1,616
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

Cold plasma: a promising technology for improving the rheological characteristics of food

, ORCID Icon, ORCID Icon, , , , , ORCID Icon, , , ORCID Icon, ORCID Icon, , ORCID Icon, , , ORCID Icon & show all
Pages 11370-11384 | Published online: 25 Jun 2022

References

  • Ai, Y., and J. Jane. 2015. Gelatinization and rheological properties of starch. Starch - Stärke 67 (3-4):213–24. doi: 10.1002/star.201400201.
  • Alcázar-Alay, S. C., and M. A. A. Meireles. 2015. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Science and Technology (Campinas) 35 (2):215–36. doi: 10.1590/1678-457X.6749.
  • Amaral, G. V., E. K. Silva, R. N. Cavalcanti, C. P. C. Martins, L. G. Z. S. Andrade, J. Moraes, V. O. Alvarenga, J. T. Guimarães, E. A. Esmerino, M. Q. Freitas, et al. 2018. Whey-grape juice drink processed by supercritical carbon dioxide technology: Physicochemical characteristics, bioactive compounds and volatile profile. Food Chemistry 239:697–703. doi: 10.1016/j.foodchem.2017.07.003.
  • Aslam, R., M. S. Alam, J. Kaur, A. S. Panayampadan, O. I. Dar, A. Kothakota, and R. Pandiselvam. 2021. Understanding the effects of ultrasound processing on texture and rheological properties of food. Journal of Texture Studies. doi: 10.1111/jtxs.12644.
  • Attri, P., N. K. Kaushik, N. Kaushik, D. Hammerschmid, A. Privat-Maldonado, J. De Backer, M. Shiratani, E. H. Choi, and A. Bogaerts. 2021. Plasma treatment causes structural modifications in lysozyme, and increases cytotoxicity towards cancer cells. International Journal of Biological Macromolecules 182:1724–36. doi: 10.1016/j.ijbiomac.2021.05.146.
  • Bahrami, N., D. Bayliss, G. Chope, S. Penson, T. Perehinec, and I. D. Fisk. 2016. Cold plasma: A new technology to modify wheat flour functionality. Food Chemistry 202 (July 1):247–53. doi: 10.1016/j.foodchem.2016.01.113.
  • Banura, S., R. Thirumdas, A. Kaur, R. R. Deshmukh, and U. S. Annapure. 2018. Modification of starch using low pressure radio frequency air plasma. LWT - Food Science and Technology 89:719–24. doi: 10.1016/j.lwt.2017.11.056.
  • Bie, P., H. Pu, B. Zhang, J. Su, L. Chen, and X. Li. 2016. Structural characteristics and rheological properties of plasma-treated starch. Innovative Food Science & Emerging Technologies 34:196–204. doi: 10.1016/j.ifset.2015.11.019.
  • Bormashenko, E., Y. Bormashenko, I. Legchenkova, and N. M. Eren. 2021. Cold plasma hydrophilization of soy protein isolate and milk protein concentrate enables manufacturing of surfactant-free water suspensions. Part I: Hydrophilization of food powders using cold plasma. Innovative Food Science & Emerging Technologies 72:102759. doi: 10.1016/j.ifset.2021.102759.
  • Bulbul, V. J., P. R. Bhushette, R. S. Zambare, R. R. Deshmukh, and U. S. Annapure. 2019. Effect of cold plasma treatment on xanthan gum properties. Polymer Testing 79:106056. doi: 10.1016/j.polymertesting.2019.106056.
  • Castro, R. I., A. Gonzalez-Feliu, F. Valenzuela-Riffo, C. Parra-Palma, and L. Morales-Quintana. 2021. Changes in the cell wall components produced by exogenous abscisic acid treatment in strawberry fruit. Cellulose 28 (3):1555–70. doi: 10.1007/s10570-020-03607-7.
  • Chaple, S., C. Sarangapani, J. Jones, E. Carey, L. Causeret, A. Genson, B. Duffy, and P. Bourke. 2020. Effect of atmospheric cold plasma on the functional properties of whole wheat (Triticum aestivum L.) grain and wheat flour. Innovative Food Science & Emerging Technologies 66:102529. doi: 10.1016/j.ifset.2020.102529.
  • Charoux, C. M. G., A. Patange, S. Lamba, C. P. O’Donnell, B. K. Tiwari, and A. G. M. Scannell. 2021. Applications of nonthermal plasma technology on safety and quality of dried food ingredients. Journal of Applied Microbiology 130 (2):325–40. doi: 10.1111/jam.14823.
  • Chen, D., P. Peng, N. Zhou, Y. Cheng, M. Min, Y. Ma, Q. Mao, P. Chen, C. Chen, and R. Ruan. 2019. Evaluation of Cronobacter sakazakii inactivation and physicochemical property changes of non-fat dry milk powder by cold atmospheric plasma. Food Chemistry 290:270–6. doi: 10.1016/j.foodchem.2019.03.149.
  • Chen, H. H. 2014. Investigation of properties of long-grain brown rice treated by low-pressure plasma. Food and Bioprocess Technology 7 (9):2484–91. doi: 10.1007/s11947-013-1217-2.
  • Chen, Y., Y. Zhang, L. Jiang, G. Chen, J. Yu, S. Li, and Y. Chen. 2020. Moisture molecule migration and quality changes of fresh wet noodles dehydrated by cold plasma treatment. Food Chemistry 328:127053. doi: 10.1016/j.foodchem.2020.127053.
  • Choi, S., P. Attri, I. Lee, J. Oh, J.-H. Yun, J. H. Park, E. H. Choi, and W. Lee. 2017. Structural and functional analysis of lysozyme after treatment with dielectric barrier discharge plasma and atmospheric pressure plasma jet. Scientific Reports 7 (1):1027. doi: 10.1038/s41598-017-01030-w.
  • Cornejo-Ramírez, Y. I., O. Martínez-Cruz, C. L. Del Toro-Sánchez, F. J. Wong-Corral, J. Borboa-Flores, and F. J. Cinco-Moroyoqui. 2018. The structural characteristics of starches and their functional properties. CyTA - Journal of Food 16 (1):1003–17. doi: 10.1080/19476337.2018.1518343.
  • Coutinho, N. M., M. R. Silveira, T. C. Pimentel, M. Q. Freitas, J. Moraes, L. M. Fernandes, M. C. Silva, R. S. Raices, C. S. Ranadheera, F. O. Borges, et al. 2019. Chocolate milk drink processed by cold plasma technology: Physical characteristics, thermal behavior and microstructure. LWT - Food Science and Technology 102:324–9. doi: 10.1016/j.lwt.2018.12.055.
  • de Lima Alves, L., M. Stefanello da Silva, D. R. Martins Flores, D. Rodrigues Athayde, A. Roggia Ruviaro, D. da Silva Brum, V. S. Fagundes Batista, R. de Oliveira Mello, C. Ragagnin de Menezes, P. C. Bastianello Campagnol, et al. 2018. Effect of ultrasound on the physicochemical and microbiological characteristics of Italian Salami. Food Research International 106:363–73. doi: 10.1016/j.foodres.2017.12.074.
  • D’Souza, C., H.-G. Yuk, G. H. Khoo, and W. Zhou. 2015. Application of light-emitting diodes in food production, postharvest preservation, and microbiological food safety. Comprehensive Reviews in Food Science and Food Safety 14 (6):719–40. doi: 10.1111/1541-4337.12155.
  • Dufay, M., M. Jimenez, and S. Degoutin. 2020. Effect of cold plasma treatment on electrospun nanofibers properties: A review. ACS Applied Bio Materials 3 (8):4696–716. doi: 10.1021/acsabm.0c00154.
  • Ekanayake, U. M., D. H. Seo, K. Faershteyn, A. P. O’Mullane, H. Shon, J. MacLeod, D. Golberg, and K. Ostrikov. 2020. Atmospheric-pressure plasma seawater desalination: Clean energy, agriculture, and resource recovery nexus for a blue planet. Sustainable Materials and Technologies 25:e00181. doi: 10.1016/j.susmat.2020.e00181.
  • Ganesan, A. R., U. Tiwari, P. N. Ezhilarasi, and G. Rajauria. 2021. Application of cold plasma on food matrices: A review on current and future prospects. Journal of Food Processing and Preservation 45 (1):e15070. doi: 10.1111/jfpp.15070.
  • Gao, S., H. Liu, L. Sun, N. Liu, J. Wang, Y. Huang, F. Wang, J. Cao, R. Fan, X. Zhang, et al. 2019. The effects of dielectric barrier discharge plasma on physicochemical and digestion properties of starch. International Journal of Biological Macromolecules 138:819–30. doi: 10.1016/j.ijbiomac.2019.07.147.
  • Gavahian, M., Y.-H. Chu, A. Mousavi Khaneghah, F. J. Barba, and N. N. Misra. 2018. A critical analysis of the cold plasma induced lipid oxidation in foods. Trends in Food Science & Technology 77:32–41. doi: 10.1016/j.tifs.2018.04.009.
  • Gavahian, M., F.-H. Sheu, M.-J. Tsai, and Y.-H. Chu. 2020. The effects of dielectric barrier discharge plasma gas and plasma-activated water on texture, color, and bacterial characteristics of shiitake mushroom. Journal of Food Processing and Preservation 44 (1):e14316. doi: 10.1111/jfpp.14316.
  • Gong, W., X. Guo, H. Huang, X. Li, Y. Xu, and J.-N. Hu. 2021. Structural characterization of modified whey protein isolates using cold plasma treatment and its applications in emulsion oleogels. Food Chemistry 356:129703. doi: 10.1016/j.foodchem.2021.129703.
  • Gu, Y., W. Shi, R. Liu, Y. Xing, X. Yu, and H. Jiang. 2021. Cold plasma enzyme inactivation on dielectric properties and freshness quality in bananas. Innovative Food Science & Emerging Technologies 69:102649. doi: 10.1016/j.ifset.2021.102649.
  • Gursoy, O. Y. Yilmaz, O. Gokce, and K. Ertan. 2016. Effect of ultrasound power on physicochemical and rheological properties of yoghurt drink produced with thermosonicated milk. Emirates Journal of Food and Agriculture 28 (4):1.
  • Han, J.-Y., W.-J. Song, S. Eom, S. B. Kim, and D.-H. Kang. 2020. Antimicrobial efficacy of cold plasma treatment against food-borne pathogens on various foods. Journal of Physics D: Applied Physics 53 (20):204003. doi: 10.1088/1361-6463/ab761f.
  • Hati, S., M. Patel, and D. Yadav. 2018. Food bioprocessing by non-thermal plasma technology. Current Opinion in Food Science 19:85–91. doi: 10.1016/j.cofs.2018.03.011.
  • Hu, J., X. Li, Z. Cheng, X. Fan, Z. Ma, X. Hu, G. Wu, and Y. Xing. 2022. Modified Tartary Buckwheat (Fagopyrum tataricum Gaertn.) starch by gaseous ozone: Structural, physicochemical and in vitro digestible properties. Food Hydrocolloids. 125:107365. doi: 10.1016/j.foodhyd.2021.107365.
  • Ji, Y., W. Hu, J. Liao, A. Jiang, Z. Xiu, S. Gaowa, Y. Guan, X. Yang, K. Feng, and C. Liu. 2020. Effect of atmospheric cold plasma treatment on antioxidant activities and reactive oxygen species production in postharvest blueberries during storage. Journal of the Science of Food and Agriculture 100 (15):5586–95. doi: 10.1002/jsfa.10611.
  • Kaavya, R., R. Pandiselvam, S. Abdullah, N. U. Sruthi, Y. Jayanath, C. Ashokkumar, A. Chandra Khanashyam, A. Kothakota, and S. V. Ramesh. 2021. Emerging non-thermal technologies for decontamination of salmonella in food. Trends in Food Science & Technology 112:400–18. doi: 10.1016/j.tifs.2021.04.011.
  • Kooshki, S., S. J. Pestehe, and H. R. Bozorgzadeh. 2018. Design of new tapered-bed dielectric barrier discharge reactor for atmospheric-pressure plasma modification of starch. Vacuum 156:224–32. doi: 10.1016/j.vacuum.2018.07.006.
  • Krishnan, V., D. Mondal, B. Thomas, A. Singh, and S. Praveen. 2021. Starch-lipid interaction alters the molecular structure and ultimate starch bioavailability: A comprehensive review. International Journal of Biological Macromolecules 182:626–38. doi: 10.1016/j.ijbiomac.2021.04.030.
  • Kutlu, N., R. Pandiselvam, I. Saka, A. Kamiloglu, P. Sahni, and A. Kothakota. 2021. Impact of different microwave treatments on food texture. Journal of Texture Studies. doi: 10.1111/jtxs.12635.
  • Lacombe, A., B. A. Niemira, J. B. Gurtler, X. Fan, J. Sites, G. Boyd, and H. Chen. 2015. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes. Food Microbiology 46:479–84. doi: 10.1016/j.fm.2014.09.010.
  • Lee, J. H., K. S. Woo, H. I. Yong, C. Jo, S. K. Lee, B. W. Lee, Y.-Y. Lee, B. Lee, and H.-J. Kim. 2019. Physicochemical properties of brown rice according to the characteristics of cultivars treated with atmospheric pressure plasma. Journal of Cereal Science 87:138–42. doi: 10.1016/j.jcs.2019.03.013.
  • Lee, K. H., H.-J. Kim, K. S. Woo, C. Jo, J.-K. Kim, S. H. Kim, H. Y. Park, S.-K. Oh, and W. H. Kim. 2016. Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT - Food Science and Technology 73:442–7. doi: 10.1016/j.lwt.2016.06.055.
  • Lee, T., P. Puligundla, and C. Mok. 2018. Intermittent corona discharge plasma jet for improving tomato quality. Journal of Food Engineering 223:168–74. doi: 10.1016/j.jfoodeng.2017.11.004.
  • Li, Y., A. Kojtari, G. Friedman, A. D. Brooks, A. Fridman, and H.-F. Ji. 2014. Decomposition of L-valine under nonthermal dielectric barrier discharge plasma. The Journal of Physical Chemistry. B 118 (6):1612–20. doi: 10.1021/jp411440k.
  • Lii, C., C. Liao, L. Stobinski, and P. Tomasik. 2002. Effects of hydrogen, oxygen, and ammonia low-pressure glow plasma on granular starches. Carbohydrate Polymers 49 (4):449–56. doi: 10.1016/S0144-8617(01)00351-4.
  • Lu, J., Z. Luo, and Z. Xiao. 2012. Effect of lysine and glycine on pasting and rheological properties of maize starch. Food Research International 49 (1):612–7. doi: 10.1016/j.foodres.2012.06.038.
  • Min, S. C., S. H. Roh, B. A. Niemira, G. Boyd, J. E. Sites, X. Fan, K. Sokorai, and T. Z. Jin. 2018. In-package atmospheric cold plasma treatment of bulk grape tomatoes for microbiological safety and preservation. Food Research International 108:378–86. doi: 10.1016/j.foodres.2018.03.033.
  • Misra, N. N., S. Kaur, B. K. Tiwari, A. Kaur, N. Singh, and P. J. Cullen. 2015. Atmospheric pressure cold plasma (ACP) treatment of wheat flour. Food Hydrocolloids. 44:115–21. doi: 10.1016/j.foodhyd.2014.08.019.
  • Misra, N. N., T. Moiseev, S. Patil, S. K. Pankaj, P. Bourke, J. P. Mosnier, K. M. Keener, and P. J. Cullen. 2014. Cold plasma in modified atmospheres for post-harvest treatment of strawberries. Food and Bioprocess Technology 7 (10):3045–54. doi: 10.1007/s11947-014-1356-0.
  • Misra, N. N. O. Schlüter, and P. J. Cullen. 2016. Cold plasma in food and agriculture: Fundamentals and applications. Cambridge, MA: Academic Press.
  • Misra, N. N., H. I. Yong, R. Phalak, and C. Jo. 2018. Atmospheric pressure cold plasma improves viscosifying and emulsion stabilizing properties of xanthan gum. Food Hydrocolloids. 82:29–33. doi: 10.1016/j.foodhyd.2018.03.031.
  • Misra, N. N., K. M. Keener, P. Bourke, J.-P. Mosnier, and P. J. Cullen. 2014. In-package atmospheric pressure cold plasma treatment of cherry tomatoes. Journal of Bioscience and Bioengineering 118 (2):177–82. doi: 10.1016/j.jbiosc.2014.02.005.
  • Nagy, R., E. Máthé, J. Csapó, and P. Sipos. 2020. Modifying effects of physical processes on starch and dietary fiber content of foodstuffs. Processes 9 (1):17. doi: 10.3390/pr9010017.
  • Niveditha, A., R. Pandiselvam, V. A. Prasath, S. K. Singh, K. Gul, and A. Kothakota. 2021. Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods—A review. Food Control. 130:108338. doi: 10.1016/j.foodcont.2021.108338.
  • Okyere, A. Y., E. Bertoft, and G. A. Annor. 2019. Modification of cereal and tuber waxy starches with radio frequency cold plasma and its effects on waxy starch properties. Carbohydrate Polymers 223:115075. doi: 10.1016/j.carbpol.2019.115075.
  • Pal, P., P. Kaur, N. Singh, A. Kaur, N. N. Misra, B. K. Tiwari, P. J. Cullen, and A. S. Virdi. 2016. Effect of nonthermal plasma on physico-chemical, amino acid composition, pasting and protein characteristics of short and long grain rice flour. Food Research International 81:50–7. doi: 10.1016/j.foodres.2015.12.019.
  • Pan, Y.-W., J.-H. Cheng, and D.-W. Sun. 2021. Inhibition of fruit softening by cold plasma treatments: Affecting factors and applications. Critical Reviews in Food Science and Nutrition 61 (12):1935–46. doi: 10.1080/10408398.2020.1776210.
  • Pandiselvam, R., M. R. Manikantan, V. Divya, C. Ashokkumar, R. Kaavya, A. Kothakota, and S. V. Ramesh. 2019. Ozone: An advanced oxidation technology for starch modification. Ozone: Science & Engineering 41 (6):491–507. doi: 10.1080/01919512.2019.1577128.
  • Pandiselvam, R., S. Sunoj, M. R. Manikantan, A. Kothakota, and K. B. Hebbar. 2017. Application and kinetics of ozone in food preservation. Ozone: Science & Engineering 39 (2):115–26. doi: 10.1080/01919512.2016.1268947.
  • Pandiselvam, R., Y. Tak, E. Olum, O. J. Sujayasree, Y. Tekgül, G. Çalışkan Koç, M. Kaur, P. Nayi, A. Kothakota, and M. Kumar. 2021. Advanced osmotic dehydration techniques combined with emerging drying methods for sustainable food production: Impact on bioactive components, texture, color, and sensory properties of food. Journal of Texture Studies. doi: 10.1111/jtxs.12643.
  • Pankaj, S. K., Z. Wan, and K. M. Keener. 2018. Effects of cold plasma on food quality: A review. Foods 7 (1):4. doi: 10.3390/foods7010004.
  • Pérez-Andrés, J. M., C. Álvarez, P. J. Cullen, and B. K. Tiwari. 2019. Effect of cold plasma on the techno-functional properties of animal protein food ingredients. Innovative Food Science & Emerging Technologies 58:102205. doi: 10.1016/j.ifset.2019.102205.
  • R, F. B., V. N, J. K. Z, G. S, and S. B. 2019. Effect of non-thermal plasma treatment on carrot slices. Journal of Pharmacognosy and Phytochemistry 8 (4):80–3.
  • Ramazzina, I., A. Berardinelli, F. Rizzi, S. Tappi, L. Ragni, G. Sacchetti, and P. Rocculi. 2015. Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biology and Technology 107:55–65. doi: 10.1016/j.postharvbio.2015.04.008.
  • Ranjitha Gracy, T. K., V. Gupta, and R. Mahendran. 2019. Influence of low-pressure nonthermal dielectric barrier discharge plasma on chlorpyrifos reduction in tomatoes. Journal of Food Process Engineering 42 (6):e13242. doi: 10.1111/jfpe.13242.
  • Rashid, F., Y. Bao, Z. Ahmed, and J.-Y. Huang. 2020. Effect of high voltage atmospheric cold plasma on extraction of fenugreek galactomannan and its physicochemical properties. Food Research International (Ottawa, Ont.) 138 (Pt A):109776. doi: 10.1016/j.foodres.2020.109776.
  • Rashvand, M., and R. Abbaszadeh. 2019. Effect of cold plasma on the firmness of olive fruit in packaging and atmospheric space. Journal of Packaging Technology and Research 3 (3):253–9. doi: 10.1007/s41783-019-00074-9.
  • Rodriguez-Gonzalez, O., R. Buckow, T. Koutchma, and V. M. Balasubramaniam. 2015. Energy requirements for alternative food processing technologies—Principles, assumptions, and evaluation of efficiency. Comprehensive Reviews in Food Science and Food Safety 14 (5):536–54. doi: 10.1111/1541-4337.12142.
  • Saha, D., and S. Bhattacharya. 2010. Hydrocolloids as thickening and gelling agents in food: A critical review. Journal of Food Science and Technology 47 (6):587–97. doi: 10.1007/s13197-010-0162-6.
  • Sarangapani, C., G. O’Toole, P. J. Cullen, and P. Bourke. 2017. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries. Innovative Food Science & Emerging Technologies 44. Emerging Technologies with Reference to IUFoST 44:235–41. doi: 10.1016/j.ifset.2017.02.012.
  • Shamsudin, R., C. S. Ling, N. M. Adzahan, and W. R. W. Daud. 2013. Rheological properties of ultraviolet-irradiated and thermally pasteurized Yankee pineapple juice. Journal of Food Engineering 116 (2):548–53. doi: 10.1016/j.jfoodeng.2012.12.031.
  • Sifuentes-Nieves, I., G. Velazquez, P. C. Flores-Silva, E. Hernández-Hernández, G. Neira-Velázquez, C. Gallardo-Vega, and G. Mendez-Montealvo. 2020. HMDSO plasma treatment as alternative to modify structural properties of granular starch. International Journal of Biological Macromolecules 144:682–9. doi: 10.1016/j.ijbiomac.2019.12.111.
  • Silveira, M. R., N. M. Coutinho, E. A. Esmerino, J. Moraes, L. M. Fernandes, T. C. Pimentel, M. Q. Freitas, M. C. Silva, R. S. L. Raices, C. Senaka Ranadheera, et al. 2019. Guava-flavored whey beverage processed by cold plasma technology: Bioactive compounds, fatty acid profile and volatile compounds. Food Chemistry 279:120–7. doi: 10.1016/j.foodchem.2018.11.128.
  • Sivaranjani, S., V. A. Prasath, R. Pandiselvam, A. Kothakota, and A. Mousavi Khaneghah. 2021. Recent advances in applications of ozone in the cereal industry. LWT - Food Science and Technology 146:111412. doi: 10.1016/j.lwt.2021.111412.
  • Song, Y., B. A. Annous, and X. Fan. 2020. Cold plasma-activated hydrogen peroxide aerosol on populations of Salmonella typhimurium and Listeria innocua and quality changes of apple, tomato and cantaloupe during storage - A pilot scale study. Food Control. 117:107358. doi: 10.1016/j.foodcont.2020.107358.
  • Sruthi, N. U., K. Josna, R. Pandiselvam, A. Kothakota, M. Gavahian, and A. Mousavi Khaneghah. 2022. Impacts of cold plasma treatment on physicochemical, functional, bioactive, textural, and sensory attributes of food: A comprehensive review. Food Chemistry 368:130809.
  • Sudheesh, C., K. V. Sunooj, S. K. Sinha, J. George, S. Kumar, P. Murugesan, S. Arumugam, K. Ashwath Kumar, and V. A. Sajeev Kumar. 2019. Impact of energetic neutral nitrogen atoms created by glow discharge air plasma on the physico-chemical and rheological properties of Kithul starch. Food Chemistry 294:194–202. doi: 10.1016/j.foodchem.2019.05.067.
  • Tanksalvala, M., C. L. Porter, Y. Esashi, B. Wang, N. W. Jenkins, Z. Zhang, G. P. Miley, J. L. Knobloch, B. McBennett, N. Horiguchi, et al. 2021. Nondestructive, high-resolution, chemically specific 3D nanostructure characterization using phase-sensitive EUV imaging reflectometry. Science Advances 7 (5):eabd9667. doi: 10.1126/sciadv.abd9667.
  • Tappi, S., A. Berardinelli, L. Ragni, M. Dalla Rosa, A. Guarnieri, and P. Rocculi. 2014. Atmospheric gas plasma treatment of fresh-cut apples. Innovative Food Science & Emerging Technologies 21:114–22. doi: 10.1016/j.ifset.2013.09.012.
  • Tappi, S., G. Gozzi, L. Vannini, A. Berardinelli, S. Romani, L. Ragni, and P. Rocculi. 2016. Cold plasma treatment for fresh-cut melon stabilization. Innovative Food Science & Emerging Technologies 33:225–33. doi: 10.1016/j.ifset.2015.12.022.
  • Thirumdas, R., R. R. Deshmukh, and U. S. Annapure. 2016. Effect of low temperature plasma on the functional properties of basmati rice flour. Journal of Food Science and Technology 53 (6):2742–51. doi: 10.1007/s13197-016-2246-4.
  • Thirumdas, R., D. Kadam, and U. S. Annapure. 2017. Cold plasma: An alternative technology for the starch modification. Food Biophysics 12 (1):129–39. doi: 10.1007/s11483-017-9468-5.
  • Thirumdas, R., A. Kothakota, U. Annapure, K. Siliveru, R. Blundell, R. Gatt, and V. P. Valdramidis. 2018. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends in Food Science & Technology 77:21–31. doi: 10.1016/j.tifs.2018.05.007.
  • Thirumdas, R., C. Sarangapani, and U. S. Annapure. 2015. Cold plasma: A novel non-thermal technology for food processing. Food Biophysics 10 (1):1–11. doi: 10.1007/s11483-014-9382-z.
  • Thirumdas, R., A. Trimukhe, R. R. Deshmukh, and U. S. Annapure. 2017. Functional and rheological properties of cold plasma treated rice starch. Carbohydrate Polymers 157:1723–31. doi: 10.1016/j.carbpol.2016.11.050.
  • Ucar, Y., Z. Ceylan, M. Durmus, O. Tomar, and T. Cetinkaya. 2021. Application of cold plasma technology in the food industry and its combination with other emerging technologies. Trends in Food Science & Technology 114:355–71. doi: 10.1016/j.tifs.2021.06.004.
  • Waghmare, R. 2021. Cold plasma technology for fruit based beverages: A review. Trends in Food Science & Technology 114:60–9. doi: 10.1016/j.tifs.2021.05.018.
  • Wani, A. A., P. Singh, K. Gul, M. H. Wani, and H. C. Langowski. 2014. Sweet cherry (Prunus avium): Critical factors affecting the composition and shelf life. Food Packaging and Shelf Life 1 (1):86–99. doi: 10.1016/j.fpsl.2014.01.005.
  • Wu, T.-Y., N.-N. Sun, and C.-F. Chau. 2018. Application of corona electrical discharge plasma on modifying the physicochemical properties of banana starch indigenous to Taiwan. Journal of Food and Drug Analysis 26 (1):244–51. doi: 10.1016/j.jfda.2017.03.005.
  • Xuan, X.-T., Y. Cui, X.-D. Lin, J.-F. Yu, X.-J. Liao, J.-G. Ling, and H.-T. Shang. 2018. Impact of high hydrostatic pressure on the shelling efficacy, physicochemical properties, and microstructure of fresh razor clam (Sinonovacula constricta). Journal of Food Science 83 (2):284–93. doi: 10.1111/1750-3841.14032.
  • Yan, Y., L. Feng, M. Shi, C. Cui, and Y. Liu. 2020. Effect of plasma-activated water on the structure and in vitro digestibility of waxy and normal maize starches during heat-moisture treatment. Food Chemistry 306:125589. doi: 10.1016/j.foodchem.2019.125589.
  • Yepez, X. V., and K. M. Keener. 2016. High-voltage atmospheric cold plasma (HVACP) hydrogenation of soybean oil without trans-fatty acids. Innovative Food Science & Emerging Technologies 38:169–74. doi: 10.1016/j.ifset.2016.09.001.
  • Zhang, B., L. Chen, X. Li, L. Li, and H. Zhang. 2015. Understanding the multi-scale structure and functional properties of starch modulated by glow-plasma: A structure-functionality relationship. Food Hydrocolloids. 50:228–36. doi: 10.1016/j.foodhyd.2015.05.002.
  • Zhang, B., S. Xiong, X. Li, L. Li, F. Xie, and L. Chen. 2014. Effect of oxygen glow plasma on supramolecular and molecular structures of starch and related mechanism. Food Hydrocolloids. 37:69–76. doi: 10.1016/j.foodhyd.2013.10.034.
  • Zhao, N., L. Ge, Y. Huang, Y. Wang, Y. Wang, H. Lai, Y. Wang, Y. Zhu, and J. Zhang. 2020. Impact of cold plasma processing on quality parameters of packaged fermented vegetable (Radish paocai) in comparison with pasteurization processing: Insight into safety and storage stability of products. Innovative Food Science & Emerging Technologies 60:102300. doi: 10.1016/j.ifset.2020.102300.
  • Zhao, Y., Y. Ding, D. Wang, Y. Deng, and Y. Zhao. 2021. Effect of high hydrostatic pressure conditions on the composition, morphology, rheology, thermal behavior, color, and stability of black garlic melanoidins. Food Chemistry 337:127790.
  • Zhou, D., Z. Wang, S. Tu, S. Chen, J. Peng, and K. Tu. 2019. Effects of cold plasma, UV-C or aqueous ozone treatment on botrytis cinerea and their potential application in preserving blueberry. Journal of Applied Microbiology 127 (1):175–85. doi: 10.1111/jam.14280.
  • Ziuzina, D., N. N. Misra, P. J. Cullen, K. M. Keener, J. P. Mosnier, I. Vilaró, E. Gaston, and P. Bourke. 2016. Demonstrating the potential of industrial scale in-package atmospheric cold plasma for decontamination of cherry tomatoes. Plasma Medicine 6 (3-4):397–412. doi: 10.1615/PlasmaMed.2017019498.
  • Zou, J.-J., C.-J. Liu, and B. Eliasson. 2004. Modification of starch by glow discharge plasma. Carbohydrate Polymers 55 (1):23–6. doi: 10.1016/j.carbpol.2003.06.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.