhou. 2018b. The identification of DepB: An enzyme responsible for the final detoxification step in the deoxynivalenol epimerization pathway in Devosia mutans 17-2-E-8. Frontiers in Microbiology 9:1573. doi: 10.3389/fmicb.2018.01573.
  • Carvalho, B. F., G. F. C. Sales, R. F. Schwan, and C. L. S. Ávila. 2021. Criteria for lactic acid bacteria screening to enhance silage quality. Journal of Applied Microbiology 130 (2):341–55. doi: 10.1111/jam.14833.
  • Cendoya, E., M. L. Chiotta, V. Zachetti, S. N. Chulze, and M. L. Ramirez. 2018. Fumonisins and fumonisin-producing Fusarium occurrence in wheat and wheat by-products: A review. Journal of Cereal Science 80:158–66. doi: 10.1016/j.jcs.2018.02.010.
  • Chen, L., J. Yang, H. Wang, X. Yang, C. Zhang, Z. Zhao, and J. Wang. 2022. NX toxins: New threat posed by Fusarium graminearum species complex. Trends in Food Science & Technology 119:179–91. doi: 10.1016/j.tifs.2021.11.027.
  • Chen, Y., H. C. Kistler, and Z. Ma. 2019. Fusarium graminearum trichothecene mycotoxins: Biosynthesis, regulation, and management. Annual Review of Phytopathology 57:15–39. doi: 10.1146/annurev-phyto-082718-100318.
  • Chilaka, C. A., M. De Boevre, O. O. Atanda, and S. De Saeger. 2018. Quantification of Fusarium mycotoxins in Nigerian traditional beers and spices using a multi-mycotoxin LC-MS/MS method. Food Control. 87:203–10. doi: 10.1016/j.foodcont.2017.12.028.
  • Chlebicz, A., and K. Śliżewska. 2020. In vitro detoxification of aflatoxin B 1, deoxynivalenol, fumonisins, T-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast. Probiotics and Antimicrobial Proteins 12 (1):289–301. doi: 10.1007/s12602-018-9512-x.
  • Chtioui, W., V. Balmas, G. Delogu, Q. Migheli, and S. Oufensou. 2022. Bioprospecting phenols as inhibitors of trichothecene-producing fusarium: Sustainable approaches to the management of wheat pathogens. Toxins 14 (2):72. doi: 10.3390/toxins14020072.
  • Cimbalo, A., M. Alonso-Garrido, G. Font, and L. Manyes. 2020. Toxicity of mycotoxins in vivo on vertebrate organisms: A review. Food and Chemical Toxicology 137:111161. doi: 10.1016/j.fct.2020.111161.
  • Codex Alimentarius. 2003. Code of practice for the prevention and reduction of mycotoxin contamination in cereals, including annexes on OTA, zearalenone, fumonisins and trichothecenes. CAC/RCP:51-2003.
  • Čvek, D., K. Markov, J. Frece, M. Friganović, L. Duraković, and F. Delaš. 2012. Adhesion of zearalenone to the surface of lactic acid bacteria cells. Hrvatski Časopis za Prehrambenu Tehnologiju, Biotehnologiju i Nutricionizam 7 (SPECIAL ISSUE-7th):49–52.
  • Cvijanović, V., G. Cvijanović, V. Rajičić, J. Marinković, V. Đukić, M. Bajagić, and N. Đurić. 2022. Influence of different methods of application of effective microorganisms in nutrition of wheat on weight by 1000 grains, yield, and content of crude wheat proteins (TRITICUM SP). Cereal Research Communications 2022:1–10. doi: 10.1007/s42976-021-00226-1.
  • Dawlal, P., C. Brabet, M. S. Thantsha, and E. M. Buys. 2019. Visualisation and quantification of fumonisins bound by lactic acid bacteria isolates from traditional African maize-based fermented cereals, ogi and mahewu. Food Additives & Contaminants: Part A 36 (2):296–307. doi: 10.1080/19440049.2018.1562234.
  • De Colli, L., K. De Ruyck, M. F. Abdallah, J. Finnan, E. Mullins, S. Kildea, J. Spink, C. Elliott, and M. Danaher. 2021. Natural co-occurrence of multiple mycotoxins in unprocessed oats grown in Ireland with various production systems. Toxins 13 (3):188. doi: 10.3390/toxins13030188.
  • De Souza, C., A. M. Khaneghah, and C. A. F. Oliveira. 2021. The occurrence of aflatoxin M1 in industrial and traditional fermented milk: A systematic review study. Italian Journal of Food Science 33 (SP1):12–23. doi: 10.15586/ijfs.v33iSP1.1982.
  • de Souza, M., A. A. S. Baptista, M. J. J. Valdiviezo, L. Justino, M. F. Menck-Costa, C. R. Ferraz, E. M. da Gloria, W. A. Verri, and A. P. F. R. L. Bracarense. 2020. Lactobacillus spp. Reduces morphological changes and oxidative stress induced by deoxynivalenol on the intestine and liver of broilers. Toxicon 185:203–12. doi: 10.1016/j.toxicon.2020.07.002.
  • Deepthi, B. V., R. Somashekaraiah, K. Poornachandra Rao, N. Deepa, N. K. Dharanesha, K. S. Girish, and M. Y. Sreenivasa. 2017. Lactobacillus plantarum MYS6 ameliorates fumonisin B1-induced hepatorenal damage in broilers. Frontiers in Microbiology 8:2317. doi: 10.3389/fmicb.2017.02317.
  • Dey, D. K., J. I. Kang, V. K. Bajpai, K. Kim, H. Lee, S. Sonwal, J. Simal-Gandara, J. Xiao, S. Ali, Y. S. Huh, et al. 2022. Mycotoxins in food and feed: Toxicity, preventive challenges, and advanced detection techniques for associated diseases. Critical Reviews in Food Science and Nutrition 2022:1–22. doi: 10.1080/10408398.2022.2059650.
  • Diaz, D. G. G., R. P. Pizzolitto, C. Vázquez, V. L. Usseglio, M. P. Zunino, J. S. Dambolena, J. A. Zygadlo, and C. Merlo. 2021. Effects of the volatile organic compounds produced by Enterococcus spp. strains isolated from maize grain silos on Fusarium verticillioides growth and fumonisin B1 production. Journal of Stored Products Research 93:101825. doi: 10.1016/j.jspr.2021.101825.
  • dos Santos-Ciscon, B. A., A. van Diepeningen, J. da Cruz Machado, I. E. Dias, and C. Waalwijk. 2019. Aspergillus species from Brazilian dry beans and their toxigenic potential. International Journal of Food Microbiology 292:91–100. doi: 10.1016/j.ijfoodmicro.2018.12.006.
  • Drzymala, S. S., S. Weiz, J. Heinze, S. Marten, C. Prinz, A. Zimathies, L.-A. Garbe, and M. Koch. 2015. Automated solid-phase extraction coupled online with HPLC-FLD for the quantification of zearalenone in edible oil. Analytical and Bioanalytical Chemistry 407 (12):3489–97. doi: 10.1007/s00216-015-8541-5.
  • Ederli, L., G. Beccari, F. Tini, I. Bergamini, I. Bellezza, R. Romani, and L. Covarelli. 2021. Enniatin B and Deoxynivalenol Activity on Bread Wheat and on Fusarium Species Development. Toxins 13 (10):728. doi: 10.3390/toxins13100728.
  • EFSA. 2017a. Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. EFSA Journal 15 (9):4718. doi: 10.2903/j.efsa.2017.4718.
  • EFSA. 2017b. Scientific opinion on the risks for animal health related to the presence of zearalenone and its modified forms in feed. EFSA Journal 15 (7):4851–123. doi: 10.2903/j.efsa.2017.4851.
  • EFSA. 2018. Scientific opinion on the risks for animal health related to the presence of fumonisins, their modified forms and hidden forms in feed. EFSA Journal 16 (5):5242–144. doi: 10.2903/j.efsa.2018.5242.
  • Ekwomadu, T. I., S. A. Akinola, and M. Mwanza. 2021a. Food Safety Concerns, and Health Impacts. International Journal of Environmental Research and Public Health. Fusarium Mycotoxins, Their Metabolites (Free, Emerging, and Masked) 18:22. doi: 10.3390/ijerph15112494.
  • Ekwomadu, T. I., T. A. Dada, S. A. Akinola, N. Nleya, and M. Mwanza. 2021b. Analysis of Selected Mycotoxins in Maize from North-West South Africa Using High Performance Liquid Chromatography (HPLC) and Other Analytical Techniques. Separations 8 (9):143. doi: 10.3390/separations8090143.
  • El Khetabi, A., R. Lahlali, S. Ezrari, N. Radouane, L. Nadia, H. Banani, L. Askarne, A. Tahiri, L. El Ghadraoui, S. Belmalha, et al. 2022. Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit shelf life: A review. Trends in Food Science & Technology 120:402–17.
  • El-Nezami, H., N. Polychronaki, S. Salminen, and H. Mykkänen. 2002. Binding rather than metabolism may explain the interaction of two food-grade Lactobacillus strains with Zearalenone and Its Derivative ɑ́-Zearalenol. Applied and Environmental Microbiology 68 (7):3545–9. doi: 10.1128/AEM.68.7.3545-3549.2002.
  • El-Nezami, H., N. Polychronaki, Y. K. Lee, C. Haskard, R. Juvonen, S. Salminen, and H. Mykkänen. 2004. Chemical moieties and interactions involved in the binding of zearalenone to the surface of Lactobacillus rhamnosus strains GG. Journal of Agricultural and Food Chemistry 52 (14):4577–81. doi: 10.1021/jf049924m.
  • Eskola, M., G. Kos, C. T. Elliott, J. Hajšlová, S. Mayar, and R. Krska. 2020. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate of 25. %Critical Reviews in Food Science and Nutrition 60 (16):2773–89. doi: 10.1080/10408398.2019.1658570.
  • European Commission. 2002, last amended in 2014. Decision (EC) No. 657/2002 of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Official Journal of the European Union L 221:8–36. http://data.europa.eu/eli/dec/2002/657/oj.
  • European Commission. 2006, last amended in 2014. Commission Regulation (EC) No 401/2006 of 23 February 2006 laying down the methods of sampling and analysis for the official control of the levels of mycotoxins in foodstuffs. Official Journal of the European Union L 70/12. http://data.europa.eu/eli/reg/2006/401/2014-07-01.
  • European Commission. 2007. Commission Regulation (EC) No 1126/2007, on setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Official Journal of the European Union 255:14–7.
  • European Commission. 2013. Commission Recommendation No 2013/165/EU of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products. Off. J. Eur. Union 91:12–5.
  • European Commission. 2013. Commission Recommendation of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products. Official Journal of the European Union L 91/12. http://data.europa.eu/eli/reco/2013/165/oj.
  • European Commission. 2014. Commission Regulation (EU) No 519/2014 of 16 May 2014 amending Regulation (EC) No 401/2006 as regards methods of sampling of large lots, spices and food supplements, performance criteria for T-2, HT-2 toxin and citrinin and screening methods of analysis Text with EEA relevance. Official Journal of the European Union L 147/57. http://data.europa.eu/eli/reg/2014/519/oj.
  • European Commission. 2019. Communication from the Commission to the Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions, The European Green Deal, COM640 final. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN.
  • Ezdini, K., J. B. Salah-Abbès, H. Belgacem, M. Mannai, and S. Abbès. 2020. Lactobacillus paracasei alleviates genotoxicity, oxidative stress status and histopathological damage induced by Fumonisin B1 in BALB/c mice. Toxicon 185:46–56. doi: 10.1016/j.toxicon.2020.06.024.
  • Fakhri, Y., M. Sarafraz, A. Nematollahi, V. Ranaei, M. Soleimani-Ahmadi, V. N. Thai, and A. Mousavi Khaneghah. 2021. A global systematic review and meta-analysis of concentration and prevalence of mycotoxins in birds’ egg. Environmental Science and Pollution Research 28 (42):59542–50. doi: 10.1007/s11356-021-16136-y.
  • Ferrigo, D., A. Raiola, and R. Causin. 2016. Fusarium toxins in cereals: Occurrence, legislation, factors promoting the appearance and their management. Molecules 21 (5):627. doi: 10.3390/molecules21050627.
  • Fiby, I., M. M. Sopel, H. Michlmayr, G. Adam, and F. Berthiller. 2021. Development and validation of an LC-MS/MS based method for the determination of deoxynivalenol and its modified forms in maize. Toxins 13 (9):600. doi: 10.3390/toxins13090600.
  • Freire, L., and A. S. Sant’Ana. 2018. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food and Chemical Toxicology 111:189–205. doi: 10.1016/j.fct.2017.11.021.
  • Fumagalli, F., M. Ottoboni, L. Pinotti, and F. Cheli. 2021. Integrated Mycotoxin Management System in the Feed Supply Chain: Innovative Approaches. Toxins 13 (8):572. doi: 10.3390/toxins13080572.
  • Gab-Allah, M. A., K. G. Mekete, K. Choi, and B. Kim. 2021. Occurrence of major type-B trichothecenes and deoxynivalenol-3-glucoside in cereal-based products from Korea. Journal of Food Composition and Analysis 99:103851. doi: 10.1016/j.jfca.2021.103851.
  • Gagkaeva, T., A. Orina, and O. Gavrilova. 2021. Fusarium head blight in the Russian Far East: 140 years after description of the ‘drunken bread’ problem. PeerJ. 9:e12346. doi: 10.7717/peerj.12346.
  • Gallo, A., F. Fancello, F. Ghilardelli, S. Zara, F. Froldi, and M. Spanghero. 2021. Effects of several lactic acid bacteria inoculants on fermentation and mycotoxins in corn silage. Animal Feed Science and Technology 277:114962. doi: 10.1016/j.anifeedsci.2021.114962.
  • García, G. R., D. Payros, P. Pinton, C. A. Dogi, J. Laffitte, M. Neves, M. L. González Pereyra, L. R. Cavaglieri, and I. P. Oswald. 2018. Intestinal toxicity of deoxynivalenol is limited by Lactobacillus rhamnosus RC007 in pig jejunum explants. Archives of Toxicology 92 (2):983–93. doi: 10.1007/s00204-017-2083-x.
  • Gautam, P., and R. Dill-Macky. 2012. Impact of moisture, host genetics and Fusarium graminearum isolates on Fusarium head blight development and trichothecene accumulation in spring wheat. Mycotoxin Research 28 (1):45–58. doi: 10.1007/s12550-011-0115-6.
  • Giorni, P., T. Bertuzzi, and P. Battilani. 2019. Impact of fungi co-occurrence on mycotoxin contamination in maize during the growing season. Frontiers in Microbiology 10:1265. doi: 10.3389/fmicb.2019.01265.
  • Gonçalves, C., C. Mischke, and J. Stroka. 2020b. Determination of deoxynivalenol and its major conjugates in cereals using an organic solvent-free extraction and IAC clean-up coupled in-line with HPLC-PCD-FLD. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 37 (10):1765–76. doi: 10.1080/19440049.2020.1800829.
  • Gonçalves, R. A., D. Schatzmayr, A. Albalat, and S. Mackenzie. 2020a. Mycotoxins in aquaculture: Feed and food. Reviews in Aquaculture 12 (1):145–75. doi: 10.1111/raq.12310.
  • Habschied, K., V. Krstanović, Z. Zdunić, J. Babić, K. Mastanjević, and G. K. Šarić. 2021. Mycotoxins biocontrol methods for healthier crops and stored products. Journal of Fungi 7 (5):348. doi: 10.3390/jof7050348.
  • Hajiboland, R. 2012. Effect of micronutrient deficiencies on plants stress responses. In Abiotic stress responses in plants, eds. P. Ahmad, and M. N. V. Prasad, 283–329, 289. New York, NY: Springer.
  • He, D., Z. Wu, B. Cui, Z. Jin, and E. Xu. 2020. A fluorometric method for aptamer-based simultaneous determination of two kinds of the fusarium mycotoxins zearalenone and fumonisin B1 making use of gold nanorods and upconversion nanoparticles. Mikrochimica Acta 187 (4):254. doi: 10.1007/s00604-020-04236-4.
  • Heinl, S., D. Hartinger, M. Thamhesl, E. Vekiru, R. Krska, G. Schatzmayr, W.-D. Moll, and R. Grabherr. 2010. Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes. Journal of Biotechnology 145 (2):120–9. doi: 10.1016/j.jbiotec.2009.11.004.
  • Heshmati, A., M. Khorshidi, and A. M. Khaneghah. 2021. The prevalence and risk assessment of aflatoxin in sesame based products. Italian Journal of Food Science 33 (SP1):92–102. doi: 10.15586/ijfs.v33iSP1.2065.
  • Honoré, A. H., S. D. Aunsbjerg, P. Ebrahimi, M. Thorsen, C. Benfeldt, S. Knøchel, and T. Skov. 2016. Metabolic footprinting for investigation of antifungal properties of Lactobacillus paracasei. Analytical and Bioanalytical Chemistry 408 (1):83–96. doi: 10.1007/s00216-015-9103-6.
  • Hooft, J. M., and D. P. Bureau. 2021. Deoxynivalenol: Mechanisms of action and its effects on various terrestrial and aquatic species. Food and Chemical Toxicology 157:112616. doi: 10.1016/j.fct.2021.112616.
  • Hooft, J. M., C. Ferreira, J. S. Lumsden, M. Sulyok, R. Krska, and D. P. Bureau. 2019. The effects of naturally occurring or purified deoxynivalenol (DON) on growth performance, nutrient utilization and histopathology of rainbow trout (Oncorhynchus mykiss). Aquaculture 505:319–32. doi: 10.1016/j.aquaculture.2019.02.032.
  • Hossain, M. Z., and C. M. Maragos. 2018. Gold nanoparticle-enhanced multiplexed imaging surface plasmon resonance (iSPR) detection of Fusarium mycotoxins in wheat. Biosensors and Bioelectronics. 101 (101):245–52. doi: 10.1016/j.bios.2017.10.033.
  • Huang, W., J. Chang, P. Wang, C. Liu, Q. Yin, Q. Zhu, F. Lu, and T. Gao. 2018. Effect of the combined compound probiotics with mycotoxin–degradation enzyme on detoxifying aflatoxin B1 and zearalenone. The Journal of Toxicological Sciences 43 (6):377–85. doi: 10.2131/jts.43.377.
  • Huber, D. M., and J. B. Jones. 2013. The role of magnesium in plant disease. Plant and Soil 368 (1-2):73–85. doi: 10.1007/s11104-012-1476-0.
  • Husain, A., Z. Hassan, A. S. W. El-mabrok, M. N. Lani, and M. B. Munir. 2017b. In vitro efficacy of lactic acid bacteria with antifungal activity against Fusarium sp. CID124-CS isolate from chilli seeds. International Journal of Scientific and Technology Research 6 (9):128–32.
  • Husain, A., Z. Hassan, and M. N. Lani. 2017a. Factors effect on antifungal activity of lactic acid bacteria against Fusarium proliferatum isolate from rose leaves. International Journal of Scientific Research in Science, Engineering and Technology 3:449–55.
  • Ibrahim, S. R., A. Sirwi, B. G. Eid, S. G. Mohamed, and G. A. Mohamed. 2021. Bright Side of Fusarium oxysporum: Secondary Metabolites Bioactivities and Industrial Relevance in Biotechnology and Nanotechnology. Journal of Fungi 7 (11):943. doi: 10.3390/jof7110943.
  • Iqbal, S. Z. 2021. Mycotoxins in food, recent development in food analysis and future challenges; a review. Current Opinion in Food Science 42:237–47. doi: 10.1016/j.cofs.2021.07.003.
  • Iqbal, S. Z., A. F. Abdull Razis, S. Usman, N. B. Ali, and M. R. Asi. 2021. Variation of Deoxynivalenol Levels in Corn and Its Products Available in Retail Markets of Punjab, Pakistan, and Estimation of Risk Assessment. Toxins 13 (5):296. doi: 10.3390/toxins13050296.
  • Jafari, K., A. E. Fathabad, Y. Fakhri, M. Shamsaei, M. Miri, R. Farahmandfar, and A. M. Khaneghah. 2021. Aflatoxin M1 in traditional and industrial pasteurized milk samples from Tiran County, Isfahan Province: A probabilistic health risk assessment. Italian Journal of Food Science 33 (SP1):103–16. doi: 10.15586/ijfs.v33iSP1.2054.
  • Jafarzadeh, S., M. Hadidi, M. Forough, A. M. Nafchi, and A. Mousavi Khaneghah. 2022. The control of fungi and mycotoxins by food active packaging: A review. Critical Reviews in Food Science and Nutrition 2022:1–19. doi: 10.1080/10408398.2022.2031099.
  • Jedidi, I., E. M. Mateo, P. Marín, M. Jiménez, S. Said, and M. T. González-Jaén. 2021. Contamination of wheat, barley, and maize seeds with toxigenic Fusarium species and their mycotoxins in Tunisia. Journal of AOAC International 104 (4):959–67. doi: 10.1093/jaoacint/qsab020.
  • Jerome Jeyakumar, J. M., M. Zhang, and M. Thiruvengadam. 2018. Determination of mycotoxins by HPLC, LC-ESI-MS/MS, and MALDI-TOF MS in Fusarium species-infected sugarcane. Microbial Pathogenesis 123:98–110. doi: 10.1016/j.micpath.2018.06.045.
  • Ji, F., D. He, A. O. Olaniran, M. P. Mokoena, J. Xu, and J. Shi. 2019. Occurrence, toxicity, production and detection of Fusarium mycotoxin: A review. Food Production. Food Production, Processing and Nutrition 1 (1):6. doi: 10.1186/s43014-019-0007-2.
  • Joint FAO/WHO Expert Committee on Food Additives. 2011. Safety evaluation of certain contaminants in food: prepared by the Seventy-second meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Geneva: World Health Organization.
  • Jorquera-Pereira, D., J. Pavón-Pérez, and G. Ríos-Gajardo. 2021. Identification of type B trichothecenes and zearalenone in Chilean cereals by planar chromatography coupled to mass spectroscopy. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 38 (10):1778–87. doi: 10.1080/19440049.2021.1948618.
  • Juan, C., A. Ritieni, and J. Mañes. 2013. Occurrence of Fusarium mycotoxins in Italian cereal and cereal products from organic farming. Food Chemistry 141 (3):1747–55. doi: 10.1016/j.foodchem.2013.04.061.
  • Juodeikiene, G., E. Bartkiene, D. Cernauskas, D. Cizeikiene, D. Zadeike, V. Lele, and V. Bartkevics. 2018. Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. LWT 89:307–14. doi: 10.1016/j.lwt.2017.10.061.
  • Kaltner, F., C. Rampl, M. Rychlik, T. Zimmermann, and A. Rohe. 2017. Development and validation of a cost-effective HPLC-FLD method for routine analysis of Fumonisins B1 and B2 in corn and corn products. Food Analytical Methods 10 (5):1349–58. doi: 10.1007/s12161-016-0688-y.
  • Katanić, Z., S. Mlinarić, N. Katanić, J. Ćosić, and V. Španić. 2021. Photosynthetic efficiency in flag leaves and ears of winter wheat during fusarium head blight infection. Agronomy 11 (12):2415. doi: 10.3390/agronomy11122415.
  • Kebede, H., X. Liu, J. Jin, and F. Xing. 2020. Current status of major mycotoxins contamination in food and feed in Africa. Food Control. 110:106975. doi: 10.1016/j.foodcont.2019.106975.
  • Kenngott, K. G. J., J. Albert, F. Meyer-Wolfarth, G. E. Schaumann, and K. Muñoz. 2022. Fusarium Mycotoxins in Maize Field Soils: Method Validation and Implications for Sampling Strategy. Toxins. 14 (12):130. doi: 10.3390/toxins14020130.
  • Kępińska-Pacelik, J., and W. Biel. 2021. Mycotoxins—Prevention, detection, impact on animal health. Processes 9 (11):2035. doi: 10.3390/pr9112035.
  • Kharazian, Z. A., G. S. Jouzani, M. Aghdasi, M. Khorvash, M. Zamani, and H. Mohammadzadeh. 2017. Biocontrol potential of Lb. strains isolated from corn silages against some plant pathogenic fungi. Biological Control 110:33–43. doi: 10.1016/j.biocontrol.2017.04.004.
  • Kimura, M., I. Kaneko, M. Komiyama, A. Takatsuki, H. Koshino, K. Yoneyama, and I. Yamaguchi. 1998. Trichothecene 3-O-acetyltransferase protects both the producing organism and transformed yeast from related mycotoxins. Cloning and characterization of Tri101. The Journal of Biological Chemistry 273 (3):1654–61. doi: 10.1074/jbc.273.3.1654.
  • Kochman, J., K. Jakubczyk, and K. Janda. 2021. Mycotoxins in red wine: Occurrence and risk assessment. Food Control. 129:108229. doi: 10.1016/j.foodcont.2021.108229.
  • Kolawole, O., J. Meneely, A. Petchkongkaew, and C. Elliott. 2021. A review of mycotoxin biosynthetic pathways: Associated genes and their expressions under the influence of climatic factors. Fungal Biology Reviews 37:8–26. doi: 10.1016/j.fbr.2021.04.003.
  • Kong, D., X. Wu, Y. Li, L. Liu, S. Song, Q. Zheng, H. Kuang, and C. Xu. 2019. Ultrasensitive and eco-friendly immunoassays based monoclonal antibody for detection of deoxynivalenol in cereal and feed samples. Food Chemistry 270:130–7. doi: 10.1016/j.foodchem.2018.07.075.
  • Król, A., P. Pomastowski, K. Rafińska, V. Railean-Plugaru, J. Walczak, and B. Buszewski. 2018. Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium sp. Analytical and Bioanalytical Chemistry 410 (3):943–52. doi: 10.1007/s00216-017-0555-8.
  • Ksieniewicz-Woźniak, E., M. Bryła, D. Michałowska, A. Waśkiewicz, and T. Yoshinari. 2021. Transformation of selected fusarium toxins and their masked forms during malting of various cultivars of wheat. Toxins 13 (12):866. doi: 10.3390/toxins13120866.
  • Laitila, A., H.-L. Alakomi, L. Raaska, T. Mattila-Sandholm, and A. Haikara. 2002. Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley. Journal of Applied Microbiology 93 (4):566–76. doi: 10.1046/j.1365-2672.2002.01731.x.
  • Laitila, A., H. Sweins, A. Vilpola, E. Kotaviita, J. Olkku, S. Home, and A. Haikara. 2006. Lactobacillus plantarum and Pediococcus pentosaceus starter cultures as a tool for microflora management in malting and for enhancement of malt processability. Journal of Agricultural and Food Chemistry 54 (11):3840–51. doi: 10.1021/jf052979j.
  • Lattanzio, V. M. T., N. Nivarlet, V. Lippolis, S. D. Gatta, A.-C. Huet, P. Delahaut, B. Granier, and A. Visconti. 2012. Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals. Analytica Chimica Acta 718:99–108. doi: 10.1016/j.aca.2011.12.060.
  • Leite, M., A. Freitas, A. S. Silva, J. Barbosa, and F. Ramos. 2021. Maize food chain and mycotoxins: A review on occurrence studies. Trends in Food Science & Technology 115:307–31. doi: 10.1016/j.tifs.2021.06.045.
  • Leslie, J. F., A. Moretti, Á. Mesterházy, M. Ameye, K. Audenaert, P. K. Singh, F. Richard-Forget, S. N. Chulze, E. M. D. Ponte, A. Chala, et al. 2021. Key global actions for mycotoxin management in wheat and other small grains. Toxins 13 (10):725. doi: 10.3390/toxins13100725.
  • Li, J., W. Wang, S. Chen, T. Shao, X. Tao, and X. Yuan. 2021. Effect of lactic acid bacteria on the fermentation quality and mycotoxins concentrations of corn silage infested with mycotoxigenic fungi. Toxins 13 (10):699. doi: 10.3390/toxins13100699.
  • Li, R., C. Meng, Y. Wen, W. Fu, and P. He. 2019. Fluorometric lateral flow immunoassay for simultaneous determination of three mycotoxins (aflatoxin B1, zearalenone and deoxynivalenol) using quantum dot microbeads. Mikrochimica Acta 186 (12):748. doi: 10.1007/s00604-019-3879-6.
  • López-Seijas, J., B. García-Fraga, A. F. da Silva, and C. Sieiro. 2019. Wine lactic acid bacteria with antimicrobial activity as potential biocontrol agents against Fusarium oxysporum f. sp. lycopersici. Agronomy 10 (1):31. doi: 10.3390/agronomy10010031.
  • Lowe, D. P., H. M. Ulmer, K. Graser, and E. K. Arendt. 2006. The influence of starter cultures on barley contaminated with Fusarium culmorum TMW 4.0754. Journal of the American Society of Brewing Chemists 64 (3):158–65. doi: 10.1094/ASBCJ-64-0158.
  • Lu, D., X. Wang, R. Su, Y. Cheng, H. Wang, L. Luo, and Z. Xiao. 2022. Preparation of an immunoaffinity column based on bispecific monoclonal antibody for aflatoxin B1 and ochratoxin A detection combined with ic-ELISA. Foods 11 (3):335. doi: 10.3390/foods11030335.
  • Luo, S., H. Du, H. Kebede, Y. Liu, and F. Xing. 2021. Contamination status of major mycotoxins in agricultural product and foodstuff in Europe. Food Control. 127:108120. doi: 10.1016/j.foodcont.2021.108120.
  • Luo, Y., X. Liu, and J. Li. 2018. Updating techniques on controlling mycotoxins—A review. Food Control. 89:123–32. doi: 10.1016/j.foodcont.2018.01.016.
  • Luz, C., L. Izzo, G. Graziani, A. Gaspari, A. Ritieni, J. Mañes, and G. Meca. 2018. Evaluation of biological and antimicrobial properties of freeze-dried whey fermented by different strains of Lactobacillus plantarum. Food & Function 9 (7):3688–97. doi: 10.1039/C8FO00535D.
  • Luz, C., V. D’Opazo, J. M. Quiles, R. Romano, J. Mañes, and G. Meca. 2020. Biopreservation of tomatoes using fermented media by lactic acid bacteria. LWT 130:109618. doi: 10.1016/j.lwt.2020.109618.
  • Lyagin, I., and E. Efremenko. 2019. Enzymes for detoxification of various mycotoxins: Origins and mechanisms of catalytic action. Molecules 24 (13):2362. doi: 10.3390/molecules24132362.
  • Ma, N., P. Guo, J. Zhang, T. He, S. W. Kim, G. Zhang, and X. Ma. 2018. Nutrients mediate intestinal bacteria–mucosal immune crosstalk. Frontiers in Immunology 9:5. doi: 10.3389/fimmu.2018.00005.
  • Machado‐Moreira, B., K. Richards, F. Brennan, F. Abram, and C. M. Burgess. 2019. Microbial contamination of fresh produce: What, where, and how? Comprehensive Reviews in Food Science and Food Safety 18 (6):1727–50. doi: 10.1111/1541-4337.12487.
  • Mahdjoubi, C. K., N. Arroyo-Manzanares, N. Hamini-Kadar, A. M. García-Campaña, K. Mebrouk, and L. Gámiz-Gracia. 2020. Multi-mycotoxin occurrence and exposure assessment approach in foodstuffs from Algeria. Toxins 12 (3):194. doi: 10.3390/toxins12030194.
  • Matevosyan, L. A., I. L. Bazukyan, and A. H. Trchounian. 2020. Antifungal activity of lactic acid bacteria isolates and their associations: The effects of Ca and Mg divalent cations. Current Microbiology 77 (6):959–66. doi: 10.1007/s00284-020-01897-5.
  • Maul, R., C. Schwake-Anduschus, and M. Wiesner. 2017. Contaminants in Crop Plants. Encyclopedia of Applied Plant Sciences 3:442–6.
  • Mazaheri, M., M. M. Maymand, A. Gilasgar, A. Akbarzadeh, and M. H. Manafi. 2021. Quantification of the zearalenone in maize oil with no clean-up. Food Control. 127:108166. doi: 10.1016/j.foodcont.2021.108166.
  • McCormick, S. P. 2013. Microbial detoxification of mycotoxins. Journal of Chemical Ecology 39 (7):907–18. doi: 10.1007/s10886-013-0321-0.
  • McMaster, N., B. Acharya, K. Harich, J. Grothe, H. L. Mehl, and D. G. Schmale. 2019. Quantification of the mycotoxin deoxynivalenol (DON) in sorghum using GC-MS and a stable isotope dilution assay (SIDA). Food Analytical Methods 12 (10):2334–43. doi: 10.1007/s12161-019-01588-3.
  • Medina, D. A. V., J. V. B. Borsatto, E. V. S. Maciel, and F. M. Lancas. 2021. Current role of modern chromatography and mass spectrometry in the analysis of mycotoxins in food. TrAC Trends in Analytical Chemistry 135:116156. doi: 10.1016/j.trac.2020.116156.
  • Mielniczuk, E., and B. Skwaryło-Bednarz. 2020. Fusarium head blight, mycotoxins and strategies for their reduction. Agronomy 10 (4):509. doi: 10.3390/agronomy10040509.
  • Milićević, B., V. Tomović, B. Danilović, and D. Savić. 2021. The influence of starter cultures on the lactic acid bacteria microbiota of Petrovac sausage. Italian Journal of Food Science 33 (2):24–34. doi: 10.15586/ijfs.v33i2.1918.
  • Mir, S. A., B. N. Dar, M. A. Shah, S. A. Sofi, A. M. Hamdani, C. A. Oliveira, M. H. Moosavi, A. M. Khaneghah, and A. S. Sant’Ana. 2021. Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food and Chemical Toxicology 148:111976. doi: 10.1016/j.fct.2021.111976.
  • Miraglia, M., B. De Santis, V. Minardi, F. Debegnach, and C. Brera. 2005. The role of sampling in mycotoxin contamination: An holistic view. Food Additives & Contaminants 22 (supl):31–6. doi: 10.1080/02652030500389055.
  • Mirmahdi, R. S., A. Zoghi, F. Mohammadi, K. Khosravi-Darani, S. Jazaiery, R. Mohammadi, and Y. Rehman. 2021. Biodecontamination of milk and dairy products by probiotics: Boon for bane. Italian Journal of Food Science 33 (SP1):78–91. doi: 10.15586/ijfs.v33iSP2.2053.
  • Mohammadi, X., G. Matinfar, A. M. Khaneghah, A. Singh, and A. Pratap-Singh. 2021. Emergence of cold plasma and electron beam irradiation as novel technologies to counter mycotoxins in food products. World Mycotoxin Journal 14 (1):75–83. doi: 10.3920/WMJ2020.2586.
  • Mokhtarian, M., H. Tavakolipour, F. Bagheri, C. A. F. Oliveira, C. H. Corassin, and A. M. Khaneghah. 2020. Aflatoxin B1 in the Iranian pistachio nut and decontamination methods: A systematic review. Quality Assurance and Safety of Crops & Foods 12 (4):15–25. doi: 10.15586/qas.v12i4.784.
  • Mousavi Khaneghah, A., Y. Fakhri, H. H. Gahruie, M. Niakousari, and A. S. Sant’Ana. 2019. Mycotoxins in cereal-based products during 24 years (1983–2017): A global systematic review. Trends in Food Science & Technology 91:95–105. doi: 10.1016/j.tifs.2019.06.007.
  • Mruczyk, K., A. Cisek-Woźniak, M. Mizgier, and R. W. Wójciak. 2021. Natural occurrence of deoxynivalenol in cereal-based baby foods for infants from Western Poland. Toxins 13 (11):777. doi: 10.3390/toxins13110777.
  • Muhialdin, B. J., N. Saari, and A. S. Meor Hussin. 2020. Review on the biological detoxification of mycotoxins using lactic acid bacteria to enhance the sustainability of foods supply. Molecules 25 (11):2655. doi: 10.3390/molecules25112655.
  • Munkvold, G. P., R. H. Proctor, and A. Moretti. 2022. Mycotoxin production in Fusarium according to contemporary species concepts. Annual Review of Phytopathology 59:373–402. doi: 10.1146/annurev-phyto-020620-102825.
  • Nakhjavan, B., N. S. Ahmed, and M. Khosravifard. 2020. Development of an improved method of sample extraction and quantitation of multi-mycotoxin in feed by LC-MS/MS. Toxins 12 (7):462. doi: 10.3390/toxins12070462.
  • Nathanail, A. V., E. Varga, J. Meng-Reiterer, C. Bueschl, H. Michlmayr, A. Malachova, P. Fruhmann, M. Jestoi, K. Peltonen, G. Adam, et al. 2015. Metabolism of Fusarium Mycotoxins T2 toxin, HT-2, and in wheat. Journal of Agricultural and Food Chemistry 63 (35):7862–72. doi: 10.1021/acs.jafc.5b02697.
  • Nazareth, T. D. M., C. Luz, R. Torrijos, J. M. Quiles, F. B. Luciano, J. Mañes, and G. Meca. 2019. Potential application of lactic acid bacteria to reduce aflatoxin B1 and fumonisin B1 occurrence on corn kernels and corn ears. Toxins 12 (1):21. doi: 10.3390/toxins12010021.
  • Nešić, K., K. Habschied, and K. Mastanjević. 2021. Possibilities for the biological control of mycotoxins in food and feed. Toxins 13 (3):198. doi: 10.3390/toxins13030198.
  • Niderkorn, V., D. P. Morgavi, B. Aboab, M. Lemaire, and H. Boudra. 2009. Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria. Journal of Applied Microbiology 106 (3):977–85. doi: 10.1111/j.1365-2672.2008.04065.x.
  • Niderkorn, V., D. P. Morgavi, E. Pujos, A. Tissandier, and H. Boudra. 2007. Screening of fermentative bacteria for their ability to bind and biotransform deoxynivalenol, zearalenone and fumonisins in an in vitro simulated corn silage model. Food Additives and Contaminants 24 (4):406–15. doi: 10.1080/02652030601101110.
  • Niderkorn, V., H. Boudra, and D. P. Morgavi. 2006. Binding of Fusarium mycotoxins by fermentative bacteria in vitro. Journal of Applied Microbiology 101 (4):849–56. doi: 10.1111/j.1365-2672.2006.02958.x.
  • Nourbakhsh, F., and E. Tajbakhsh. 2021. Neurotoxicity mechanism of Ochratoxin A. Quality Assurance and Safety of Crops & Foods 13 (2):34–45. doi: 10.15586/qas.v13i2.837.
  • Nowak, P. M., R. Wietecha-Posłuszny, and J. Pawliszyn. 2021. White analytical chemistry: An approach to reconcile the principles of green analytical chemistry and functionality. TrAC Trends in Analytical Chemistry 138:116223. doi: 10.1016/j.trac.2021.116223.
  • Nunes, V. M., M. Moosavi, A. M. Khaneghah, and C. A. Oliveira. 2021. Innovative modifications in food processing to reduce the levels of mycotoxins. Current Opinion in Food Science 38:155–61. doi: 10.1016/j.cofs.2020.11.010.
  • Ogrodowczyk, A. M., and N. Drabinska. 2021. Crossroad of tradition and innovation-the application of lactic acid fermentation to increase the nutritional and health-promoting potential of plant-based food products-a review. Polish Journal of Food and Nutrition Sciences 71 (2). doi: 10.31883/pjfns/134282.
  • Ok, H. E., S. Y. Lee, and H. S. Chun. 2018. Occurrence and simultaneous determination of nivalenol and deoxynivalenol in rice and bran by HPLC-UV detection and immunoaffinity cleanup. Food Control. 87:53–9. doi: 10.1016/j.foodcont.2017.12.005.
  • Okorski, A., A. Milewska, A. Pszczółkowska, K. Karpiesiuk, W. Kozera, J. A. Dąbrowska, and J. Radwińska. 2022. Prevalence of Fusarium fungi and deoxynivalenol levels in winter wheat grain in different climatic regions of Poland. Toxins 14 (2):102. doi: 10.3390/toxins14020102.
  • Okungbowa, F. I, and T. R. Kinge. 2021. Fusarium species and their associated mycotoxins in foods and their products in Africa. In Food security and safety, 725–37. Cham: Springer. doi: 10.1007/978-3-030-50672-8_36.
  • Oliveira, P. M., E. Zannini, and E. K. Arendt. 2014. Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: From crop farming to cereal products. Food Microbiology 37:78–95. doi: 10.1016/j.fm.2013.06.003.
  • Olopade, B. K., S. U. Oranusi, O. C. Nwinyi, S. Gbashi, and P. B. Njobeh. 2021. Occurrences of Deoxynivalenol, Zearalenone and some of their masked forms in selected cereals from Southwest Nigeria. NFS Journal 23:24–9. doi: 10.1016/j.nfs.2021.03.001.
  • Omar, A. M., G. A. Mohamed, and S. R. Ibrahim. 2022. Chaetomugilins and chaetoviridins—Promising natural metabolites: structures, separation, characterization, biosynthesis, bioactivities, molecular docking and molecular dynamics. Journal of Fungi 8 (2):127. doi: 10.3390/jof8020127.
  • Pallarés, N., H. Berrada, G. Font, and E. Ferrer. 2021. Mycotoxins occurrence in medicinal herbs dietary supplements and exposure assessment. Journal of Food Science and Technology. doi: 10.1007/s13197-021-05306-y.
  • Pereira, V. L., J. O. Fernandes, and S. C. Cunha. 2014. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends in Food Science & Technology 36 (2):96–136. doi: 10.1016/j.tifs.2014.01.005.
  • Perera, D., S. Savocchia, P. D. Prenzler, P. C. Thomson, and C. C. Steel. 2021. Occurrence of fumonisin-producing black aspergilli in Australian wine grapes: Effects of temperature and water activity on fumonisin production by A. niger and A. welwitschiae. Mycotoxin Research 37 (4):327–39. doi: 10.1007/s12550-021-00438-8.
  • Pernica, M., B. Kyralová, Z. Svoboda, R. Boško, I. Brožková, L. Česlová, K. Benešová, L. Červenka, and S. Běláková. 2022. Levels of T-2 toxin and its metabolites, and the occurrence of Fusarium fungi in spring barley in the Czech Republic. Food Microbiology 102:103875. doi: 10.1016/j.fm.2021.103875.
  • Pires, R. C., M. R. Portinari, G. Z. Moraes, A. M. Khaneghah, B. L. Gonçalves, R. E. Rosim, C. A. Oliveira, and C. H. Corassin. 2022. Evaluation of Anti-Aflatoxin M1 effects of heat-killed cells of Saccharomyces cerevisiae in Brazilian commercial yogurts. Quality Assurance and Safety of Crops & Foods 14 (1):75–81. doi: 10.15586/qas.v14i1.1006.
  • Pitt, J. I., M. H. Taniwaki, and M. B. Cole. 2013. Mycotoxin production in major crops as influenced by growing, harvesting, storage, and processing, with emphasis on the achievement of Food Safety Objectives. Food Control. 32 (1):205–15. doi: 10.1016/j.foodcont.2012.11.023.
  • Pleadin, J., N. Vahčić, N. Perši, D. Ševelj, K. Markov, and J. Frece. 2013. Fusarium mycotoxins’ occurrence in cereals harvested from Croatian fields. Food Control. 32 (1):49–54. doi: 10.1016/j.foodcont.2012.12.002.
  • Polak-Śliwińska, M., and B. Paszczyk. 2021. Trichothecenes in food and feed, relevance to human and animal health and methods of detection: A systematic review. Molecules 26 (2):454. doi: 10.3390/molecules26020454.
  • Poppenberger, B., F. Berthiller, D. Lucyshyn, T. Sieberer, R. Schuhmacher, R. Krska, K. Kuchler, J. Glössl, C. Luschnig, and G. Adam. 2003. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. The Journal of Biological Chemistry 278 (48):47905–14. doi: 10.1074/jbc.M307552200.
  • Poppenberger, B., F. Berthiller, H. Bachmann, D. Lucyshyn, C. Peterbauer, R. Mitterbauer, R. Schuhmacher, R. Krska, J. Glössl, and G. Adam. 2006. Heterologous expression of Arabidopsis UDP-glucosyltransferases in Saccharomyces cerevisiae for production of zearalenone-4-O-glucoside. Applied and Environmental Microbiology 72 (6):4404–10. doi: 10.1128/AEM.02544-05.
  • Prusova, N., Z. Dzuman, L. Jelinek, M. Karabin, J. Hajslova, M. Rychlik, and M. Stranska. 2022. Free and conjugated Alternaria and Fusarium mycotoxins during Pilsner malt production and double-mash brewing. Food Chemistry 369:130926. doi: 10.1016/j.foodchem.2021.130926.
  • Ragoubi, C., L. Quintieri, D. Greco, A. Mehrez, I. Maatouk, V. D’Ascanio, A. Landoulsi, and G. Avantaggiato. 2021. Mycotoxin Removal by Lactobacillus spp. and Their Application in Animal Liquid Feed. Toxins 13 (3):185. doi: 10.3390/toxins13030185.
  • Rai, A., M. Das, and A. Tripathi. 2020. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Critical Reviews in Food Science and Nutrition 60 (16):2710–29. doi: 10.1080/10408398.2019.1655388.
  • Rämö, S., M. Haapalainen, and S. Latvala. 2021. Development and validation of a UHPLC-MS/MS method for the analysis of Fusarium mycotoxins in onion. Food Analytical Methods 14 (8):1524–36. doi: 10.1007/s12161-021-01992-8.
  • Rasmussen, R. R., I. M. L. D. Storm, P. H. Rasmussen, J. Smedsgaard, and K. F. Nielsen. 2010. Multi-mycotoxin analysis of maize silage by LC-MS/MS. Analytical and Bioanalytical Chemistry 397 (2):765–76. doi: 10.1007/s00216-010-3545-7.
  • Rodrigues, I., and K. Naehrer. 2012. Prevalence of mycotoxins in feedstuffs and feed surveyed worldwide in 2009 and 2010. Phytopathology Mediterranea 2012:175–92.
  • Rodriguez, R. S., T. L. O’Keefe, C. Froehlich, R. E. Lewis, T. R. Sheldon, and C. L. Haynes. 2021. Sensing food contaminants: Advances in analytical methods and techniques. Analytical Chemistry 93 (1):23–40. doi: 10.1021/acs.analchem.0c04357.
  • Rodríguez-Carrasco, Y., M. Fattore, S. Albrizio, H. Berrada, and J. Mañes. 2015. Occurrence of Fusarium mycotoxins and their dietary intake through beer consumption by the European population. Food Chemistry 178:149–55. doi: 10.1016/j.foodchem.2015.01.092.
  • Rubert, J., Z. Dzuman, M. Vaclavikova, M. Zachariasova, C. Soler, and J. Hajslova. 2012. Analysis of mycotoxins in barley using ultra high liquid chromatography high resolution mass spectrometry: comparison of efficiency and efficacy of different extraction procedures. Talanta 99:712–9. doi: 10.1016/j.talanta.2012.07.010.
  • Sadiq, F. A., B. Yan, F. Tian, J. Zhao, H. Zhang, and W. Chen. 2019. Lactic acid bacteria as antifungal and anti‐mycotoxigenic agents: a comprehensive review. Comprehensive Reviews in Food Science and Food Safety 18 (5):1403–36. doi: 10.1111/1541-4337.12481.
  • Salah-Abbès, J. B., M. Mannai, H. Belgacem, A. Zinedine, and S. Abbès. 2021. Efficacy of lactic acid bacteria supplementation against Fusarium graminearum growth in vitro and inhibition of Zearalenone causing inflammation and oxidative stress in vivo. Toxicon 202:115–22. doi: 10.1016/j.toxicon.2021.09.010.
  • Scarpino, V., A. Reyneri, and M. Blandino. 2019. Development and comparison of two multiresidue methods for the determination of 17 Aspergillus and Fusarium mycotoxins in cereals using HPLC-ESI-TQ-MS/MS. Frontiers in Microbiology 10:361. doi: 10.3389/fmicb.2019.00361.
  • Schenzel, J., H. R. Forrer, S. Vogelgsang, and T. D. Bucheli. 2012. Development, validation and application of a multi-mycotoxin method for the analysis of whole wheat plants. Mycotoxin Research 28 (2):135–47. doi: 10.1007/s12550-012-0125-z.
  • Shavakhi, F., A. Rahmani, and Z. Piravi-Vanak. 2022. A global systematic review and meta-analysis on prevalence of the aflatoxin B1 contamination in olive oil. Journal of Food Science and Technology. doi: 10.1007/s13197-022-05362-y.
  • Shehata, M. G., A. N. Badr, S. A. El Sohaimy, D. Asker, and T. S. Awad. 2019. Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Annals of Agricultural Sciences 64 (1):71–8. doi: 10.1016/j.aoas.2019.05.002.
  • Sivamaruthi, B. S., P. Kesika, and C. Chaiyasut. 2018. Toxins in fermented foods: Prevalence and preventions—A mini-review. Toxins 11 (1):4. doi: 10.3390/toxins11010004.
  • Smaoui, S., O. Ben Braïek, and H. Ben Hlima. 2020. Mycotoxins analysis in cereals and related foodstuffs by liquid chromatography-tandem mass spectrometry techniques. Journal of Food Quality 2020Article ID 8888117, 23 pages,:1–23. doi: 10.1155/2020/8888117.
  • Smith, M.-C., S. Madec, E. Coton, and N. Hymery. 2016. Natural co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 8 (4):94. doi: 10.3390/toxins8040094.
  • Sohrabi, H., O. Arbabzadeh, P. Khaaki, A. Khataee, M. R. Majidi, and Y. Orooji. 2021. Patulin and Trichothecene: Characteristics, occurrence, toxic effects and detection capabilities via clinical, analytical and nanostructured electrochemical sensing/biosensing assays in foodstuffs. Critical Reviews in Food Science and Nutrition 2021:1–29. doi: 10.1080/10408398.2021.1887077.
  • Song, S., N. Liu, Z. Zhao, E. Njumbe Ediage, S. Wu, C. Sun, S. De Saeger, and A. Wu. 2014. Multiplex lateral flow immunoassay for mycotoxin determination. Analytical Chemistry 86 (10):4995–5001. doi: 10.1021/ac500540z.
  • Średnicka, P., E. Juszczuk-Kubiak, M. Wójcicki, M. Akimowicz, and M. Roszko. 2021. Probiotics as a biological detoxification tool of food chemical contamination: A review. Food and Chemical Toxicology 153:112306. doi: 10.1016/j.fct.2021.112306.
  • Stanciu, O., C. Juan, D. Miere, F. Loghin, and J. Mañes. 2017. Occurrence and co-occurrence of Fusarium mycotoxins in wheat grains and wheat flour from Romania. Food Control. 73:147–55. doi: 10.1016/j.foodcont.2016.07.042.
  • Stanković, S., J. Lević, D. Ivanović, V. Krnjaja, G. Stanković, and S. Tančić. 2012. Fumonisin B1 and its co-occurrence with other fusariotoxins in naturally-contaminated wheat grain. Food Control. 23 (2):384–8. doi: 10.1016/j.foodcont.2011.08.003.
  • Sujayasree, O. J., A. K. Chaitanya, R. Bhoite, R. Pandiselvam, A. Kothakota, M. Gavahian, and A. Mousavi Khaneghah. 2022. Ozone: An advanced oxidation technology to enhance sustainable food consumption through mycotoxin degradation. Ozone: Science & Engineering 44 (1):17–37. doi: 10.1080/01919512.2021.1948388.
  • Taheur, F. B., B. Kouidhi, Y. M. A. Al Qurashi, J. B. Salah-Abbès, and K. Chaieb. 2019. Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 160:12–22. doi: 10.1016/j.toxicon.2019.02.001.
  • Taheur, F. B., K. Fedhila, K. Chaieb, B. Kouidhi, A. Bakhrouf, and L. Abrunhosa. 2017. Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. International Journal of Food Microbiology 251:1–7. doi: 10.1016/j.ijfoodmicro.2017.03.021.
  • Takahashi-Ando, N., M. Kimura, H. Kakeya, H. Osada, and I. Yamaguchi. 2002. A novel lactonohydrolase responsible for the detoxification of zearalenone: Enzyme purification and gene cloning. The Biochemical Journal 365 (Pt 1):1–6. doi: 10.1042/bj20020450.
  • Tan, P., Q. Tang, S. Xu, Y. Zhang, H. Fu, and X. Ma. 2022. Designing self‐assembling chimeric peptide nanoparticles with high stability for combating piglet bacterial infections. Advanced Science 9 (14):2105955. doi: 10.1002/advs.202105955.
  • Tantaoui-Elaraki, A., A. Riba, S. Oueslati, and A. Zinedine. 2018. Toxigenic fungi and mycotoxin occurrence and prevention in food and feed in northern Africa–A review. World Mycotoxin Journal 11 (3):385–400. doi: 10.3920/WMJ2017.2290.
  • Teller, R. S., R. J. Schmidt, L. W. Whitlow, and L. Kung. 2012. Effect of physical damage to ears of corn before harvest and treatment with various additives on the concentration of mycotoxins, silage fermentation, and aerobic stability of corn silage. Journal of Dairy Science 95 (3):1428–36. doi: 10.3168/jds.2011-4610.
  • Tian, X., H. Chen, H. Liu, and J. Chen. 2021. Recent advances in lactic acid production by lactic acid bacteria. Applied Biochemistry and Biotechnology 193 (12):4151–71. doi: 10.1007/s12010-021-03672-z.
  • Tittlemier, S. A., R. Blagden, J. Chan, D. Gaba, T. Mckendry, K. Pleskach, and M. Roscoe. 2019. Fusarium and Alternaria mycotoxins present in Canadian wheat and durum harvest samples. Canadian Journal of Plant Pathology 41 (3):403–14. doi: 10.1080/07060661.2019.1592784.
  • Tolosa, J., Y. Rodríguez-Carrasco, M. J. Ruiz, and P. Vila-Donat. 2021. Multi-mycotoxin occurrence in feed, metabolism and carry-over to animal-derived food products: A review. Food and Chemical Toxicology 158:112661. doi: 10.1016/j.fct.2021.112661.
  • Topi, D., J. Babič, K. Pavšič-Vrtač, G. Tavčar-Kalcher, and B. Jakovac-Strajn. 2020. Incidence of Fusarium mycotoxins in wheat and maize from Albania. Molecules 26 (1):172. doi: 10.3390/molecules26010172.
  • doi:Torrijos, R., T. de Melo Nazareth, P. Vila-Donat, J. Mañes, and G. Meca. 2022. Use of Mustard Extracts Fermented by Lactic Acid Bacteria to Mitigate the Production of Fumonisin B1 and B2 by Fusarium verticillioides in Corn Ears. Toxins 14 (2):80. doi: 10.3390/toxins14020080.
  • Ul Hassan, Z., R. Al Thani, A. Atia, F. Al Meer, S. Migheli Q, and S. Jaoua. 2018. Co-occurrence of mycotoxins in commercial formula milk and cereal-based baby food on the Qatar market. Food Additives & Contaminants. Part B, Surveillance 11 (3):191–7. doi: 10.1080/19393210.2018.1437785.
  • United Nations. 2015. Transforming our world: the 2030 Agenda for Sustainable Development. A/RES/70/1. https://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E.
  • Valencia-Hernandez, L. J., K. Lopez-Lopez, E. D. Gomez-Lopez, L. Sernacock, and C. N. Aguilar. 2021. In-vitro assessment for the control of Fusarium species using a lactic acid bacterium isolated from yellow pitahaya (Selenicereus megalanthus (K. Schum. Ex Vaupel Moran)). Journal of Integrative Agriculture 20 (1):159–67. (20)63284-1 doi: 10.1016/S2095-3119.
  • Vandicke, J., K. De Visschere, S. Croubels, S. De Saeger, K. Audenaert, and G. Haesaert. 2019. Mycotoxins in Flanders’ fields: Occurrence and correlations with Fusarium species in whole-plant harvested maize. Microorganisms 7 (11):571. doi: 10.3390/microorganisms7110571.
  • Verheecke-Vaessen, C., E. Garcia-Cela, A. Lopez-Prieto, I. O. Jonsdottir, A. Medina, and N. Magan. 2021. Water and temperature relations of Fusarium langsethiae strains and modelling of growth and T-2 and HT-2 mycotoxin production on oat-based matrices. International Journal of Food Microbiology 348:109203. doi: 10.1016/j.ijfoodmicro.2021.109203.
  • Vidal, A., M. Mengelers, S. Yang, S. De Saeger, and M. De Boevre. 2018. Mycotoxin biomarkers of exposure: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 17 (5):1127–55. doi: 10.1111/1541-4337.12367.
  • Vieco-Saiz, N., Y. Belguesmia, R. Raspoet, E. Auclair, F. Gancel, I. Kempf, and D. Drider. 2019. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Frontiers in Microbiology 10:57. doi: 10.3389/fmicb.2019.00057.
  • Wang, L., Z. L. Wang, Y. H. Yuan, R. Cai, C. Niu, and T. L. Yue. 2015. Identification of key factors involved in the biosorption of patulin by inactivated lactic acid bacteria (LAB) cells. Plos ONE 10 (11):e0143431. doi: 10.1371/journal.pone.0143431.
  • Wang, Y., H. Quan, X. Li, Q. Li, M. A. Haque, Q. Shi, Q. Fu, and C. He. 2021. Contamination with fumonisin B and deoxynivalenol is a threat to egg safety and contributes to gizzard ulcerations of newborn chickens. Frontiers in Microbiology 12:676671. doi: 10.3389/fmicb.2021.676671.
  • Wu, Q., D. Guo, H. Jia, E. Nepovimova, W. Wu, and K. Kuca. 2021. The trichothecene neosolaniol stimulates an emetic response through neuropeptide Y2 and serotonin 3 receptors in mink. Toxicology 452:152718. doi: 10.1016/j.tox.2021.152718.
  • Xu, S., Y. Wang, J. Hu, X. Chen, Y. Qiu, J. Shi, G. Wang, and J. Xu. 2021. Isolation and characterization of Bacillus amyloliquefaciens MQ01, a bifunctional biocontrol bacterium with antagonistic activity against Fusarium graminearum and biodegradation capacity of zearalenone. Food Control. 130:108259. doi: 10.1016/j.foodcont.2021.108259.
  • Yadav, M., and N. S. Chauhan. 2021. Overview of the rules of the microbial engagement in the gut microbiome: A step towards microbiome therapeutics. Journal of Applied Microbiology 130 (5):1425–41. doi: 10.1111/jam.14883.
  • Yan, P., Z. Liu, S. Liu, L. Yao, Y. Liu, Y. Wu, and Z. Gong. 2020. Natural occurrence of deoxynivalenol and its acetylated derivatives in Chinese maize and wheat collected in 2017. Toxins 12 (3):200. doi: 10.3390/toxins12030200.
  • Yang, Y., G. Li, D. Wu, J. Liu, X. Li, P. Luo, N. Hu, H. Wang, and Y. Wu. 2020. Recent advances on toxicity and determination methods of mycotoxins in foodstuffs. Trends in Food Science & Technology 96:233–52. doi: 10.1016/j.tifs.2019.12.021.
  • Yao, Y., and M. Long. 2020. The biological detoxification of deoxynivalenol: A review. Food and Chemical Toxicology 145:111649. doi: 10.1016/j.fct.2020.111649.
  • Yi, Y., K. Fan, J. Wang, Q. Fu, X. Zhou, Y. Zhang, and H. Zhang. 2021. Primary research on sampling scheme for analyzing mycotoxin distribution in wheat and rice fields. Journal of the Science of Food and Agriculture 101 (12):4980–6. doi: 10.1002/jsfa.11141.
  • Yu, J., M. Yang, J. Han, and X. Pang. 2021. Fungal and mycotoxin occurrence, affecting factors, and prevention in herbal medicines: A review. Toxin Reviews 2021:1–19. doi: 10.1080/15569543.2021.1925696.
  • Yu, Y., L. Qiu, H. Wu, Y. Tang, F. Lai, and Y. Yu. 2011. Oxidation of zearalenone by extracellular enzymes from Acinetobacter sp. SM04 into smaller estrogenic products. World Journal of Microbiology and Biotechnology 27 (11):2675–81. doi: 10.1007/s11274-011-0741-3.
  • Zachariasova, M., O. Lacina, A. Malachova, M. Kostelanska, J. Poustka, M. Godula, and J. Hajslova. 2010. Novel approaches in analysis of Fusarium mycotoxins in cereals employing ultra performance liquid chromatography coupled with high resolution mass spectrometry. Analytica Chimica Acta 662 (1):51–61. doi: 10.1016/j.aca.2009.12.034.
  • Zadravec, M., K. Markov, T. Lešić, J. Frece, D. Petrović, and J. Pleadin. 2022. Biocontrol Methods in Avoidance and Downsizing of Mycotoxin Contamination of Food Crops. Processes 10 (4):655. doi: 10.3390/pr10040655.
  • Zhai, Y., S. Hu, L. Zhong, Z. Lu, X. Bie, H. Zhao, C. Zhang, and F. Lu. 2019. Characterization of deoxynivalenol detoxification by Lactobacillus paracasei LHZ-1 isolated from yogurt. Journal of Food Protection 82 (8):1292–9. doi: 10.4315/0362-028X.JFP-18-581.
  • Zhang, D., L. Zhao, Y. Chen, H. Gao, Y. Hua, X. Yuan, and H. Yang. 2022a. Mycotoxins in Maize Silage from China in 2019. Toxins 14 (4):241. doi: 10.3390/toxins14040241.
  • Zhang, J., X. Chen, P. Liu, J. Zhao, J. Sun, W. Guan, L. J. Johnston, C. L. Levesque, P. Fan, T. He, et al. 2018b. Dietary Clostridium butyricum induces a phased shift in fecal microbiota structure and increases the acetic acid-producing bacteria in a weaned piglet model. Journal of Agricultural and Food Chemistry 66 (20):5157–66. doi: 10.1021/acs.jafc.8b01253.
  • Zhang, S., S. Zhou, S. Yu, Y. Zhao, Y. Wu, and A. Wu. 2022b. LC-MS/MS Analysis of Fumonisin B1, B2, B3, and Their Hydrolyzed Metabolites in Broiler Chicken Feed and Excreta. Toxins 14 (2):131. doi: 10.3390/toxins14020131.
  • Zhang, X., X. Yu, J. Wang, Q. Wang, H. Meng, and Z. Wang. 2018a. One-Step Core/Multishell Quantum Dots-Based Fluoroimmunoassay for Screening of Deoxynivalenol in Maize. Food Analytical Methods 11 (9):2569–78. doi: 10.1007/s12161-018-1198-x.
  • Zhang, Y., F. Pei, Y. Fang, P. Li, Y. Zhao, F. Shen, Y. Zou, and Q. Hu. 2019. Comparison of concentration and health risks of 9 Fusarium mycotoxins in commercial whole wheat flour and refined wheat flour by multi-IAC-HPLC. Food Chemistry 275:763–9. doi: 10.1016/j.foodchem.2018.09.127.
  • Zhang, Z., D. Nie, K. Fan, J. Yang, W. Guo, J. Meng, Z. Zhao, and Z. Han. 2020. A systematic review of plant-conjugated masked mycotoxins: Occurrence, toxicology, and metabolism. Critical Reviews in Food Science and Nutrition 60 (9):1523–37. doi: 10.1080/10408398.2019.1578944.
  • Zhao, H., A. Vegi, and C. Wolf-Hall. 2017. Screening of lactic acid bacteria for anti-Fusarium activity and optimization of incubation conditions. Journal of Food Protection 80 (10):1648–56. doi: 10.4315/0362-028X.JFP-17-100.
  • Zhao, J., T. Cheng, W. Xu, X. Han, J. Zhang, H. Zhang, C. Wang, S. Fanning, and F. Li. 2021. Natural co-occurrence of multi-mycotoxins in unprocessed wheat grains from China. Food Control. 130:108321. doi: 10.1016/j.foodcont.2021.108321.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.