878
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Bio-based antibacterial food packaging films and coatings containing cinnamaldehyde: A review

, , &

References

  • Abdollahzadeh, E., A. Nematollahi, and H. Hosseini. 2021. Composition of antimicrobial edible films and methods for assessing their antimicrobial activity: a review. Trends in Food Science & Technology 110:291–303. doi: 10.1016/j.tifs.2021.01.084.
  • Agarwal, C., Z. Koczan, Z. Borcsok, K. Halasz, and Z. Pasztory. 2021. Valorization of Larix decidua Mill. bark by functionalizing bioextract onto chitosan films for sustainable active food packaging. Carbohydrate Polymers 271:118409. doi: 10.1016/j.carbpol.2021.118409.
  • Amiri, E., M. Aminzare, H. H. Azar, and M. R. Mehrasbi. 2019. Combined antioxidant and sensory effects of corn starch films with nanoemulsion of Zataria multiflora essential oil fortified with cinnamaldehyde on fresh ground beef patties. Meat Science 153:66–74. doi: 10.1016/j.meatsci.2019.03.004.
  • Aragón-Gutiérrez, A., R. Heras-Mozos, M. Gallur, D. López, R. Gavara, and P. Hernández-Muñoz. 2021. Hot-Melt-Extruded Active Films Prepared from EVOH/Trans-Cinnamaldehyde Blends Intended for Food Packaging Applications. Foods 10 (7):1591 doi:10.3390/foods10071591.
  • Asadi-Yousefabad, S. H., S. Mohammadi, S. Ghasemi, K. Saboktakin-Rizi, S. Sahraeian, S. S. Asadi, M. Hashemi, and H. R. Ghaffari. 2022. Development of fortified milk with gelled-oil nanoparticles incorporated with cinnamaldehyde and tannic acid. LWT - Food Science and Technology 154:112652. doi: 10.1016/j.lwt.2021.112652.
  • Balaguer, M. P., G. Lopez-Carballo, R. Catala, R. Gavara, and P. Hernandez-Munoz. 2013. Antifungal properties of gliadin films incorporating cinnamaldehyde and application in active food packaging of bread and cheese spread foodstuffs. International Journal of Food Microbiology 166 (3):369–77. doi: 10.1016/j.ijfoodmicro.2013.08.012.
  • Balaguer, M. P., J. Villanova, G. Cesar, R. Gavara, and P. Hernandez-Munoz. 2015. Compostable properties of antimicrobial bioplastics based on cinnamaldehyde cross-linked gliadins. Chemical Engineering Journal 262:447–55. doi: 10.1016/j.cej.2014.09.099.
  • Beak, S., H. Kim, and K. B. Song. 2018. Sea squirt shell protein and polylactic acid laminated films containing cinnamon bark essential oil. Journal of Food Science 83 (7):1896–903. doi: 10.1111/1750-3841.14207.
  • Bickers, D., P. Calow, H. Greim, J. M. Hanifin, A. E. Rogers, J. H. Saurat, I. G. Sipes, R. L. Smith, and H. Tagami. 2005. A toxicologic and dermatologic assessment of cinnamyl alcohol, cinnamaldehyde and cinnamic acid when used as fragrance ingredients: the RIFM expert panel. Food and Chemical Toxicology 43 (6):799–836. doi: 10.1016/j.fct.2004.09.013.
  • Brustolin, A. Á., Á. C. Fernandes Herculano Ramos-Milaré, T. F. Perles de Mello, S. M. Alessi Aristides, M. V. Campana Lonardoni, and T. G. Verzignassi Silveira. 2022. In vitro activity of cinnamaldehyde on Leishmania (Leishmania) amazonensis. Experimental Parasitology 236–237:108244. doi: 10.1016/j.exppara.2022.108244.
  • Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology 94 (3):223–53. doi: 10.1016/j.ijfoodmicro.2004.03.022.
  • Cao, T. L, and K. B. Song. 2019. Active gum karaya/Cloisite Na+ nanocomposite films containing cinnamaldehyde. Food Hydrocolloids 89:453–60. doi: 10.1016/j.foodhyd.2018.11.004.
  • Cao, T. L, and K. B. Song. 2020. Development of bioactive Bombacaceae gum films containing cinnamon leaf essential oil and their application in packaging of fresh salmon fillets. LWT - Food Science and Technology 131:109647. doi: 10.1016/j.lwt.2020.109647.
  • Carina, D., S. Sharma, A. K. Jaiswal, and S. Jaiswal. 2021. Seaweeds polysaccharides in active food packaging: a review of recent progress. Trends in Food Science & Technology 110:559–72. doi: 10.1016/j.tifs.2021.02.022.
  • Chang, X., Y. Hou, Q. Liu, Z. Hu, Q. Xie, Y. Shan, G. Li, and S. Ding. 2021. Physicochemical and antimicrobial properties of chitosan composite films incorporated with glycerol monolaurate and nano-TiO2. Food Hydrocolloids 119:106846. doi: 10.1016/j.foodhyd.2021.106846.
  • Chen, C., L. Zong, J. Wang, and J. Xie. 2021a. Microfibrillated cellulose reinforced starch/polyvinyl alcohol antimicrobial active films with controlled release behavior of cinnamaldehyde. Carbohydrate Polymers 272:118448. doi: 10.1016/j.carbpol.2021.118448.
  • Chen, K., M. Zhang, A. S. Mujumdar, and H. Wang. 2021b. Quinoa protein-gum Arabic complex coacervates as a novel carrier for eugenol: preparation, characterization and application for minced pork preservation. Food Hydrocolloids 120:106915. doi: 10.1016/j.foodhyd.2021.106915.
  • Cheng, S. S., J. Y. Liu, E. H. Chang, and S. T. Chang. 2008. Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. Bioresource Technology 99 (11):5145–9. doi: 10.1016/j.biortech.2007.09.013.
  • Chu, Y., C. Gao, X. Liu, N. Zhang, T. Xu, X. Feng, Y. Yang, X. Shen, and X. Tang. 2020. Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. LWT - Food Science and Technology 122:109054. doi: 10.1016/j.lwt.2020.109054.
  • Cionti, C., T. Taroni, V. Sabatini, and D. Meroni. 2021. Nanostructured oxide-based systems for the pH-triggered release of cinnamaldehyde. Materials 14 (6):1536. doi: 10.3390/ma14061536.
  • Cocchiara, J., C. S. Letizia, J. Lalko, A. Lapczynski, and A. M. Api. 2005. Fragrance material review on cinnamaldehyde. Food and Chemical Toxicology 43 (6):867–923. doi: 10.1016/j.fct.2004.09.014.
  • Cui, C., N. Ji, Y. Wang, L. Xiong, and Q. Sun. 2021a. Bioactive and intelligent starch-based films: a review. Trends in Food Science & Technology 116:854–69. doi: 10.1016/j.tifs.2021.08.024.
  • Cui, R., K. Jiang, M. Yuan, J. Cao, L. Li, Z. Tang, and Y. Qin. 2020. Antimicrobial film based on polylactic acid and carbon nanotube for controlled cinnamaldehyde release. Journal of Materials Research and Technology 9 (5):10130–8. doi: 10.1016/j.jmrt.2020.07.016.
  • Cui, R., B. Zhu, J. Yan, Y. Qin, M. Yuan, G. Cheng, and M. Yuan. 2021b. Development of a sodium alginate-based active package with controlled release of cinnamaldehyde loaded on halloysite nanotubes. Foods 10 (6):1150. doi: 10.3390/foods10061150.
  • Du, W. X., R. J. Avena-Bustillos, R. Woods, A. P. Breksa, T. H. McHugh, M. Friedman, C. E. Levin, and R. Mandrell. 2012. Sensory evaluation of baked chicken wrapped with antimicrobial apple and tomato edible films formulated with cinnamaldehyde and carvacrol. Journal of Agricultural and Food Chemistry 60 (32):7799–804. doi: 10.1021/jf301281a.
  • Escamilla-García, M., G. Calderón-Domínguez, J. J. Chanona-Pérez, A. G. Mendoza-Madrigal, P. D. Pierro, B. E. García-Almendárez, A. Amaro-Reyes, and C. Regalado-González. 2017. Physical, structural, barrier, and antifungal characterization of chitosan–zein edible films with added essential oils. International Journal of Molecular Sciences 18 (11):2370. doi: 10.3390/ijms18112370.
  • Fasihi, H., N. Noshirvani, M. Hashemi, M. Fazilati, H. Salavati, and V. Coma. 2019. Antioxidant and antimicrobial properties of carbohydrate-based films enriched with cinnamon essential oil by Pickering emulsion method. Food Packaging and Shelf Life 19:147–54. doi:10.1016/j.fpsl.2018.12.007.
  • Friedman, M. 2017. Chemistry, antimicrobial mechanisms, and antibiotic activities of cinnamaldehyde against pathogenic bacteria in animal feeds and human foods. Journal of Agricultural and Food Chemistry 65 (48):10406–23. doi: 10.1021/acs.jafc.7b04344.
  • Gao, H, and H. Yang. 2017. Characteristics of poly(vinyl alcohol) films crosslinked by cinnamaldehyde with improved transparency and water resistance. Journal of Applied Polymer Science 134 (38):45324. doi: 10.1002/app.45324.
  • Gao, Y., C. Kan, C. Wan, C. Chen, M. Chen, and J. Chen. 2018. Quality and biochemical changes of navel orange fruits during storage as affected by cinnamaldehyde -chitosan coating. Scientia Horticulturae 239:80–6. doi: 10.1016/j.scienta.2018.05.012.
  • Ghani, S., H. Barzegar, M. Noshad, and M. Hojjati. 2018. The preparation, characterization and in vitro application evaluation of soluble soybean polysaccharide films incorporated with cinnamon essential oil nanoemulsions. International Journal of Biological Macromolecules 112:197–202. doi: 10.1016/j.ijbiomac.2018.01.145.
  • Guo, X., B. Chen, X. Wu, J. Li, and Q. Sun. 2020. Utilization of cinnamaldehyde and zinc oxide nanoparticles in a carboxymethylcellulose-based composite coating to improve the postharvest quality of cherry tomatoes. International Journal of Biological Macromolecules 160:175–82. doi: 10.1016/j.ijbiomac.2020.05.201.
  • Han, Y., J. Ding, J. Zhang, Q. Li, H. Yang, T. Sun, and H. Li. 2021. Fabrication and characterization of polylactic acid coaxial antibacterial nanofibers embedded with cinnamaldehyde/tea polyphenol with food packaging potential. International Journal of Biological Macromolecules 184:739–49. doi:10.1016/j.ijbiomac.2021.06.143. 34174310
  • Hosseini, S. F., J. Ghaderi, and M. C. Gómez-Guillén. 2022. Tailoring physico-mechanical and antimicrobial/antioxidant properties of biopolymeric films by cinnamaldehyde-loaded chitosan nanoparticles and their application in packaging of fresh rainbow trout fillets. Food Hydrocolloids 124:107249. doi: 10.1016/j.foodhyd.2021.107249.
  • Huang, J., Z. Hu, L. Hu, G. Li, Q. Yao, and Y. Hu. 2021. Pectin-based active packaging: a critical review on preparation, physical properties and novel application in food preservation. Trends in Food Science & Technology 118:167–78. doi: 10.1016/j.tifs.2021.09.026.
  • Istúriz-Zapata, M. A., M. Hernández-López, Z. N. Correa-Pacheco, and L. L. Barrera-Necha. 2020. Quality of cold-stored cucumber as affected by nanostructured coatings of chitosan with cinnamon essential oil and cinnamaldehyde. LWT - Food Science and Technology 123:109089. doi: 10.1016/j.lwt.2020.109089.
  • Kardam, S. K., A. A. Kadam, and D. Dutt. 2021. Retention of cinnamaldehyde in poly(vinyl alcohol) films intended for preservation of faba beans through vapor-phase antimicrobial effect. Food Packaging and Shelf Life 29:100704. doi: 10.1016/j.fpsl.2021.100704.
  • Ke, J., L. Xiao, G. Yu, H. Wu, G. Shen, and Z. Zhang. 2019. The study of diffusion kinetics of cinnamaldehyde from corn starch-based film into food simulant and physical properties of antibacterial polymer film. International Journal of Biological Macromolecules 125:642–50. doi: 10.1016/j.ijbiomac.2018.12.094.
  • Khan, A., R. A. Khan, S. Salmieri, C. L. Tien, B. Riedl, J. Bouchard, G. Chauve, V. Tan, M. R. Kamal, and M. Lacroix. 2012. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers 90 (4):1601–8. doi: 10.1016/j.carbpol.2012.07.037.
  • Kim, H., S.-E. Beak, and K. B. Song. 2018. Development of a hagfish skin gelatin film containing cinnamon bark essential oil. LWT - Food Science and Technology 96:583–8. doi: 10.1016/j.lwt.2018.06.016.
  • Kumar, S., A. Mukherjee, and J. Dutta. 2020. Chitosan based nanocomposite films and coatings: emerging antimicrobial food packaging alternatives. Trends in Food Science & Technology 97:196–209. doi: 10.1016/j.tifs.2020.01.002.
  • Lee, Y, and K. T. Hwang. 2017. Changes in physicochemical properties of mulberry fruits (Morus alba L.) during ripening. Scientia Horticulturae 217:189–96. doi: 10.1016/j.scienta.2017.01.042.
  • Li, J., Q. Sun, Y. Sun, B. Chen, X. Wu, and T. Le. 2019. Improvement of banana postharvest quality using a novel soybean protein isolate/cinnamaldehyde/zinc oxide bionanocomposite coating strategy. Scientia Horticulturae 258:108786. doi: 10.1016/j.scienta.2019.108786.
  • Li, Q., T. Ren, and P. Perkins. 2022. The development and application of nanocomposites with pH-sensitive “gates” to control the release of active agents: extending the shelf-life of fresh wheat noodles. Food Control 132:108563. doi: 10.1016/j.foodcont.2021.108563.
  • Liu, J., F. Song, R. Chen, G. Deng, Y. Chao, Z. Yang, H. Wu, M. Bai, P. Zhang, and Y. Hu. 2022. Effect of cellulose nanocrystal-stabilized cinnamon essential oil Pickering emulsions on structure and properties of chitosan composite films. Carbohydrate Polymers 275:118704. doi: 10.1016/j.carbpol.2021.118704.
  • Loke, X.-J., C.-K. Chang, C.-Y. Hou, K.-C. Cheng, and C.-W. Hsieh. 2021. Plasma-treated polyethylene coated with polysaccharide and protein containing cinnamaldehyde for active packaging films and applications on tilapia (Orechromis niloticus) fillet preservation. Food Control 125:108016. doi: 10.1016/j.foodcont.2021.108016.
  • Louis, E., R. Villalobos-Carvajal, J. Reyes-Parra, E. Jara-Quijada, C. Ruiz, P. Andrades, J. Gacitúa, and T. Beldarraín-Iznaga. 2021. Preservation of mushrooms (Agaricus bisporus) by an alginate-based-coating containing a cinnamaldehyde essential oil nanoemulsion. Food Packaging and Shelf Life 28:100662. doi: 10.1016/j.fpsl.2021.100662.
  • Ma, Y., L. Li, and Y. Wang. 2017. Development of antimicrobial active film containing CINnamaldehyde and its application to snakehead (Ophiocephalus argus) fish. Journal of Food Process Engineering 40 (5):e12554. doi: 10.1111/jfpe.12554.
  • Majeti, V. A, and R. R. Suskind. 1977. Mechanism of cinnamaldehyde sensitization. Contact Dermatitis 3 (1):16–8. doi: 10.1111/j.1600-0536.1977.tb03581.x.
  • Mir, S. A., B. N. Dar, A. A. Wani, and M. A. Shah. 2018. Effect of plant extracts on the techno-functional properties of biodegradable packaging films. Trends in Food Science & Technology 80:141–54. doi: 10.1016/j.tifs.2018.08.004.
  • Montero, Y., A. G. Souza, É. R. Oliveira, and D. d S. Rosa. 2021. Nanocellulose functionalized with cinnamon essential oil: a potential application in active biodegradable packaging for strawberry. Sustainable Materials and Technologies 29:e00289. doi: 10.1016/j.susmat.2021.e00289.
  • Muhoza, B., B. Qi, J. D. Harindintwali, M. Y. F. Koko, S. Zhang, and Y. Li. 2021. Encapsulation of cinnamaldehyde: an insight on delivery systems and food applications. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2021.1977236.
  • Nasiri, M., M. Barzegar, M. A. Sahari, and M. Niakousari. 2017. Tragacanth gum containing Zataria multiflora Boiss. essential oil as a natural preservative for storage of button mushrooms (Agaricus bisporus). Food Hydrocolloids 72:202–9. doi: 10.1016/j.foodhyd.2017.05.045.
  • Nasiri, M., M. Barzegar, M. A. Sahari, and M. Niakousari. 2018. Application of Tragacanth gum impregnated with Satureja khuzistanica essential oil as a natural coating for enhancement of postharvest quality and shelf life of button mushroom (Agaricus bisporus). International Journal of Biological Macromolecules 106:218–26. doi: 10.1016/j.ijbiomac.2017.08.003.
  • Nath, S. C., A. K. Hazarika, and A. Baruah. 1996. Cinnamaldehyde, the major component of leaf, stembark and rootbark oil of Cinnamomum pauciflorum nees. Journal of Essential Oil Research 8 (4):421–2. doi: 10.1080/10412905.1996.9700654.
  • Noshirvani, N., B. Ghanbarzadeh, C. Gardrat, M. R. Rezaei, M. Hashemi, C. L. Coz, and V. Coma. 2017. Cinnamon and ginger essential oils to improve antifungal, physical and mechanical properties of chitosan-carboxymethyl cellulose films. Food Hydrocolloids 70:36–45. doi: 10.1016/j.foodhyd.2017.03.015.
  • Otoni, C. G., R. J. Avena-Bustillos, C. W. Olsen, C. Bilbao-Sáinz, and T. H. McHugh. 2016. Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions. Food Hydrocolloids 57:72–9. doi: 10.1016/j.foodhyd.2016.01.012.
  • Otoni, C. G., M. R. d Moura, F. A. Aouada, G. P. Camilloto, R. S. Cruz, M. V. Lorevice, N. D F. F. Soares, and L. H. C. Mattoso. 2014. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids 41:188–94. doi: 10.1016/j.foodhyd.2014.04.013.
  • Ou, Y., M. Yan, G. Gao, W. Wang, Q. Lu, and J. Chen. 2022. Cinnamaldehyde protects against ligature-induced periodontitis through the inhibition of microbial accumulation and inflammatory responses of host immune cells. Food & Function. doi: 10.1039/D2FO00963C. Advance Article.
  • Pang, D., Z. Huang, Q. Li, E. Wang, S. Liao, E. Li, Y. Zou, and W. Wang. 2021. Antibacterial mechanism of cinnamaldehyde: modulation of biosynthesis of phosphatidylethanolamine and phosphatidylglycerol in Staphylococcus aureus and Escherichia coli. Journal of Agricultural and Food Chemistry 69 (45):13628–36. doi: 10.1021/acs.jafc.1c04977.
  • Peng, Y, and Y. Li. 2014. Combined effects of two kinds of essential oils on physical, mechanical and structural properties of chitosan films. Food Hydrocolloids 36:287–93. doi: 10.1016/j.foodhyd.2013.10.013.
  • Pérez-Córdoba, L. J., I. T. Norton, H. K. Batchelor, K. Gkatzionis, F. Spyropoulos, and P. J. A. Sobral. 2018. Physico-chemical, antimicrobial and antioxidant properties of gelatin-chitosan based films loaded with nanoemulsions encapsulating active compounds. Food Hydrocolloids 79:544–59. doi: 10.1016/j.foodhyd.2017.12.012.
  • Pérez, C. L. J, and P. J. A. Sobral. 2017. Physical and antioxidant properties of films based on gelatin, gelatin-chitosan or gelatin-sodium caseinate blends loaded with nanoemulsified active compounds. Journal of Food Engineering 213:47–53. doi: 10.1016/j.jfoodeng.2017.05.023.
  • Qin, Y., Y. Liu, L. Yuan, H. Yong, and J. Liu. 2019. Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids 96:102–11. doi: 10.1016/j.foodhyd.2019.05.017.
  • Razavi, M. S., A. Golmohammadi, A. Nematollahzadeh, C. Rovera, and S. Farris. 2022. Cinnamon essential oil encapsulated into a fish gelatin-bacterial cellulose nanocrystals complex and active films thereof. Food Biophysics 17:38–46. doi: 10.1007/s11483-021-09696-6.
  • Ribeiro-Santos, R., M. Andrade, D. Madella, A. P. Martinazzo, L. de Aquino Garcia Moura, N. R. de Melo, and A. Sanches-Silva. 2017. Revisiting an ancient spice with medicinal purposes: cinnamon. Trends in Food Science & Technology 62:154–69. doi: 10.1016/j.tifs.2017.02.011.
  • Roy, S, and J.-W. Rhim. 2021. Fabrication of chitosan-based functional nanocomposite films: effect of quercetin-loaded chitosan nanoparticles. Food Hydrocolloids 121:107065. doi: 10.1016/j.foodhyd.2021.107065.
  • Shao, P., Y. Liu, C. Ritzoulis, and B. Niu. 2019. Preparation of zein nanofibers with cinnamaldehyde encapsulated in surfactants at critical micelle concentration for active food packaging. Food Packaging and Shelf Life 22:100385. doi: 10.1016/j.fpsl.2019.100385.
  • Shao, P., Z. Yan, H. Chen, and J. Xiao. 2018. Electrospun poly(vinyl alcohol)/permutite fibrous film loaded with cinnamaldehyde for active food packaging. Journal of Applied Polymer Science 135 (16):46117. doi: 10.1002/app.46117.
  • Simionato, I., F. C. Domingues, C. Nerin, and F. Silva. 2019. Encapsulation of cinnamon oil in cyclodextrin nanosponges and their potential use for antimicrobial food packaging. Food and Chemical Toxicology 132:110647. doi: 10.1016/j.fct.2019.110647.
  • Sun, J., Y. Du, J. Ma, Y. Li, L. Wang, Y. Lu, J. Zou, J. Pang, and C. Wu. 2019. Transparent bionanocomposite films based on konjac glucomannan, chitosan, and TEMPO-oxidized chitin nanocrystals with enhanced mechanical and barrier properties. International Journal of Biological Macromolecules 138:866–73. doi: 10.1016/j.ijbiomac.2019.07.170.
  • Sun, J., H. Jiang, M. Li, Y. Lu, Y. Du, C. Tong, J. Pang, and C. Wu. 2020a. Preparation and characterization of multifunctional konjac glucomannan/carboxymethyl chitosan biocomposite films incorporated with epigallocatechin gallate. Food Hydrocolloids 105:105756. doi: 10.1016/j.foodhyd.2020.105756.
  • Sun, J., H. Jiang, H. Wu, C. Tong, J. Pang, and C. Wu. 2020b. Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging. Food Hydrocolloids 107:105942. doi: 10.1016/j.foodhyd.2020.105942.
  • Sun, X., R. G. Cameron, and J. Bai. 2019. Microencapsulation and antimicrobial activity of carvacrol in a pectin-alginate matrix. Food Hydrocolloids 92:69–73. doi: 10.1016/j.foodhyd.2019.01.006.
  • Sun, Y., M. Zhang, B. Bhandari, and B. Bai. 2021. Nanoemulsion-based edible coatings loaded with fennel essential oil/cinnamaldehyde: characterization, antimicrobial property and advantages in pork meat patties application. Food Control 127:108151. doi: 10.1016/j.foodcont.2021.108151.
  • Sung, S.-Y., L. T. Sin, T.-T. Tee, S.-T. Bee, A. R. Rahmat, W. A. W. A. Rahman, A.-C. Tan, and M. Vikhraman. 2013. Antimicrobial agents for food packaging applications. Trends in Food Science & Technology 33 (2):110–23. doi: 10.1016/j.tifs.2013.08.001.
  • Tkaczewska, J. 2020. Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings - a review. Trends in Food Science & Technology 106:298–311. doi: 10.1016/j.tifs.2020.10.022.
  • Trajkovska, P. A., D. Daniloski, N. M. D’Cunha, N. Naumovski, and A. T. Broach. 2021. Edible packaging: sustainable solutions and novel trends in food packaging. Food Research International 140:109981. doi: 10.1016/j.foodres.2020.109981.
  • Vahedikia, N., F. Garavand, B. Tajeddin, I. Cacciotti, S. M. Jafari, T. Omidi, and Z. Zahedi. 2019. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: physical, mechanical, structural and antimicrobial attributes. Colloids and Surfaces. B, Biointerfaces 177:25–32. doi: 10.1016/j.colsurfb.2019.01.045.
  • Vallion, R., K. Hardonnière, A. Bouredji, M. H. Damiens, C. Deloménie, M. Pallardy, P. J. Ferret, and S. Kerdine-Römer. 2022. The inflammatory response in human keratinocytes exposed to cinnamaldehyde is regulated by Nrf2. Antioxidants 11 (3):575. doi: 10.3390/antiox11030575.
  • Wang, Q., C. Li, Y. Tian, Y. Zhu, and Z. Jin. 2012. Study on the capability of cinnamaldehyde polylactic acid film. Science & Technology of Food Industry 33 (5):296–8. doi: 10.13386/j.issn1002-0306.2012.05.044.
  • Wen, P., D.-H. Zhu, H. Wu, M.-H. Zong, Y.-R. Jing, and S.-Y. Han. 2016. Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 59:366–76. doi:10.1016/j.foodcont.2015.06.005.
  • Wen, Y., J. Liu, L. Jiang, Z. Zhu, S. He, S. He, and W. Shao. 2021. Development of intelligent/active food packaging film based on TEMPO-oxidized bacterial cellulose containing thymol and anthocyanin-rich purple potato extract for shelf life extension of shrimp. Food Packaging and Shelf Life 29:100709. doi: 10.1016/j.fpsl.2021.100709.
  • Wu, C., Y. Li, J. Sun, Y. Lu, C. Tong, L. Wang, Z. Yan, and J. Pang. 2020. Novel konjac glucomannan films with oxidized chitin nanocrystals immobilized red cabbage anthocyanins for intelligent food packaging. Food Hydrocolloids 98:105245. doi: 10.1016/j.foodhyd.2019.105245.
  • Wu, C., J. Sun, P. Zheng, X. Kang, M. Chen, Y. Li, Y. Ge, Y. Hu, and J. Pang. 2019. Preparation of an intelligent film based on chitosan/oxidized chitin nanocrystals incorporating black rice bran anthocyanins for seafood spoilage monitoring. Carbohydrate Polymers 222:115006. doi: 10.1016/j.carbpol.2019.115006.
  • Xiao, J., C. Gu, D. Zhu, Y. Huang, Y. Luo, and Q. Zhou. 2021. Development and characterization of an edible chitosan/zein-cinnamaldehyde nano-cellulose composite film and its effects on mango quality during storage. LWT - Food Science and Technology 140:110809. doi: 10.1016/j.lwt.2020.110809.
  • Yan, Z., S. Wu, Y. Zhou, and F. Li. 2022. Acid-responsive micelles releasing cinnamaldehyde enhance RSL3-induced ferroptosis in tumor cells. ACS Biomaterials Science & Engineering 8 (6):2508–17. doi: 10.1021/acsbiomaterials.2c00236.
  • Yang, Y., S. Zheng, Q. Liu, B. Kong, and H. Wang. 2020. Fabrication and characterization of cinnamaldehyde loaded polysaccharide composite nanofiber film as potential antimicrobial packaging material. Food Packaging and Shelf Life 26:100600. doi: 10.1016/j.fpsl.2020.100600.
  • Yin, C., C. Huang, J. Wang, Y. Liu, P. Lu, and L. Huang. 2019. Effect of Chitosan- and Alginate-Based Coatings Enriched with Cinnamon Essential Oil Microcapsules to Improve the Postharvest Quality of Mangoes. Materials 12 (13):2039 doi:10.3390/ma12132039.
  • Zhang, L., D. Yu, J. M. Regenstein, W. Xia, and J. Dong. 2021a. A comprehensive review on natural bioactive films with controlled release characteristics and their applications in foods and pharmaceuticals. Trends in Food Science & Technology 112:690–707. doi: 10.1016/j.tifs.2021.03.053.
  • Zhang, W., H. Jiang, J. W. Rhim, J. Cao, and W. Jiang. 2021b. Tea polyphenols (TP): a promising natural additive for the manufacture of multifunctional active food packaging films. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2021.1946007. Advance Article.
  • Zhao, X., Y. Mu, H. Dong, H. Zhang, H. Zhang, Y. Chi, G. Song, H. Li, and L. Wang. 2021. Effect of cinnamaldehyde incorporation on the structural and physical properties, functional activity of soy protein isolate-egg white composite edible films. Journal of Food Processing and Preservation 45 (2):e15143. doi: 10.1111/jfpp.15143.
  • Zhou, Y., X. Wu, J. Chen, and J. He. 2021. Effects of cinnamon essential oil on the physical, mechanical, structural and thermal properties of cassava starch-based edible films. International Journal of Biological Macromolecules 184:574–83. doi: 10.1016/j.ijbiomac.2021.06.067.
  • Zhou, Z., Y. Liu, Z. Liu, L. Fan, T. Dong, Y. Jin, M. D. A. Saldaña, and W. Sun. 2020. Sustained-release antibacterial pads based on nonwovens polyethylene terephthalate modified by β-cyclodextrin embedded with cinnamaldehyde for cold fresh pork preservation. Food Packaging and Shelf Life 26:100554. doi: 10.1016/j.fpsl.2020.100554.
  • Zou, Y., C. Yuan, B. Cui, J. Wang, B. Yu, L. Guo, and D. Dong. 2021. Mechanical and antimicrobial properties of high amylose corn starch/konjac glucomannan composite film enhanced by cinnamaldehyde/β-cyclodextrin complex. Industrial Crops and Products 170:113781. doi: 10.1016/j.indcrop.2021.113781.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.