4,444
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Probiotics in anthocyanin-rich fruit beverages: research and development for novel synbiotic products

, , , &

References

  • Ali, L., B. Svensson, B. Alsanius, and M. Olsson. 2011. Late season harvest and storage of Rubus berries—Major antioxidant and sugar levels. Scientia Horticulturae 129 (3):376–81. doi: 10.1016/j.scienta.2011.03.047.
  • Azad, M., M. Sarker, T. Li, and J. Yin. 2018. Probiotic species in the modulation of gut microbiota: An overview. BioMed Research International 2018:9478630–8. doi: 10.1155/2018/9478630.
  • Bakuradze, T., A. Tausend, J. Galan, I. Groh, D. Berry, J. Tur, D. Marko, and E. Richling. 2019. Antioxidative activity and health benefits of anthocyanin-rich fruit juice in healthy volunteers. Free Radical Research 53 (sup1):1045–55. doi: 10.1080/10715762.2019.1618851.
  • Bernal-Castro, C., C. Díaz-Moreno, and C. Gutiérrez-Cortés. 2019. Inclusion of prebiotics on the viability of a commercial Lactobacillus casei subsp. rhamnosus culture in a tropical fruit beverage. Journal of Food Science and Technology 56 (2):987–94. doi: 10.1007/s13197-018-03565-w.
  • Bordonaba, J., P. Crespo, and L. Terry. 2011. A new acetonitrile-free mobile phase for HPLC-DAD determination of individual anthocyanins in blackcurrant and strawberry fruits: A comparison and validation study. Food Chemistry 129 (3):1265–73. doi: 10.1016/j.foodchem.2010.09.114.
  • Boto-Ordóñez, M., M. Urpi-Sarda, M. Queipo-Ortuño, S. Tulipani, F. Tinahones, and C. Andres-Lacueva. 2014. High levels of bifidobacteria are associated with increased levels of anthocyanin microbial metabolites: A randomized clinical trial. Food Funct 5 (8):1932–8. doi: 10.1039/C4FO00029C.
  • Bowen-Forbes, C., Y. Zhang, and M. Nair. 2010. Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits. Journal of Food Composition and Analysis 23 (6):554–60. doi: 10.1016/j.jfca.2009.08.012.
  • Brown, P, and P. Shipley. 2011. Determination of anthocyanins in cranberry fruit and cranberry fruit products by high-performance liquid chromatography with ultraviolet detection: Single-laboratory validation. Journal of AOAC International 94 (2):459–66. doi: 10.1093/jaoac/94.2.459.
  • Brown, P., C. Turi, P. Shipley, and S. Murch. 2012. Comparisons of large (Vaccinium macrocarpon Ait.) and small (Vaccinium oxycoccos L., Vaccinium vitis-idaea L.) cranberry in British Columbia by phytochemical determination, antioxidant potential, and metabolomic profiling with chemometric analysis. Planta Medica 78 (6):630–40. doi: 10.1055/S-0031-1298239.
  • Byamukama, R., M. Andima, A. Mbabazi, and B. Kiremire. 2014. Anthocyanins from mulberry (Morus rubra) fruits as potential natural colour additives in yoghurt. African Journal of Pure and Applied Chemistry 8 (12):182–90. doi: 10.5897/AJPAC2014.0594.
  • Castillo-Escandón, V., S. Fernández-Michel, M. Cueto-Wong, and G. Ramos-Clamont. 2019. Criterios y estrategias tecnológicas para la incorporación y supervivencia de probióticos en frutas, cereales y sus derivados. TIP Revista Especializada en Ciencias Químico-Biológicas 22 (0):1–17. doi: 10.22201/fesz.23958723e.2019.0.173.
  • Chandra, P., A. Rathore, K. Kay, J. Everhart, P. Curtis, B. Burton-Freeman, A. Cassidy, and C. Kay. 2019. Contribution of berry polyphenols to the human metabolome. Molecules 24 (23):4220. doi: 10.3390/molecules24234220.
  • Chen, T., F.-F. Shuang, Q.-Y. Fu, Y.-X. Ju, C.-M. Zong, W.-G. Zhao, D.-Y. Zhang, X.-H. Yao, and F.-L. Cao. 2022. Evaluation of the chemical composition and antioxidant activity of mulberry (Morus alba L.) fruits from different varieties in China. Molecules 27 (9):2688. doi: 10.3390/molecules27092688.
  • Cheng, J., X. Liu, Z. Chen, Y. Zhang, and Y. Zhang. 2016. Mulberry anthocyanin biotransformation by intestinal probiotics. Food Chemistry 213:721–7. doi: 10.1016/J.FOODCHEM.2016.07.032.
  • Cheng, Y., T. Wu, X. Chu, S. Tang, W. Cao, F. Liang, Y. Fang, S. Pan, and X. Xu. 2020. Fermented blueberry pomace with antioxidant properties improves fecal microbiota community structure and short chain fatty acids production in an in vitro mode. LWT 125:109260. doi: 10.1016/j.lwt.2020.109260.
  • Coman, M., A. Oancea, M. Verdenelli, C. Cecchini, G. Bahrim, C. Orpianesi, A. Cresci, and S. Silvi. 2018. Polyphenol content and in vitro evaluation of antioxidant, antimicrobial and prebiotic properties of red fruit extracts. European Food Research and Technology 244 (4):735–45. doi: 10.1007/s00217-017-2997-9.
  • Cunningham, M., M. Azcarate-Peril, A. Barnard, V. Benoit, R. Grimaldi, D. Guyonnet, H. Holscher, K. Hunter, S. Manurung, D. Obis, et al. 2021. Shaping the future of probiotics and prebiotics. Trends in Microbiology 29 (8):667–85. doi: 10.1016/J.TIM.2021.01.003.
  • Danneskiold-Samsøe, N., H. de Freitas, R. Santos, J. Lemos, C. Cazarin, L. Madsen, K. Kristiansen, G. Pastore, S. Brix, and M. Maróstica. 2019. Interplay between food and gut microbiota in health and disease. Food Research International (Ottawa, Ont.) 115:23–31. doi: 10.1016/J.FOODRES.2018.07.043.
  • David, L., V. Danciu, B. Moldovan, and A. Filip. 2019. Effects of In Vitro Gastrointestinal Digestion on the Antioxidant Capacity and Anthocyanin Content of Cornelian Cherry Fruit Extract. Antioxidants 8 (5):114 doi:10.3390/antiox8050114.
  • de Oliveira, A., F. dos Santos, K. Olbrich, V. Martins, D. Castro, M. Pessanha, C. Conte, S. de Oliveira, L. de Oliveira, R. de Oliveira, et al. 2020. Development of a probiotic non-fermented blend beverage with juçara fruit: Effect of the matrix on probiotic viability and survival to the gastrointestinal tract. LWT 118:108756. doi: 10.1016/j.lwt.2019.108756.
  • de Souza, E., T. de Albuquerque, A. dos Santos, N. Massa, and J. de Brito Alves. 2019. Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities – A Review. Critical Reviews in Food Science and Nutrition 59 (10):1645–59. doi: 10.1080/10408398.2018.1425285.
  • di Cagno, R., G. Minervini, C. Rizzello, M. de Angelis, and M. Gobbetti. 2011. Effect of lactic acid fermentation on antioxidant, texture, color and sensory properties of red and green smoothies. Food Microbiology 28 (5):1062–71. doi: 10.1016/j.fm.2011.02.011.
  • Doherty, S., M. Auty, C. Stanton, R. Ross, G. Fitzgerald, and A. Brodkorb. 2012. Application of whey protein micro-bead coatings for enhanced strength and probiotic protection during fruit juice storage and gastric incubation. Journal of Microencapsulation 29 (8):713–28. doi: 10.3109/02652048.2011.638994.
  • Dóka, O., G. Ficzek, D. Bicanic, R. Spruijt, S. Luterotti, M. Tóth, J. G. Buijnsters, and G. Végvári. 2011. Direct photothermal techniques for rapid quantification of total anthocyanin content in sour cherry cultivars. Talanta 84 (2):341–6.
  • Durazzo, A., M. Lucarini, E. Novellino, P. Daliu, and A. Santini. 2019. Fruit-based juices: Focus on antioxidant properties—Study approach and update. Phytotherapy Research: PTR 33 (7):1754–69. doi: 10.1002/ptr.6380.
  • Dzhanfezova, T., G. Barba-Espín, R. Müller, B. Joernsgaard, J. Hegelund, B. Madsen, D. Larsen, M. Martínez Vega, and T. Toldam-Andersen. 2020. Anthocyanin profile, antioxidant activity and total phenolic content of a strawberry (Fragaria × ananassa Duch) genetic resource collection. Food Bioscience 36:100620. doi: 10.1016/j.fbio.2020.100620.
  • Erşan, S., J. Berning, P. Esquivel, V. Jiménez, R. Carle, B. May, R. Schweiggert, and C. Steingass. 2020. Phytochemical and mineral composition of fruits and seeds of wild-growing Bactris guineensis (L.) H.E. Moore palms from Costa Rica. Journal of Food Composition and Analysis 94:103611. doi: 10.1016/j.jfca.2020.103611.
  • Esmaeilinezhad, Z., S. Babajafari, Z. Sohrabi, M. Eskandari, S. Amooee, and R. Barati-Boldaji. 2019. Effect of synbiotic pomegranate juice on glycemic, sex hormone profile and anthropometric indices in PCOS: A randomized, triple blind, controlled trial. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD 29 (2):201–8. doi: 10.1016/j.numecd.2018.07.002.
  • Esquivel-Alvarado, D., R. Munõz-Arrieta, E. Alfaro-Viquez, S. Madrigal-Carballo, C. Krueger, and J. Reed. 2020. Composition of anthocyanins and proanthocyanidins in three tropical Vaccinium species from Costa Rica. Journal of Agricultural and Food Chemistry 68 (10):2872–9. doi: 10.1021/ACS.JAFC.9B01451.
  • Fanali, C., M. G. Belluomo, M. Cirilli, V. Cristofori, M. Zecchini, F. Cacciola, M. Russo, R. Muleo, and L. Dugo. 2016. Antioxidant activity evaluation and HPLC-photodiode array/MS polyphenols analysis of pomegranate juice from selected italian cultivars: A comparative study. ELECTROPHORESIS 37 (13):1947–55. doi:10.1002/elps.201500501.
  • Faria, A., I. Fernandes, S. Norberto, N. Mateus, and C. Calhau. 2014. Interplay between anthocyanins and gut microbiota. Journal of Agricultural and Food Chemistry 62 (29):6898–902. doi: 10.1021/jf501808a.
  • Fazeli, M., S. Bahmani, H. Jamalifar, and N. Samadi. 2011. Effect of probiotication on antioxidant and antibacterial activities of pomegranate juices from sour and sweet cultivars. Natural Product Research 25 (3):288–97. doi: 10.1080/14786419.2010.495068.
  • Fernandes, A, and S. Rodrigues. 2018. Turning fruit juice into probiotic beverages. In Fruit juices: extraction, composition, quality and analysis, eds. G. Rajauria, and B. K. Tiwari, 279–87. Cambridge, Massachusetts: Academic Press. doi: 10.1016/B978-0-12-802230-6.00015-1.
  • Flach, J., M. van der Waal, M. van den Nieuwboer, E. Claassen, and O. Larsen. 2018. The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters. Critical Reviews in Food Science and Nutrition 58 (15):2570–84. doi: 10.1080/10408398.2017.1334624.
  • Filannino, P., L. Azzi, I. Cavoski, O. Vincentini, C. Rizzello, M. Gobbetti, and R. Di Cagno. 2013. Exploitation of the health-promoting and sensory properties of organic pomegranate (Punica granatum L.) juice through lactic acid fermentation. International Journal of Food Microbiology 163 (2-3):184–92. doi: 10.1016/j.ijfoodmicro.2013.03.002.
  • Fratianni, F., F. Cardinale, I. Russo, C. Iuliano, P. Tremonte, R. Coppola, and F. Nazzaro. 2014. Ability of synbiotic encapsulated Saccharomyces cerevisiae boulardii to grow in berry juice and to survive under simulated gastrointestinal conditions. Journal of Microencapsulation 31 (3):299–305. doi: 10.3109/02652048.2013.871361.
  • Freitas, H., A. dos Santos, S. Rodrigues, V. Abreu, N. Narain, T. Lemos, W. Gomes, and A. Pereira. 2021. Synbiotic açaí juice (Euterpe oleracea) containing sucralose as noncaloric sweetener: Processing optimization, bioactive compounds, and acceptance during storage. Journal of Food Science 86 (3):730–9. doi: 10.1111/1750-3841.15617.
  • Garzón, G., C. Narváez, K. Riedl, and S. Schwartz. 2010. Chemical composition, anthocyanins, non-anthocyanin phenolics and antioxidant activity of wild bilberry (Vaccinium meridionale Swartz) from Colombia. Food Chemistry 122 (4):980–6. doi: 10.1016/j.foodchem.2010.03.017.
  • Gao, X., J. Zhao, H. Zhang, W. Chen, and Q. Zhai. 2022. Modulation of gut health using probiotics: The role of probiotic effector molecules. Journal of Future Foods 2 (1):1–12. doi: 10.1016/j.jfutfo.2022.03.011.
  • Garzón, G. A., C.-E. Narváez-Cuenca, J.-P. Vincken, and H. Gruppen. 2017. Polyphenolic composition and antioxidant activity of açai (Euterpe oleracea Mart.) from Colombia. Food Chemistry 217:364–72. doi:10.1016/j.foodchem.2016.08.107.
  • Garzón, G., C. Soto, M. López-R, K. Riedl, C. Browmiller, and L. Howard. 2020. Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale Swartz pomace. Heliyon 6 (5):e03845. doi: 10.1016/j.heliyon.2020.e03845.
  • Gibson, G., R. Hutkins, M. Sanders, S. Prescott, R. Reimer, S. Salminen, K. Scott, C. Stanton, K. Swanson, P. Cani, et al. 2017. Expert consensus document: The International Scientific Association for Probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews. Gastroenterology & Hepatology 14 (8):491–502. doi: 10.1038/nrgastro.2017.75.
  • Gómez-Caravaca, A. M., A. M. Verardo, M. Toselli, A. Segura-Carretero, A. Fernández-Gutiérrez, and M. F. Caboni. 2013. Determination of the major phenolic compounds in pomegranate juices by HPLC–DAD–ESI-MS. Journal of Agricultural and Food Chemistry 61 (22):5328–37.
  • González, D., I. Gil-Sánchez, A. Esteban-Fernández, A. Ramos, M. Fernández-Díaz, C. Cueva, M. Moreno-Arribas, and B. Bartolomé. 2017. Reciprocal beneficial effects between wine polyphenols and probiotics: An exploratory study. European Food Research and Technology 243 (3):531–8. doi: 10.1007/s00217-016-2770-5.
  • Gouvêa, A. C. M. S., M. C. P. d Araujo, D. F Schulz, S Pacheco, R. L. d O Godoy, and L. M. C Cabral. 2012. Anthocyanins standards (cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside) isolation from freeze-dried açaí (Euterpe oleraceae Mart.) by HPLC. Food Science and Technology 32 (1):43–6. doi:10.1590/S0101-20612012005000001.
  • Hesam, F., B. Tarzi, M. Honarvar, and M. Jahadi. 2020. Valorization of sugarcane bagasse to high value-added xylooligosaccharides and evaluation of their prebiotic function in a synbiotic pomegranate juice. Biomass Conversion and Biorefinery :1–13. doi: 10.1007/s13399-020-01095-0.
  • Hidalgo, G, and M. Almajano. 2017. Red fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A review. Antioxidants 6 (1):7. doi: 10.3390/antiox6010007.
  • Hidalgo, M., M. Oruna-Concha, S. Kolida, G. Walton, S. Kallithraka, J. Spencer, G. Gibson, and S. de Pascual-Teresa. 2012. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry 60 (15):3882–90. doi: 10.1021/jf3002153.
  • Hill, C., F. Guarner, G. Reid, G. Gibson, D. Merenstein, B. Pot, L. Morelli, R. Canani, H. Flint, S. Salminen, et al. 2014. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews. Gastroenterology & Hepatology 11 (8):506–14. doi: 10.1038/nrgastro.2014.66.
  • Horvitz, S., D. Chanaguano, and I. Arozarena. 2017. Andean blackberries (Rubus glaucus Benth) quality as affected by harvest maturity and storage conditions. Scientia Horticulturae 226:293–301. doi: 10.1016/j.scienta.2017.09.002.
  • Hu, J., L. Zhang, W. Lin, W. Tang, F. Chan, and S. Ng. 2021. Review article: Probiotics, prebiotics and dietary approaches during COVID-19 pandemic. Trends in Food Science & Technology 108:187–96. doi: 10.1016/J.TIFS.2020.12.009.
  • Igwe, E., K. Charlton, Y. Probst, K. Kent, and M. Netzel. 2019. A systematic literature review of the effect of anthocyanins on gut microbiota populations. Journal of Human Nutrition and Dietetics : The Official Journal of the British Dietetic Association 32 (1):53–62. doi: 10.1111/jhn.12582.
  • Jamar, G., D. Estadella, and L. Pisani. 2017. Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. BioFactors (Oxford, England) 43 (4):507–16. doi: 10.1002/biof.1365.
  • Kamiloglu, S., O. Serali, N. Unal, and E. Capanoglu. 2013. Antioxidant activity and polyphenol composition of black mulberry (Morus nigra L.) products. Journal of Berry Research 3 (1):41–51. doi: 10.3233/JBR-130045.
  • Keșa, A.-L., C. R. Pop, E. Mudura, L. C. Salanță, A. Pasqualone, C. Dărab, C. Burja-Udrea, H. Zhao, and T. E. Coldea. 2021. Strategies to improve the potential functionality of fruit-based fermented beverages. Plants 10 (11):2263. doi: 10.3390/plants10112263.
  • Koyama, R., A. de Assis, L. Yamamoto, W. Borges, R. Sá Borges, S. Prudêncio, and S. Roberto. 2014. Exogenous abscisic acid increases the anthocyanin concentration of berry and juice from ‘isabel’ grapes (Vitis labrusca L.). HortScience 49 (4):460–4. doi: 10.21273/HORTSCI.49.4.460.
  • Kubota, M., C. Ishikawa, Y. Sugiyama, S. Fukumoto, T. Miyagi, and S. Kumazawa. 2012. Anthocyanins from the fruits of Rubus croceacanthus and Rubus sieboldii, wild berry plants from Okinawa, Japan. Journal of Food Composition and Analysis 28 (2):179–82. doi: 10.1016/j.jfca.2012.09.002.
  • Kula, M, and M. Krauze-Baranowska. 2016. Rubus occidentalis: The black raspberry—Its potential in the prevention of cancer. Nutrition and Cancer 68 (1):18–28. doi: 10.1080/01635581.2016.1115095.
  • Lacombe, A, and V. Wu. 2017. The potential of berries to serve as selective inhibitors of pathogens and promoters of beneficial microorganisms. Food Quality and Safety 1 (1):3–12. doi: 10.1093/fqsafe/fyx001.
  • Lago-Vanzela, E., R. Da-Silva, E. Gomes, E. García-Romero, and I. Hermosín-Gutiérrez. 2011. Phenolic composition of the edible parts (flesh and skin) of Bordô grape (Vitis labrusca) using HPLC-DAD-ESI-MS/MS. Journal of Agricultural and Food Chemistry 59 (24):13136–46. doi: 10.1021/JF203679N.
  • Lai, K., Y. How, and L. Pui. 2020. Storage stability of microencapsulated Lactobacillus rhamnosus GG in hawthorn berry tea with flaxseed mucilage. Journal of Food Processing and Preservation 44 (12):e14965. doi: 10.1111/jfpp.14965.
  • Lavefve, L., L. Howard, and F. Carbonero. 2020. Berry polyphenols metabolism and impact on human gut microbiota and health. Food & Function 11 (1):45–65. doi: 10.1039/c9fo01634a.
  • Lebaka, V., Y. Wee, V. Narala, and V. Joshi. 2018. Development of new probiotic foods–A case study on probiotic juices. In Therapeutic, probiotic, and unconventional foods, eds. A. Mihai, and A. M. Holban, 55–78. Cambridge, Massachusetts: Academic Press. doi: 10.1016/B978-0-12-814625-5.00004-2.
  • Leong, H., P. Show, M. Lim, C. Ooi, and T. Ling. 2018. Natural red pigments from plants and their health benefits: A review. Food Reviews International 34 (5):463–82. doi: 10.1080/87559129.2017.1326935.
  • Li, D., P. Wang, Y. Luo, M. Zhao, and F. Chen. 2017. Health benefits of anthocyanins and molecular mechanisms: Update from recent decade. Critical Reviews in Food Science and Nutrition 57 (8):1729–41. doi: 10.1080/10408398.2015.1030064.
  • Liang, Z., B. Wu, P. Fan, C. Yang, W. Duan, X. Zheng, C. Liu, and S. Li. 2008. Anthocyanin composition and content in grape berry skin in Vitis germplasm. Food Chemistry 111 (4):837–44. doi: 10.1016/j.foodchem.2008.04.069.
  • Luckow, T., V. Sheehan, G. Fitzgerald, and C. Delahunty. 2006. Exposure, health information and flavour-masking strategies for improving the sensory quality of probiotic juice. Appetite 47 (3):315–23. doi: 10.1016/j.appet.2006.04.006.
  • Machado, T. A. D. G., M. E. G. de Oliveira, M. I. F. Campos, P. O. A. de Assis, E. L. de Souza, M. S. Madruga, M. T. B. Pacheco, M. M. E. Pintado, and R. d C. R. d E. Queiroga. 2017. Impact of honey on quality characteristics of goat yogurt containing probiotic Lactobacillus acidophilus. LWT 80:221–9. doi: 10.15835/nbha4319814.
  • Mantzourani, I., A. Terpou, A. Alexopoulos, E. Bezirtzoglou, A. Bekatorou, and S. Plessas. 2019. Production of a potentially synbiotic fermented Cornelian cherry (Cornus mas L.) beverage using Lactobacillus paracasei K5 immobilized on wheat bran. Biocatalysis and Agricultural Biotechnology 17:347–51. doi: 10.1016/j.bcab.2018.12.021.
  • Mantzourani, I., A. Terpou, A. Bekatorou, A. Mallouchos, A. Alexopoulos, A. Kimbaris, E. Bezirtzoglou, A. Koutinas, and S. Plessas. 2020. Functional pomegranate beverage production by fermentation with a novel synbiotic L. paracasei biocatalyst. Food Chemistry 308:125658. doi: 10.1016/j.foodchem.2019.125658.
  • Marín-Arango, Z., M. Cortes-Rodríguez, O. Montoya-Campuzano, and J. Arango-Tobón. 2019. Viability of Lactobacillus casei ATCC 393 and properties in Andean blackberry suspensions with probiotic and prebiotic characteristics. DYNA (Colombia) 86 (210):179–86. doi: 10.15446/dyna.v86n210.72929.
  • Markowiak, P, and K. Śliżewska. 2017. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9 (9):1021. doi: 10.3390/nu9091021.
  • Mikulic-Petkovsek, M., V. Schmitzer, A. Slatnar, B. Todorovic, R. Veberic, F. Stampar, and A. Ivancic. 2014. Investigation of anthocyanin profile of four elderberry species and interspecific hybrids. Journal of Agricultural and Food Chemistry 62 (24):5573–80. doi: 10.1021/JF5011947.
  • Min, M., C. Bunt, S. Mason, and M. Hussain. 2019. Non-dairy probiotic food products: An emerging group of functional foods. Critical Reviews in Food Science and Nutrition 59 (16):2626–41. doi: 10.1080/10408398.2018.1462760.
  • Mishra, A., I. Chakravarty, and S. Mandavgane. 2021. Current trends in non-dairy based synbiotics. Critical Reviews in Biotechnology 41 (6):935–52. doi: 10.1080/07388551.2021.1898329.
  • Moldovan, B., A. Filip, S. Clichici, R. Suharoschi, P. Bolfa, and L. David. 2016. Antioxidant activity of Cornelian cherry (Cornus mas L.) fruits extract and the in vivo evaluation of its anti-inflammatory effects. Journal of Functional Foods 26:77–87. doi:10.1016/j.jff.2016.07.004.
  • Morais, C. A., V. V. de Rosso, D. Estadella, and L. P. Pisani. 2016. Anthocyanins as inflammatory modulators and the role of the gut microbiota. The Journal of Nutritional Biochemistry 33:1–7. doi: 10.1016/j.jnutbio.2015.11.008.
  • Morales-de la Peña, M., J. Welti-Chanes, and O. Martín-Belloso. 2019. Novel technologies to improve food safety and quality. Current Opinion in Food Science 30:1–7. doi: 10.1016/j.cofs.2018.10.009.
  • Mousavi, Z., S. Mousavi, S. Razavi, Z. Emam-Djomeh, and H. Kiani. 2011. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World Journal of Microbiology and Biotechnology 27 (1):123–8. doi: 10.1007/s11274-010-0436-1.
  • Mulabagal, V., W. J. Keller, and A. I. Calderón. 2012. Quantitative analysis of anthocyanins in Euterpe oleracea (açaí) dietary supplement raw materials and capsules by Q-TOF liquid chromatography/mass spectrometry. Pharmaceutical Biology 50 (10):1289–96. doi:10.3109/13880209.2012.674141.
  • Müller, D., M. Schantz, and E. Richling. 2012. High performance liquid chromatography analysis of anthocyanins in bilberries (Vaccinium myrtillus L.), Blueberries (Vaccinium corymbosum L.), and corresponding juices. Journal of Food Science 77 (4):C340–C345. doi: 10.1111/J.1750-3841.2011.02605.X.
  • Mustafa, S, and L. Chua. 2020. Green technological fermentation for probioticated beverages for health enhancement. In Biotechnological progress and beverage consumption: Volume 19: The science of beverages, 407–34. Cambridge, Massachussets: Academic Press. doi: 10.1016/B978-0-12-816678-9.00013-8.
  • Mustafa, S., L. Chua, and H. El-Enshasy. 2019. Effects of agitation speed and kinetic studies on probiotication of pomegranate juice with Lactobacillus casei. Molecules 24 (13):2357. doi: 10.3390/molecules24132357.
  • Nualkaekul, S., M. Cook, V. Khutoryanskiy, and D. Charalampopoulos. 2013. Influence of encapsulation and coating materials on the survival of Lactobacillus plantarum and Bifidobacterium longum in fruit juices. Food Research International 53 (1):304–11. doi: 10.1016/j.foodres.2013.04.019.
  • Nualkaekul, S., D. Lenton, M. Cook, V. Khutoryanskiy, and D. Charalampopoulos. 2012. Chitosan coated alginate beads for the survival of microencapsulated Lactobacillus plantarum in pomegranate juice. Carbohydrate Polymers 90 (3):1281–7. doi: 10.1016/j.carbpol.2012.06.073.
  • Nualkaekul, S., I. Salmeron, and D. Charalampopoulos. 2011. Investigation of the factors influencing the survival of Bifidobacterium longum in model acidic solutions and fruit juices. Food Chemistry 129 (3):1037–44. doi: 10.1016/j.foodchem.2011.05.071.
  • Oancea, S. 2021. A review of the current knowledge of thermal stability of anthocyanins and approaches to their stabilization to heat. Antioxidants 10 (9):1337. doi: 10.3390/antiox10091337.
  • Okur, İ., C. Baltacıoğlu, E. Ağçam, H. Baltacıoğlu, and H. Alpas. 2019. Evaluation of the Effect of Different Extraction Techniques on Sour Cherry Pomace Phenolic Content and Antioxidant Activity and Determination of Phenolic Compounds by FTIR and HPLC. Waste and Biomass Valorization 10 (12):3545–55. doi:10.1007/s12649-019-00771-1.
  • Olivares, A., C. Soto, E. Caballero, and C. Altamirano. 2019. Survival of microencapsulated Lactobacillus casei (prepared by vibration technology) in fruit juice during cold storage. Electronic Journal of Biotechnology 42:42–8. doi: 10.1016/j.ejbt.2019.10.002.
  • Osorio, C., B. Acevedo, S. Hillebrand, J. Carriazo, P. Winterhalter, and A. Morales. 2010. Microencapsulation by spray-drying of anthocyanin pigments from corozo (Bactris guineensis) fruit. journal of Agricultural and Food Chemistry 58 (11):6977–85. doi: 10.1021/jf100536g.
  • Perricone, M., A. Bevilacqua, C. Altieri, M. Sinigaglia, and M. Corbo. 2015. Challenges for the production of probiotic fruit juices. Beverages 1 (2):95–103. doi: 10.3390/beverages1020095.
  • Perricone, M., M. Corbo, M. Sinigaglia, B. Speranza, and A. Bevilacqua. 2014. Viability of Lactobacillus reuteri in fruit juices. Journal of Functional Foods 10:421–6. doi: 10.1016/j.jff.2014.07.020.
  • Pimentel, T., S. Klososki, M. Rosset, C. Barão, and V. Marcolino. 2019. Fruit juices as probiotic foods. In Sports and energy drinks: Volume 10: The science of beverages, 483–513. Sawston, Cambridge: Woodhead Publishing. doi: 10.1016/B978-0-12-815851-7.00014-0.
  • Pisoschi, A, and G. Negulescu. 2011. Methods for total antioxidant activity determination: A review. Biochemistry & Analytical Biochemistry 1 (1): 1–10. doi: 10.4172/2161-1009.1000106.
  • Ponder, A., E. Hallmann, M. Kwolek, D. Średnicka-Tober, and R. Kazimierczak. 2021. Genetic differentiation in anthocyanin content among berry fruits. Current Issues in Molecular Biology 43 (1):36–51. doi: 10.3390/CIMB43010004.
  • Quigley, E. 2019. Microbiome-directed therapies: Past, present, and future: Prebiotics and probiotics in digestive health. Clinical Gastroenterology and Hepatology : The Official Clinical Practice Journal of the American Gastroenterological Association 17 (2):333–44. doi: 10.1016/j.cgh.2018.09.028.
  • Rambaran, T, and C. Bowen-Forbes. 2020. Chemical and sensory characterisation of two Rubus rosifolius (Red Raspberry) varieties. International Journal of Food Science 2020:6879460. doi: 10.1155/2020/6879460.
  • Ranadheera, C., J. Vidanarachchi, R. Rocha, A. Cruz, and S. Ajlouni. 2017. Probiotic delivery through fermentation: Dairy vs. non-dairy beverages. Fermentation 3 (4):67. doi: 10.3390/fermentation3040067.
  • Reque, P., R. Steffens, A. da Silva, A. Jablonski, S. Flôres, A. Rios, and E. Jong. 2014. Characterization of blueberry fruits (Vaccinium spp.) and derived products. Food Science and Technology (Campinas) 34 (4):773–9. doi: 10.1590/1678-457X.6470.
  • Rodríguez-Daza, M., E. Pulido-Mateos, J. Lupien-Meilleur, D. Guyonnet, Y. Desjardins, and D. Roy. 2021. Polyphenol-mediated gut microbiota modulation: Toward prebiotics and further. Frontiers in Nutrition 8:689456. doi: 10.3389/FNUT.2021.689456/BIBTEX[PMC].[34268328.
  • Rovinaru, C, and D. Pasarin. 2020. Application of microencapsulated synbiotics in fruit-based beverages. Probiotics and Antimicrobial Proteins 12 (2):764–73. doi: 10.1007/s12602-019-09579-w.
  • Ruiz, L., V. Zamora, M. Pescuma, C. van Nieuwenhove, F. Mozzi, and J. Sánchez. 2021. Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Research International (Ottawa, Ont.) 140:109854. doi: 10.1016/J.FOODRES.2020.109854.
  • Ryu, D, and E. Koh. 2018. Stability of anthocyanins in bokbunja (Rubus occidentalis L.) under in vitro gastrointestinal digestion. Food Chemistry 267:157–62. doi: 10.1016/J.FOODCHEM.2018.02.109.
  • Sarao, L, and M. Arora. 2017. Probiotics, prebiotics, and microencapsulation: A Review. Critical Reviews in Food Science and Nutrition 57 (2):344–71. doi: 10.1080/10408398.2014.887055.
  • Sheehan, V., P. Ross, and G. Fitzgerald. 2007. Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices. Innovative Food Science & Emerging Technologies 8 (2):279–84. doi: 10.1016/j.ifset.2007.01.007.
  • Skrovankova, S., D. Sumczynski, J. Mlcek, T. Jurikova, and J. Sochor. 2015. Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences 16 (10):24673–706. doi: 10.3390/ijms161024673.
  • Speranza, B., D. Campaniello, L. Petruzzi, C. Altieri, M. Sinigaglia, A. Bevilacqua, and M. Corbo. 2020. The inoculation of probiotics in vivo is a challenge: Strategies to improve their survival, to avoid unpleasant changes, or to enhance their performances in beverages. Beverages 6 (2):20–18. doi: 10.3390/beverages6020020.
  • Singh, K, and A. Rao. 2021. Probiotics: A potential immunomodulator in COVID-19 infection management. Nutrition Research (New York, N.Y.) 87:1–12. doi: 10.1016/j.nutres.2020.12.014.
  • Srisukchayakul, P., D. Charalampopoulos, and K. Karatzas. 2018. Study on the effect of citric acid adaptation toward the subsequent survival of Lactobacillus plantarum NCIMB 8826 in low pH fruit juices during refrigerated storage. Food Research International (Ottawa, Ont.) 111:198–204. doi: 10.1016/j.foodres.2018.05.018.
  • Swain, M. R., M. Anandharaj, R. C. Ray, and R. P. Rani. 2014. Fermented fruits and vegetables of Asia: A potential source of probiotics. Biotechnology Research International 2014:250424–19. doi: http://dx.doi.org/10.1155/2014/250424.
  • Swanson, K., G. Gibson, R. Hutkins, R. Reimer, G. Reid, K. Verbeke, K. Scott, H. Holscher, M. Azad, N. Delzenne, et al. 2020. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nature Reviews. Gastroenterology & Hepatology 17 (11):687–701. doi: 10.1038/s41575-020-0344-2.
  • Szymanowska, U., B. Baraniak, and A. Bogucka-Kocka. 2018. Antioxidant, anti-inflammatory, and postulated cytotoxic activity of phenolic and anthocyanin-rich fractions from polana raspberry (Rubus idaeus L.) fruit and juice—In vitro study. Molecules 23 (7):1812. doi: 10.3390/molecules23071812.
  • Tegegne, B. A, and B. Kebede. 2022. Probiotics, their prophylactic and therapeutic applications in human health development: A review of the literature. Heliyon 8 (6):e09725. doi: 10.1016/j.heliyon.2022.e09725.
  • Tian, L., Y. Tan, G. Chen, G. Wang, J. Sun, S. Ou, W. Chen, and W. Bai. 2019. Metabolism of anthocyanins and consequent effects on the gut microbiota. Critical Reviews in Food Science and Nutrition 59 (6):982–91. doi: 10.1080/10408398.2018.1533517.
  • Topolska, K., A. Florkiewicz, and A. Filipiak-Florkiewicz. 2021. Functional food—Consumer motivations and expectations. International Journal of Environmental Research and Public Health 18 (10):5327. doi: 10.3390/ijerph18105327.
  • Urbano, J., M. da Silva, M. Mazzocato, F. Tulini, and C. Favaro-Trindade. 2019. Probiotic and synbiotic sorbets produced with jussara (Euterpe edulis) pulp: Evaluation throughout the storage period and effect of the matrix on probiotics exposed to simulated gastrointestinal fluids. Probiotics and Antimicrobial Proteins 11 (1):264–72. doi: 10.1007/s12602-017-9346-y.
  • Valero-Cases, E., D. Cerdá-Bernad, J. Pastor, and M. Frutos. 2020. Non-dairy fermented beverages as potential carriers to ensure ­probiotics, prebiotics, and bioactive compounds arrival to the gut and their health benefits. Nutrients 12 (6):1666. doi: 10.3390/nu12061666.
  • Varsha, K. K., A. P. Maheshwari, and K. M. Nampoothiri. 2021. Accomplishment of probiotics in human health pertaining to immunoregulation and disease control. Clinical Nutrition ESPEN 44:26–37. doi: 10.1016/j.clnesp.2021.06.020.
  • Veberic, R., A. Slatnar, J. Bizjak, F. Stampar, and M. Mikulic-Petkovsek. 2015. Anthocyanin composition of different wild and cultivated berry species. LWT - Food Science and Technology 60 (1):509–17. doi: 10.1016/j.lwt.2014.08.033.
  • Vieira, G. S., A. S. Marques, M. T. Machado, V. M. Silva, and M. D. Hubinger. 2017. Determination of anthocyanins and non-anthocyanin polyphenols by ultra performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI–MS) in jussara (Euterpe edulis) extracts. Journal of Food Science and Technology 54 (7):2135–44.
  • Wang, H. 2014. Rapid quantitative analysis of individual anthocyanin content based on high-performance liquid chromatography with diode array detection with the pH differential method. Journal of Separation Science 37 (18):2535–44. doi: 10.1002/JSSC.201400364.
  • Wang, M., Z. Zhang, H. Sun, S. He, S. Liu, T. Zhang, L. Wang, and G. Ma. 2022. Research progress of anthocyanin prebiotic activity: A review. Phytomedicine 102:154145. doi: 10.1016/j.phymed.2022.154145.
  • White, J, and S. Hekmat. 2018. Development of probiotic fruit juices using lactobacillus rhamnosus GR-1 fortified with short chain and long chain inulin fiber. Fermentation 4 (2):27. doi: 10.3390/fermentation4020027.
  • Wu, S., K. Dastmalchi, C. Long, and E. Kennelly. 2012. Metabolite profiling of jaboticaba (Myrciaria cauliflora) and other dark-colored fruit juices. Journal of Agricultural and Food Chemistry 60 (30):7513–25. doi: 10.1021/JF301888Y.
  • Wu, Y., S. Li, Y. Tao, D. Li, Y. Han, P. Show, G. Wen, and J. Zhou. 2021. Fermentation of blueberry and blackberry juices using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: Growth of probiotics, metabolism of phenolics, antioxidant capacity in vitro and sensory evaluation. Food Chemistry 348:129083. doi: 10.1016/j.foodchem.2021.129083.
  • Yan, Y., F. Zhang, Z. Chai, M. Liu, M. Battino, and X. Meng. 2019. Mixed fermentation of blueberry pomace with L. rhamnosus GG and L. plantarum-1: Enhance the active ingredient, antioxidant activity and health-promoting benefits. Food and Chemical Toxicology 131:110541. doi: 10.1016/j.fct.2019.05.049.
  • Yang, B, and M. Kortesniemi. 2015. Clinical evidence on potential health benefits of berries. Current Opinion in Food Science 2:36–42. doi: 10.1016/j.cofs.2015.01.002.
  • Yang, H., D. Hewes, S. Salaheen, C. Federman, and D. Biswas. 2014. Effects of blackberry juice on growth inhibition of foodborne pathogens and growth promotion of Lactobacillus. Food Control. 37 (1):15–20. doi: 10.1016/j.foodcont.2013.08.042.
  • Zendeboodi, F., N. Khorshidian, A. Mortazavian, and A. da Cruz. 2020. Probiotic: Conceptualization from a new approach. Current Opinion in Food Science 32:103–23. doi: 10.1016/j.cofs.2020.03.009.
  • Zhao, C., Y. Yu, Z. Chen, G. Wen, F. Wei, Q. Zheng, C. Wang, and X. Xiao. 2017. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chemistry 214:119–28. doi: 10.1016/j.foodchem.2016.07.073.
  • Zhu, J., T. Ren, M. Zhou, and M. Cheng. 2016. The combination of blueberry juice and probiotics reduces apoptosis of alcoholic fatty liver of mice by affecting SIRT1 pathway. Drug Design, Development and Therapy 10:1649–61.
  • Zia-Ul-Haq, M., M. Riaz, V. de Feo, H. Jaafar, and M. Moga. 2014. Rubus Fruticosus L.: Constituents, biological activities and health related uses. Molecules (Basel, Switzerland) 19 (8):10998–1029. doi: 10.3390/molecules190810998.
  • Zielińska, D., K. Marciniak-Lukasiak, M. Karbowiak, and P. Lukasiak. 2021. Effects of fructose and oligofructose addition on milk fermentation using novel Lactobacillus cultures to obtain high-quality yogurt-like products. Molecules 26 (19):5730. doi: 10.3390/molecules26195730.
  • Žuntar, I., Z. Petric, D. Kovacevíc, and P. Putnik. 2020. Safety of probiotics: Functional fruit beverages and nutraceuticals. Foods, 9 (7):947. doi: 10.3390/foods9070947.