3,910
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Model systems for studying lipid oxidation associated with muscle foods: Methods, challenges, and prospects

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abraham, A., K. B. Bjugstad, G. G. Mafi, D. L. Vanoverbeke, C. Gifford, L. T. Rael, R. Bar-Or, and R. Ramanathan. 2016. Correlating myoglobin and lipid oxidation with reduction potential in a sarcoplasm-liposome system. Meat Science 112:172. doi: 10.1016/j.meatsci.2015.08.161.
  • Ahmmed, M. K., F. Ahmmed, I. Stewart, A. Carne, H. S. Tian, and A. E. A. Bekhit. 2021. Omega-3 phospholipids in pacific blue mackerel (Scomber australasicus) processing by-products. Food Chemistry 353:129451. doi: 10.1016/j.foodchem.2021.129451.
  • Ahn, D. U., and S. M. Kim. 1998. Prooxidant effects of ferrous iron, hemoglobin, and ferritin in oil emulsion and cooked-meat homogenates are different from those in raw-meat homogenates. Poultry Science 77 (2):348–55. doi: 10.1093/ps/77.2.348.
  • Akbarzadeh, A., R. Rezaei-Sadabady, S. Davaran, S. W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi, and K. Nejati-Koshki. 2013. Liposome: Classification, preparation, and applications. Nanoscale Research Letters 8 (1):102. doi: 10.1186/1556-276X-8-102.
  • Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. 2002. Molecular biology of the cell. In Molecular biology of the cell. New York: Garland Science.
  • Alvarado, C. Z., M. P. Richards, S. F. O’Keefe, and H. Wang. 2007. The effect of blood removal on oxidation and shelf life of broiler breast meat. Poultry Science 86 (1):156–61. doi: 10.1093/ps/86.1.156.
  • Amaral, A. B., M. V. Da Silva, and S. C. D. Lannes. 2018. Lipid oxidation in meat: Mechanisms and protective factors – a review. Food Science and Technology 38 (suppl 1):1–15. doi: 10.1590/fst.32518.
  • Aranda, R., H. Cai, C. E. Worley, E. J. Levin, R. Li, J. S. Olson, G. N. Phillips, and M. P. Richards. 2009. Structural analysis of fish versus mammalian hemoglobins: Effect of the heme pocket environment on autooxidation and hemin loss. Proteins: Structure, Function, and Bioinformatics 75 (1):217–30. doi: 10.1002/prot.22236.
  • Bak, K. H., S. A. Rankin, and M. P. Richards. 2020. Hexanal as a marker of oxidation flavour in sliced and uncured deli turkey with and without phosphates using rosemary extracts. International Journal of Food Science & Technology 55 (9):3104–10. doi: 10.1111/ijfs.14574.
  • Ballester-Costa, C., E. Sendra, J. Fernandez-Lopez, J. A. Perez-Alvarez, and M. Viuda-Martos. 2017. Assessment of antioxidant and antibacterial properties on meat homogenates of essential oils obtained from four thymus species achieved from organic growth. Foods 6 (8):59. doi: 10.3390/foods6080059.
  • Baron, C. P., L. H. Skibsted, and H. J. Andersen. 2000. Peroxidation of linoleate at physiological ph: Hemichrome formation by substrate binding protects against metmyoglobin activation by hydrogen peroxide. Free Radical Biology & Medicine 28 (4):549–58. doi: Doi doi: 10.1016/S0891-5849(99)00240-3.
  • Barriuso, B., I. Astiasaran, and D. Ansorena. 2013. A review of analytical methods measuring lipid oxidation status in foods: A challenging task. European Food Research and Technology 236 (1):1–15. doi: 10.1007/s00217-012-1866-9.
  • Bekhit, A. E. A., D. L. Hopkins, F. T. Fahri, and E. N. Ponnampalam. 2013. Oxidative processes in muscle systems and fresh meat: Sources, markers, and remedies. Comprehensive Reviews in Food Science and Food Safety 12 (5):565–97. doi: 10.1111/1541-4337.12027.
  • Bielski, B. H., D. E. Cabelli, R. L. Arudi, and A. B. Ross. 1985. Reactivity of ho2/o − 2 radicals in aqueous solution. Journal of Physical and Chemical Reference Data 14 (4):1041–100. doi: 10.1063/1.555739.
  • Bieri, J. G, and A. A. Anderson. 1960. Peroxidation of lipids in tissue homogenates as related to vitamin-e. Archives of Biochemistry and Biophysics 90 (1):105–10. doi: 10.1016/0003-9861(60)90619-6.
  • Boveris, A. D., A. Galatro, and S. Puntarulo. 2000. Effect of nitric oxide and plant antioxidants on microsomal content of lipid radicals. Biological Research 33 (2):159–65. doi: 10.4067/s0716-97602000000200016.
  • Burri, S. C. M., A. Ekholm, U. Bleive, T. Pussa, M. Jensen, J. Hellstrom, S. Makinen, R. Korpinen, P. H. Mattila, V. Radenkovs, et al. 2020. Lipid oxidation inhibition capacity of plant extracts and powders in a processed meat model system. Meat Science 162:108033. doi: 10.1016/j.meatsci.2019.108033.
  • Cai, H., E. W. Grunwald, S. Y. Park, B. F. Lei, and M. P. Richards. 2013. Lipid oxidation in trout muscle is strongly inhibited by a protein that specifically binds hemin released from hemoglobin. Journal of Agricultural and Food Chemistry 61 (17):4180–7. doi: 10.1021/jf4006142.
  • Carvajal, A. K., T. Rustad, R. Mozuraityte, and I. Storro. 2009. Kinetic studies of lipid oxidation induced by hemoglobin measured by consumption of dissolved oxygen in a liposome model system. Journal of Agricultural and Food Chemistry 57 (17):7826–33. doi: 10.1021/jf9013394.
  • Chaijan, M, and W. Panpipat. 2017. Mechanism of oxidation in foods of animal origin. In Natural antioxidants, 21–58: Apple Academic Press.
  • Chan, W. K. M., C. Faustman, M. Yin, and E. A. Decker. 1997. Lipid oxidation induced by oxymyoglobin and metmyoglobin with involvement of H2O2 and superoxide anion. Meat Science 46 (2):181–90. doi: 10.1016/S0309-1740(97)00014-4.
  • Chen, X., J. Luo, A. Lou, Y. Wang, D. Yang, and Q. W. Shen. 2021. Duck breast muscle proteins, free fatty acids and volatile compounds as affected by curing methods. Food Chemistry 338:128138. doi: 10.1016/j.foodchem.2020.128138.
  • Chen, X., M. H. Wu, Q. Yang, and S. Y. Wang. 2017. Preparation, characterization of food grade phycobiliproteins from Porphyra haitanensis and the application in liposome-meat system. Lwt 77:468–74. doi: 10.1016/j.lwt.2016.12.005.
  • Chéret, R., N. Chapleau, C. Delbarre‐Ladrat, V. Verrez‐Bagnis, and M. D. Lamballerie. 2005. Effects of high pressure on texture and microstructure of sea bass (Dicentrarchus labrax L.) fillets. Journal of Food Science 70 (8):e477–e83. 8doi: 10.1111/j.1365-2621.2005.tb11518.x.
  • Chinnagounder Periyasamy, P., J. C. H. Leijten, P. J. Dijkstra, M. Karperien, and J. N. Post. 2012. Nanomaterials for the local and targeted delivery of osteoarthritis drugs. Journal of Nanomaterials 2012:1–13. doi: 10.1155/2012/673968.
  • Cimen, M. Y. 2008. Free radical metabolism in human erythrocytes. Clinica Chimica Acta; International Journal of Clinical Chemistry 390 (1–2):1–11. doi: 10.1016/j.cca.2007.12.025.
  • Cui, L, and E. A. Decker. 2016. Phospholipids in foods: Prooxidants or antioxidants? Journal of the Science of Food and Agriculture 96 (1):18–31. doi: 10.1002/jsfa.7320.
  • Cui, L., J. Fan, Y. Sun, Z. Zhu, and J. Yi. 2018. The prooxidant activity of salts on the lipid oxidation of lecithin-stabilized oil-in-water emulsions. Food Chemistry 252:28–32. doi: 10.1016/j.foodchem.2018.01.094.
  • Culbertson, S. M, and N. A. Porter. 2000. Unsymmetrical azo initiators increase efficiency of radical generation in aqueous dispersions, liposomal membranes, and lipoproteins. Journal of the American Chemical Society 122 (17):4032–8. doi: 10.1021/ja9934605.
  • Dacaranhe, C. D, and J. Terao. 2001. A unique antioxidant activity of phosphatidylserine on iron-induced lipid peroxidation of phospholipid bilayers. Lipids 36 (10):1105–10. doi: 10.1007/s11745-001-0820-7.
  • Davidovic-Plavsic, B., B. Kukavica, S. Skondric, C. Jimenez-Gallardo, and M. Zabic. 2021. Wild garlic extract reduces lipid peroxidation in terbuthylazine-treated human erythrocytes. Biomarkers 26 (7):617–24. doi: 10.1080/1354750X.2021.1953598.
  • Decker, E. A., C. H. Huang, J. E. Osinchak, and H. O. Hultin. 1989. Iron and copper: Role in enzymic lipid oxidation of fish sarcoplasmic reticulum at in situ concentrations. Journal of Food Biochemistry 13 (3):179–86. doi: 10.1111/j.1745-4514.1989.tb00392.x.
  • Decker, E. A, and H. O. Hultin. 1990. Factors influencing catalysis of lipid oxidation by the soluble fraction of mackerel muscle. Journal of Food Science 55 (4):947–50. doi: 10.1111/j.1365-2621.1990.tb01571.x.
  • Dick, A., B. Bhandari, and S. Prakash. 2019. 3d printing of meat. Meat Science 153:35–44. doi: 10.1016/j.meatsci.2019.03.005.
  • Dominguez, R., M. Pateiro, M. Gagaoua, F. J. Barba, W. Zhang, and J. M. Lorenzo. 2019. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 8 (10):429. doi: 10.3390/antiox8100429.
  • Echegaray, N., M. Pateiro, P. E. S. Munekata, J. M. Lorenzo, Z. Chabani, M. A. Farag, and R. Dominguez. 2021. Measurement of antioxidant capacity of meat and meat products: Methods and applications. Molecules 26 (13):3880. doi: 10.3390/molecules26133880.
  • Erickson, M. C. 2008. Lipid oxidation of muscle foods. In Food lipids: Chemistry, nutrition, and biotechnology, 321–64. Boca Raton, FL: CRC Press. doi: 10.1201/9781420046649.
  • Erickson, M. C, and H. O. Hultin. 1992. Influence of histidine on lipid-peroxidation in sarcoplasmic-reticulum. Archives of Biochemistry and Biophysics 292 (2):427–32. doi: 10.1016/0003-9861(92)90012-L.
  • Faustman, C., Q. Sun, R. Mancini, and S. P. Suman. 2010. Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Science 86 (1):86–94. doi: 10.1016/j.meatsci.2010.04.025.
  • Folkes, L. K., L. P. Candeias, and P. Wardman. 1995. Kinetics and mechanisms of hypochlorous acid reactions. Archives of Biochemistry and Biophysics 323 (1):120–6. doi: 10.1006/abbi.1995.0017.
  • Frenzel, M, and A. Steffen-Heins. 2015. Impact of quercetin and fish oil encapsulation on bilayer membrane and oxidation stability of liposomes. Food Chemistry 185:48–57. doi: 10.1016/j.foodchem.2015.03.121.
  • Gal, S., I. Pinchuk, and D. Lichtenberg. 2003. Peroxidation of liposomal palmitoyllinoleoylphosphatidylcholine (PLPC), effects of surface charge on the oxidizability and on the potency of antioxidants. Chemistry and Physics of Lipids 126 (1):95–110. doi: 10.1016/S0009-3084(03)00096-3.
  • Genot, C., M. Metro, A. Viau, G. Meynier, and G. Gandemer. 1992. How to prepared liposomes to study oxidation of muscle phospholipids? In 38th International Congress of Meat Science and Technology. Clermont Ferrand, France.
  • Ghirmai, S., L. Eriksson, H. Wu, M. Axelsson, and I. Undeland. 2020. Improving the stability of red blood cells in rainbow trout (Oncorhynchus mykiss) and herring (Clupea harengus): Potential solutions for post-mortem fish handling to minimize lipid oxidation. Food and Bioprocess Technology 13 (8):1344–55. doi: 10.1007/s11947-020-02472-3.
  • Greenberg, M. E., X. M. Li, B. G. Gugiu, X. Gu, J. Qin, R. G. Salomon, and S. L. Hazen. 2008. The lipid whisker model of the structure of oxidized cell membranes. The Journal of Biological Chemistry 283 (4):2385–96. doi: 10.1074/jbc.M707348200.
  • Grunwald, E. W, and M. P. Richards. 2012. Effects of hemopexin on hemin and hemoglobin-mediated lipid oxidation in washed fish muscle. LWT – Food Science and Technology 46 (2):412–8. doi: 10.1016/j.lwt.2011.12.007.
  • Gu, X., Y. Sun, K. Tu, and L. Pan. 2017. Evaluation of lipid oxidation of chinese-style sausage during processing and storage based on electronic nose. Meat Science 133:1–9. doi: 10.1016/j.meatsci.2017.05.017.
  • Guengerich, F. P. 1977. Separation and purification of multiple forms of microsomal cytochrome-p-450 – activities of different forms of cytochrome-p-450 towards several compounds of environmental interest. The Journal of Biological Chemistry 252 (11):3970–9. doi: 10.1016/S0021-9258(17)40345-0.
  • Guldiken, B., M. Gibis, D. Boyacioglu, E. Capanoglu, and J. Weiss. 2018. Physical and chemical stability of anthocyanin-rich black carrot extract-loaded liposomes during storage. Food Research International 108:491–7. doi: 10.1016/j.foodres.2018.03.071.
  • GÜner, S., Y. YaĞiz, Z. Topalcengİz, H. G. Kristinsson, G. Baker, P. Sarnoski, B. A. Welt, A. Simonne, and M. R. Marshall. 2020. Effect of ph on lipid oxidation of red onion skin extracts treated with washed tilapia (Oreochromis niloticus) muscle model systems. Turkish Journal of Chemistry 44 (6):1528–38. doi: 10.3906/kim-2004-47.
  • Hajimohammadi, M. 2020. Investigation of antioxidant activity of cumin (Cuminum cyminum L.) by means of UV-vis spectroscopy, proton nuclear magnetic resonance and iodometric method. Biomedical Journal of Scientific & Technical Research 27 (3):20713–9. doi: 10.26717/BJSTR.2020.27.004491.
  • Hajimohammadi, M, and M. Bagheri. 2017. Comparison of the antioxidant activity of Echium Amoenum Fisch and ca Mey, Chamaemelum nobile (L.) all and Camellia sinensis (L.) o. Kuntze on oleic acid photooxidation using water soluble porphyrin complexes as catalyst. Innovative Food Technologies 4, no 4:57–66. doi: 10.22104/JIFT.2017.483.
  • Hajimohammadi, M, and P. Nosrati. 2018. Scavenging effect of pasipay (Passiflora incarnate l.) on singlet oxygen generation and fatty acid photooxygenation. Food Science & Nutrition 6 (6):1670–5. doi: 10.1002/fsn3.731.
  • Halldorsdottir, S. M., H. G. Kristinsson, H. Sveinsdottir, G. Thorkelsson, and P. Y. Hamaguchi. 2013. The effect of natural antioxidants on haemoglobin-mediated lipid oxidation during enzymatic hydrolysis of cod protein. Food Chemistry 141 (2):914–9. doi: 10.1016/j.foodchem.2013.03.101.
  • Han, T. J, and J. Liston. 1989. Lipid-peroxidation protection factors in rainbow-trout (salmo-gairdnerii) muscle cytosol. Journal of Food Science 54 (4):809–13. doi: 10.1111/j.1365-2621.1989.tb07888.x.
  • Hauville, C., S. Remita, P. Therond, A. Rouscilles, M. Couturier, D. Jore, and M. Gardes-Albert. 1998. Determination of the yield of radiation-induced peroxidation of sodium linoleate in aqueous monomeric and micellar solutions. Radiation Research 150 (5):600–8. doi: 10.2307/3579878.
  • Heden, T. D., P. D. Neufer, and K. Funai. 2016. Looking beyond structure: Membrane phospholipids of skeletal muscle mitochondria. Trends in Endocrinology and Metabolism: TEM 27 (8):553–62. doi: 10.1016/j.tem.2016.05.007.
  • Hosoya, T., S. Matsukawa, and Y. Nagai. 1971. Localization of peroxidase and other microsomal enzymes in thyroid cells. Biochemistry 10 (16):3086–93. doi: 10.1021/bi00792a016.
  • Hu, M., E. A. Decker, and D. J. Mcclements. 2019. Emulsion technologies to produce oxidative stable emulsions containing n-3 fatty acids. In Healthful lipids, 547–557. New York, USA: AOCS Publishing.
  • Hua-Tao, L., L. Lei, Z. Rong-Mei, L. Lan, Y. Zhi, Z. Shan-Fu, J. Jun, L. Si-Miao, D. Ting-Ting, L. Qi, et al. 2019. The extracts of Angelica sinensis inhibit lipid oxidation in fish erythrocytes and improve growth, digestive, absorptive and antioxidant capacity in Juvenile jian carp (Cyprinus carpio var. Jian). Aquaculture Nutrition 25 (1):119–33. doi: 10.1111/anu.12836.
  • Huang, C. H, and H. O. Hultin. 1992. Soluble and bound iron equally effect lipid oxidation of sarcoplasmic-reticulum. Journal of Food Biochemistry 16 (1):1–13. doi: 10.1111/j.1745-4514.1992.tb00429.x.
  • Hui, Y. H. 2006. Handbook of food science, technology, and engineering. Vol. 149. New York, USA: CRC Press.
  • Ikeda, H., Y. Kimura, M. Masaki, and H. Iwahashi. 2011. Caffeic acid inhibits the formation of 1-hydroxyethyl radical in the reaction mixture of rat liver microsomes with ethanol partly through its metal chelating activity. Journal of Clinical Biochemistry and Nutrition 48 (3):187–93. doi: 10.3164/jcbn.10-45.
  • Inchingolo, R., I. Bayram, S. Uluata, S. S. Kiralan, M. T. Rodriguez-Estrada, D. J. Mcclements, and E. A. Decker. 2021. Ability of sodium dodecyl sulfate (sds) micelles to increase the antioxidant activity of alpha-tocopherol. Journal of Agricultural and Food Chemistry 69 (20):5702–8. doi: 10.1021/acs.jafc.1c01199.
  • Jakobsson, P. J., J. A. Mancini, D. Riendeau, and A. W. Ford-Hutchinson. 1997. Identification and characterization of a novel microsomal enzyme with glutathione-dependent transferase and peroxidase activities. The Journal of Biological Chemistry 272 (36):22934–9. doi: 10.1074/jbc.272.36.22934.
  • Jensen, C., E. Birk, A. Jokumsen, L. H. Skibsted, and G. Bertelsen. 1998. Effect of dietary levels of fat, alpha-tocopherol and astaxanthin on colour and lipid oxidation during storage of frozen rainbow trout (oncorhynchus mykiss) and during chill storage of smoked trout. Zeitschrift für Lebensmitteluntersuchung und -Forschung A 207 (3):189–96. doi: 10.1007/s002170050317.
  • Jeronimo, E., D. Soldado, S. Sengo, A. Francisco, F. Fernandes, A. P. V. Portugal, S. P. Alves, J. Santos-Silva, and R. J. B. Bessa. 2020. Increasing the alpha-tocopherol content and lipid oxidative stability of meat through dietary Cistus ladanifer L. In lamb fed increasing levels of polyunsaturated fatty acid rich vegetable oils. Meat Science 164:108092. doi: 10.1016/j.meatsci.2020.108092.
  • Jha, R, and S. I. Rizvi. 2009. Age-dependent decline in erythrocyte acetylcholinesterase activity: Correlation with oxidative stress. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 153 (3):195–8. doi: 10.5507/bp.2009.032.
  • Jiang, J, and Y. L. Xiong. 2015. Role of interfacial protein membrane in oxidative stability of vegetable oil substitution emulsions applicable to nutritionally modified sausage. Meat Science 109:56–65. doi: 10.1016/j.meatsci.2015.05.011.
  • Jin, G. F., L. C. He, J. H. Zhang, X. Yu, J. M. Wang, and F. Huang. 2012. Effects of temperature and nacl percentage on lipid oxidation in pork muscle and exploration of the controlling method using response surface methodology (RSM). Food Chemistry 131 (3):817–25. doi: 10.1016/j.foodchem.2011.09.050.
  • Johnson, D. R., R. Inchingolo, and E. A. Decker. 2018. The ability of oxygen scavenging packaging to inhibit vitamin degradation and lipid oxidation in fish oil-in-water emulsions. Innovative Food Science & Emerging Technologies 47:467–75. doi: 10.1016/j.ifset.2018.04.021.
  • Junqueira, H., A. P. Schroder, F. Thalmann, A. Klymchenko, Y. Mely, M. S. Baptista, and C. M. Marques. 2021. Molecular organization in hydroperoxidized popc bilayers. Biochimica et Biophysica Acta. Biomembranes 1863 (10):183659. doi: 10.1016/j.bbamem.2021.183659.
  • Kaczmarek, A. M, and M. Muzolf-Panek. 2022. Predictive modelling of tbars changes in the intramuscular lipid fraction of raw ground pork enriched with plant extracts. Journal of Food Science and Technology 59 (5):1756–68. doi: 10.1007/s13197-021-05187-1.
  • Karabulut, I., Z. D. Balkanci, B. Pehlivanoglu, A. Erdem, and E. Fadillioglu. 2009. Effect of toluene on erythrocyte membrane stability under in vivo and in vitro conditions with assessment of oxidant/antioxidant status. Toxicology and Industrial Health 25 (8):545–50. doi: 10.1177/0748233709346758.
  • Karayannakidis, P. D., A. Zotos, D. Petridis, and K. D. A. Taylor. 2008. The effect of washing, microbial transglutaminase, salts and starch addition on the functional properties of sardine (Sardina pilchardus) kamaboko gels. Food Science and Technology International 14 (2):167–77. doi: 10.1177/1082013208092816.
  • Kathirvel, P, and M. P. Richards. 2012. Effect of a membrane permeable metal chelator on iron and hemoglobin-mediated lipid oxidation in washed fish muscle. Food Research International 48 (2):346–52. doi: 10.1016/j.foodres.2012.04.016.
  • Kaurinovic, B, and M. Popovic. 2012. Liposomes as a tool to study lipid peroxidation. In Lipid peroxidation, ed. A. Catala. London: IntechOpen. doi: 10.5772/46020.
  • Khan, M. M, and A. E. Martell. 1967. Metal ion and metal chelate catalyzed oxidation of ascorbic acid by molecular oxygen. Ii. Cupric and ferric chelate catalyzed oxidation. Journal of the American Chemical Society 89 (26):7104–11. doi: 10.1021/ja01002a046.
  • Khoshnoudi‐Nia, S, and M. Moosavi‐Nasab. 2019. Comparison of various chemometric analysis for rapid prediction of thiobarbituric acid reactive substances in rainbow trout fillets by hyperspectral imaging technique. Food Science & Nutrition 7 (5):1875–83. doi: 10.1002/fsn3.1043.
  • Kleszczyfiska, H., D. Bonarska, M. Oswiecimska, and J. Sarapuk. 2003. Hemolysis and antioxidative protection of erythrocytes by functionalized quaternary ammonium salts. Polish Journal of Environmental Studies 12 (1):63–66.
  • Kunyaboon, S., K. Thumanu, J. W. Park, C. Khongla, and J. Yongsawatdigul. 2021. Evaluation of lipid oxidation, volatile compounds and vibrational spectroscopy of silver carp (Hypophthalmichthys molitrix) during ice storage as related to the quality of its washed mince. Foods 10 (3):495. doi: 10.3390/foods10030495.
  • Labuza, T. P, and L. Dugan. Jr. 1971. Kinetics of lipid oxidation in foods. Critical Reviews in Food Science & Nutrition 2:355–405.
  • Laguerre, M., M. Tenon, A. Bily, and S. Birtić. 2020. Toward a spatiotemporal model of oxidation in lipid dispersions: A hypothesis‐driven review. European Journal of Lipid Science and Technology 122 (3):1900209. doi: 10.1002/ejlt.201900209.
  • Lee, S. K., N. Tatiyaborworntham, E. W. Grunwald, and M. P. Richards. 2015. Myoglobin and haemoglobin-mediated lipid oxidation in washed muscle: Observations on crosslinking, ferryl formation, porphyrin degradation, and haemin loss rate. Food Chemistry 167:258–63. doi: 10.1016/j.foodchem.2014.06.098.
  • Lee, S. Y., D. Y. Lee, O. Y. Kim, H. J. Kang, H. S. Kim, and S. J. Hur. 2020. Overview of studies on the use of natural antioxidative materials in meat products. Food Science of Animal Resources 40 (6):863–80. doi: 10.5851/kosfa.2020.e84.
  • Lee, Y. B., G. L. Hargus, J. A. Kirkpatrick, D. L. Berner, and R. H. Forsythe. 1975. Mechanism of lipid oxidation in mechanically deboned chicken meat. Journal of Food Science 40 (5):964–7. doi: 10.1111/j.1365-2621.1975.tb02244.x.
  • Li, H, and G. Lykotrafitis. 2014. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network. Biophysical Journal 107 (3):642–53. doi: 10.1016/j.bpj.2014.06.031.
  • Li, H., X. Zhou, P. Gao, Q. Li, H. Li, R. Huang, and M. Wu. 2016. Inhibition of lipid oxidation in foods and feeds and hydroxyl radical-treated fish erythrocytes: A comparative study of Ginkgo biloba leaves extracts and synthetic antioxidants. Animal Nutrition (Zhongguo xu mu Shou yi Xue Hui) 2 (3):234–41. doi: 10.1016/j.aninu.2016.04.007.
  • Li, H. T., L. Feng, W. D. Jiang, Y. Liu, J. Jiang, S. H. Li, and X. Q. Zhou. 2013. Oxidative stress parameters and anti-apoptotic response to hydroxyl radicals in fish erythrocytes: Protective effects of glutamine, alanine, citrulline and proline. Aquatic Toxicology (Amsterdam, Netherlands) 126:169–79. doi: 10.1016/j.aquatox.2012.11.005.
  • Li, Q. T., M. H. Yeo, and B. K. Tan. 2000. Lipid peroxidation in small and large phospholipid unilamellar vesicles induced by water-soluble free radical sources. Biochemical and Biophysical Research Communications 273 (1):72–6. doi: 10.1006/bbrc.2000.2908.
  • Li, R., M. P. Richards, and I. Undeland. 2005. Characterization of aqueous components in chicken breast muscle as inhibitors of hemoglobin-mediated lipid oxidation. Journal of Agricultural and Food Chemistry 53 (3):767–75. doi: 10.1021/jf049515q.
  • Lin, T. S, and H. O. Hultin. 1976. Enzymic lipid peroxidation in microsomes of chicken skeletal-muscle. Journal of Food Science 41 (6):1488–9. doi: 10.1111/j.1365-2621.1976.tb01203.x.
  • Litvinko, N. M., L. A. Skorostetskaya, and D. O. Gerlovsky. 2018. The interaction of phospholipase a2 with oxidized phospholipids at the lipid-water surface with different structural organization. Chemistry and Physics of Lipids 211:44–51. doi: 10.1016/j.chemphyslip.2017.10.010.
  • Liu, H.-P. 1970. Catalysts of lipid peroxidation in meats. 1. Linoleate peroxidation catalyzed by metmb or fe (ii)‐edta. Journal of Food Science 35:591–92.
  • Lynch, M. P, and C. Faustman. 2000. Effect of aldehyde lipid oxidation products on myoglobin. Journal of Agricultural and Food Chemistry 48 (3):600–4. doi: 10.1021/jf990732e.
  • Mcclements, D., S. Dungan, J. German, and J. Kinsella. 1992. Oil exchange between oil-in-water emulsion droplets stabilised with a non-ionic surfactant. Food Hydrocolloids. 6 (5):415–22. doi: 10.1016/S0268-005X(09)80027-1.
  • Mcclements, D. J, and E. A. Decker. 2000. Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems. Journal of Food Science 65 (8):1270–82. doi: 10.1111/j.1365-2621.2000.tb10596.x.
  • Mcclements, D. J, and E. A. Decker. 2017. Lipids. In Fennema’s food chemistry eds. S. Damodaran, and K. L. Parkin, 171–233. New York, USA: CRC Press.
  • Mcmurray, W, and T. L. Dormandy. 1974. Lipid autoxidation in human skeletal muscle. Clinica Chimica Acta 52 (1):105–14. doi: 10.1016/0009-8981(74)90393-3.
  • Mcnulty, H. P., J. Byun, S. F. Lockwood, R. F. Jacob, and R. P. Mason. 2007. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochimica et Biophysica Acta 1768 (1):167–74. doi: 10.1016/j.bbamem.2006.09.010.
  • Medina, I., I. Undeland, K. Larsson, I. Storro, T. Rustad, C. Jacobsen, V. Kristinova, and J. M. Gallardo. 2012. Activity of caffeic acid in different fish lipid matrices: A review. Food Chemistry 131 (3):730–40. doi: 10.1016/j.foodchem.2011.09.032.
  • Mekhloufi, J., D. Bonnefont-Rousselot, S. Yous, D. Lesieur, M. Couturier, P. Therond, A. Legrand, D. Jore, and M. Gardes-Albert. 2005. Antioxidant activity of melatonin and a pinoline derivative on linoleate model system. Journal of Pineal Research 39 (1):27–33. doi: 10.1111/j.1600-079X.2005.00208.x.
  • Mercier, Y., P. Gatellier, M. Viau, H. Remignon, and M. Renerre. 1998. Effect of dietary fat and vitamin e on colour stability and on lipid and protein oxidation in turkey meat during storage. Meat Science 48 (3–4):301–18. doi: 10.1016/S0309-1740(97)00113-7.
  • Min, B, and D. U. Ahn. 2005. Mechanism of lipid peroxidation in meat and meat products – a review. Food Science and Biotechnology 14 (1):152–63.
  • Min, B, and D. U. Ahn. 2009. Factors in various fractions of meat homogenates that affect the oxidative stability of raw chicken breast and beef loin. Journal of Food Science 74 (1):C41–C48. doi: 10.1111/j.1750-3841.2008.01003.x.
  • Min, B., K. C. Nam, and D. U. Ahn. 2010. Catalytic mechanisms of metmyoglobin on the oxidation of lipids in phospholipid liposome model system. Food Chemistry 123 (2):231–6. doi: 10.1016/j.foodchem.2010.04.013.
  • Min, B., K. C. Nam, J. Cordray, and D. U. Ahn. 2008. Endogenous factors affecting oxidative stability of beef loin, pork loin, and chicken breast and thigh meats. Journal of Food Science 73 (6):C439–46. doi: 10.1111/j.1750-3841.2008.00805.x.
  • Mitra, A. K., K. Cholkar, and A. Mandal. 2017. Emerging nanotechnologies for diagnostics, drug delivery and medical devices. Amsterdam, Netherlands: William Andrew.
  • Mohajeri, E, and G. D. Noudeh. 2012. Effect of temperature on the critical micelle concentration and micellization thermodynamic of nonionic surfactants: Polyoxyethylene sorbitan fatty acid esters. E-Journal of Chemistry 9 (4):2268–74. doi: 10.1155/2012/961739.
  • Moiseeva, S. A, and G. B. Postnikova. 2001. Mechanism of oxidation of oxymyoglobin by copper ions: Comparison of sperm whale, horse, and pig myoglobins. Biochemistry. Biokhimiia 66 (7):780–7. doi: 10.1023/a:1010268813926.
  • Moroney, N. C., M. N. O’grady, J. V. O’doherty, and J. P. Kerry. 2012. Addition of seaweed (Laminaria digitata) extracts containing laminarin and fucoidan to porcine diets: Influence on the quality and shelf-life of fresh pork. Meat Science 92 (4):423–9. doi: 10.1016/j.meatsci.2012.05.005.
  • Mosca, M., A. Ceglie, and L. Ambrosone. 2011. Effect of membrane composition on lipid oxidation in liposomes. Chemistry and Physics of Lipids 164 (2):158–65. doi: 10.1016/j.chemphyslip.2010.12.006.
  • Mozuraityte, R., T. Rustad, and I. Storr⊘. 2006. Oxidation of cod phospholipids in liposomes: Effects of salts, ph and zeta potential. European Journal of Lipid Science and Technology 108 (11):944–50. doi: 10.1002/ejlt.200600139.
  • Naveena, B. M., A. R. Sen, M. Muthukumar, Y. Babji, and N. Kondaiah. 2011. Effects of salt and ammonium hydroxide on the quality of ground buffalo meat. Meat Science 87 (4):315–20. doi: 10.1016/j.meatsci.2010.11.004.
  • Nieto, G., K. Huvaere, and L. H. Skibsted. 2011. Antioxidant activity of rosemary and thyme by-products and synergism with added antioxidant in a liposome system. European Food Research and Technology 233 (1):11–8. doi: 10.1007/s00217-011-1486-9.
  • Niki, E. 2009. Lipid peroxidation: Physiological levels and dual biological effects. Free Radical Biology & Medicine 47 (5):469–84. doi: 10.1016/j.freeradbiomed.2009.05.032.
  • Nuchi, C. D., P. Hernandez, D. J. Mcclements, and E. A. Decker. 2002. Ability of lipid hydroperoxides to partition into surfactant micelles and alter lipid oxidation rates in emulsions. Journal of Agricultural and Food Chemistry 50 (19):5445–9. doi: 10.1021/jf020095j.
  • O’brien, P. J. 1969. Intracellular mechanisms for the decomposition of a lipid peroxide. I. Decomposition of a lipid peroxide by metal ions, heme compounds, and nucleophiles. Canadian Journal of Biochemistry 47 (5):485–92. doi: 10.1139/o69-076.
  • Pandey, K. B., N. Mishra, and S. I. Rizvi. 2009. Myricetin may provide protection against oxidative stress in type 2 diabetic erythrocytes. Zeitschrift Für Naturforschung C 64 (9–10):626–30. doi: 10.1515/znc-2009-9-1004.
  • Papuc, C., C. N. Predescu, L. Tudoreanu, V. Nicorescu, and I. Gâjâilă. 2018. Comparative study of the influence of hawthorn (Crataegus monogyna) berry ethanolic extract and butylated hydroxylanisole (bha) on lipid peroxidation, myoglobin oxidation, consistency and firmness of minced pork during refrigeration. Journal of the Science of Food and Agriculture 98 (4):1346–61. doi: 10.1002/jsfa.8599.
  • Pazos, M., S. Lois, J. L. Torres, and I. Medina. 2006. Inhibition of hemoglobin- and iron-promoted oxidation in fish microsomes by natural phenolics. Journal of Agricultural and Food Chemistry 54 (12):4417–23. doi: 10.1021/jf0530300.
  • Pazos, M., I. Medina, and H. O. Hultin. 2005. Effect of ph on hemoglobin-catalyzed lipid oxidation in cod muscle membranes in vitro and in situ. Journal of Agricultural and Food Chemistry 53 (9):3605–12. doi: 10.1021/jf0403890.
  • Pereira, A. L. F, and V. K. G. Abreu. 2018. Lipid peroxidation in meat and meat products. In Lipid peroxidation research, 29. London: IntechOpen.
  • Perera, M. I. R., A. J. Demetris, S. L. Katyal, and H. Shinozuka. 1985. Lipid peroxidation of liver microsome membranes induced by cholinedeficient diets and its relationship to the diet-induced promotion of the induction of γ-glutamyltranspeptidase-positive foci. Cancer Research 45 (6):2533–8.
  • Perez, D. M., M. P. Richards, R. S. Parker, M. E. Berres, A. T. Wright, M. Sifri, N. C. Sadler, N. Tatiyaborworntham, and N. Li. 2016. Role of cytochrome p450 hydroxylase in the decreased accumulation of vitamin e in muscle from turkeys compared to that from chickens. Journal of Agricultural and Food Chemistry 64 (3):671–80. doi: 10.1021/acs.jafc.5b05433.
  • Philpot, J. S. 1963. The estimation and identification of organic peroxides. Radiation Research 3 (Suppl 3):55–70. doi: 10.2307/3583676.
  • Pliss, E. M., M. E. Soloviev, D. V. Loshadkin, S. V. Molodochkina, and O. T. Kasaikina. 2021. Kinetic model of polyunsaturated fatty acids oxidation in micelles. Chemistry and Physics of Lipids 237:105089. doi: 10.1016/j.chemphyslip.2021.105089.
  • Puppo, A, and B. Halliwell. 1988. Formation of hydroxyl radicals from hydrogen peroxide in the presence of iron. Is haemoglobin a biological fenton reagent? The Biochemical Journal 249 (1):185–90. doi: 10.1042/bj2490185.
  • Raleigh, J. A, and W. Kremers. 1978. Promotion of radiation peroxidation in models of lipid membranes by caesium and rubidium counter-ions: Micellar linoleic and linolenic acids. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 34 (5):439–47. doi: 10.1080/09553007814551101.
  • Rey, A. I., C. J. Lopez-Bote, and R. S. Arias. 1997. Effect of extensive feeding on α-tocopherol concentration and oxidative stability of muscle microsomes from iberian pigs. Animal Science 65 (3):515–20. doi: 10.1017/S1357729800008729.
  • Rhee, K. S., T. R. Dutson, and G. C. Smith. 1984. Enzymic lipid-peroxidation in microsomal fractions from beef skeletal-muscle. Journal of Food Science 49 (3):675–9. doi: 10.1111/j.1365-2621.1984.tb13186.x.
  • Richards, M. P. 2010. Heme proteins and oxidation in fresh and processed meats. In Oxidation in foods and beverages and antioxidant applications, 76–104. Amsterdam, Netherlands: Elsevier. doi: 10.1533/9780857090447.1.77.
  • Richards, M. P., H. Cai, and E. W. Grunwald. 2009. Phenylalanine substitution at site b10 (l29f) inhibits metmyoglobin formation and myoglobin-mediated lipid oxidation in washed fish muscle: Mechanistic implications. Journal of Agricultural and Food Chemistry 57 (17):7997–8002. 17 doi: 10.1021/jf901147a.
  • Richards, M. P, and H. O. Hultin. 2001. Rancidity development in a fish model system as affected by phospholipids. Journal of Food Lipids 8 (3):215–30. doi: 10.1111/j.1745-4522.2001.tb00197.x.
  • Richards, M. P, and H. O. Hultin. 2002. Contributions of blood and blood components to lipid oxidation in fish muscle. Journal of Agricultural and Food Chemistry 50 (3):555–64. doi: 10.1021/jf010562h.
  • Richards, M. P., A. M. Modra, and R. Li. 2002a. Role of deoxyhemoglobin in lipid oxidation of washed cod muscle mediated by trout, poultry and beef hemoglobins. Meat Science 62 (2):157–63. doi: 10.1016/s0309-1740(01)00242-x.
  • Richards, M. P., N. M. Nelson, H. G. Kristinsson, S. S. Mony, H. T. Petty, and A. C. Oliveira. 2007. Effects of fish heme protein structure and lipid substrate composition on hemoglobin-mediated lipid oxidation. Journal of Agricultural and Food Chemistry 55 (9):3643–54. doi: 10.1021/jf0628633.
  • Richards, M. P., H. Ostdal, and H. J. Andersen. 2002b. Deoxyhemoglobin-mediated lipid oxidation in washed fish muscle. Journal of Agricultural and Food Chemistry 50 (5):1278–83. doi: 10.1021/jf011093m.
  • Rosario, D. K., M. R. Furtado, Y. S. Mutz, B. L. Rodrigues, Y. A. Bernardo, J. D. Baltar, P. C. Bernardes, M. Estevez, and C. A. Conte-Junior. 2020. A chemometric approach to establish underlying connections between lipid and protein oxidation and instrumental color and texture characteristics in brazilian dry-cured loin. Foods 9 (4):536. doi: 10.3390/foods9040536.
  • Rubio, N., I. Datar, D. Stachura, D. Kaplan, and K. Krueger. 2019. Cell-based fish: A novel approach to seafood production and an opportunity for cellular agriculture. Frontiers in Sustainable Food Systems 3:43. doi: 10.3389/fsufs.2019.00043.
  • Russell, E. A., P. B. Lynch, K. O’sullivan, and J. P. Kerry. 2004. Dietary supplementation of alpha-tocopheryl acetate on alpha-tocopherol levels in duck tissues and its influence on meat storage stability. International Journal of Food Science and Technology 39 (3):331–40. doi: 10.1111/j.1365-2621.2004.00790.x.
  • Sabatini, D. D. 2014. 2014. Preparation of rough microsomes from rat liver. Cold Spring Harbor Protocols 2014 (8):845–51. doi: 10.1101/pdb.prot079970.
  • Sabow, A. B., I. Zulkifli, Y. M. Goh, M. Z. Ab Kadir, U. Kaka, J. C. Imlan, A. A. Abubakar, K. D. Adeyemi, and A. Q. Sazili. 2016. Bleeding efficiency, microbiological quality and oxidative stability of meat from goats subjected to slaughter without stunning in comparison with different methods of pre-slaughter electrical stunning. PLoS One 11 (4):e0152661. doi: 10.1371/journal.pone.0152661.
  • Salami, S. A., M. N. O’grady, G. Luciano, A. Priolo, M. Mcgee, A. P. Moloney, and J. P. Kerry. 2021. Concentrate supplementation with dried corn gluten feed improves the fatty acid profile of longissimus thoracis muscle from steers offered grass silage. Journal of the Science of Food and Agriculture 101 (11):4768–78. doi: 10.1002/jsfa.11123.
  • Salgo, M. G., F. P. Corongiu, and A. Sevanian. 1992. Peroxidation and phospholipase a2 hydrolytic susceptibility of liposomes consisting of mixed species of phosphatidylcholine and phosphatidylethanolamine. Biochimica et Biophysica Acta 1127 (2):131–40. doi: 10.1016/0005-2760(92)90268-z.
  • Salvia-Trujillo, L., R. Soliva-Fortuny, M. A. Rojas-Grau, D. J. Mcclements, and O. Martin-Belloso. 2017. Edible nanoemulsions as carriers of active ingredients: A review. Annual Review of Food Science and Technology 8:439–66. doi: 10.1146/annurev-food-030216-025908.
  • Sannaveerappa, T., N. G. Carlsson, A. S. Sandberg, and I. Undeland. 2007a. Antioxidative properties of press juice from herring (Clupea harengus) against hemoglobin (hb) mediated oxidation of washed cod mince. Journal of Agricultural and Food Chemistry 55 (23):9581–91. doi: 10.1021/jf071237i.
  • Sannaveerappa, T., A. S. Sandberg, and I. Undeland. 2007b. Evaluation of occasional nonresponse of a washed cod mince model to hemoglobin (hb)-mediated oxidation. Journal of Agricultural and Food Chemistry 55 (11):4429–35. doi: 10.1021/jf063065f.
  • Schnitzer, E., I. Pinchuk, and D. Lichtenberg. 2007. Peroxidation of liposomal lipids. European Biophysics Journal: EBJ 36 (4–5):499–515. doi: 10.1007/s00249-007-0146-2.
  • Scollo, F., C. Tempra, F. Lolicato, M. F. M. Sciacca, A. Raudino, D. Milardi, and C. L. Rosa. 2018. Phospholipids critical micellar concentrations trigger different mechanisms of intrinsically disordered proteins interaction with model membranes. The Journal of Physical Chemistry Letters 9 (17):5125–9. doi: 10.1021/acs.jpclett.8b02241.
  • Shahidi, F, and Y. Zhong. 2015. Measurement of antioxidant activity. Journal of Functional Foods 18:757–81. doi: 10.1016/j.jff.2015.01.047.
  • Sharifian, S., E. Alizadeh, M. S. Mortazavi, and M. Shahriari Moghadam. 2014. Effects of refrigerated storage on the microstructure and quality of grouper (Epinephelus coioides) fillets. Journal of Food Science and Technology 51 (5):929–35.
  • Shewfelt, R. L, and H. O. Hultin. 1983. Inhibition of enzymic and non-enzymic lipid peroxidation of flounder muscle sarcoplasmic reticulum by pretreatment with phospholipase a2. Biochimica et Biophysica Acta 751 (3):432–8. doi: 10.1016/0005-2760(83)90303-x.
  • Soyer, A, and H. O. Hultin. 2000. Kinetics of oxidation of the lipids and proteins of cod sarcoplasmic reticulum. Journal of Agricultural and Food Chemistry 48 (6):2127–34. doi: 10.1021/jf990780z.
  • Srinivasan, S, and R. O. Recknagel. 1971. A note on the stability of conjugated diene absorption of rat liver microsomal lipids after carbon tetrachloride poisoning. Journal of Lipid Research 12 (6):766–7. doi: 10.1016/S0022-2275(20)39466-9.
  • Svingen, B. A., J. A. Buege, F. O. O’neal, and S. D. Aust. 1979. The mechanism of nadph-dependent lipid peroxidation. The propagation of lipid peroxidation. The Journal of Biological Chemistry 254 (13):5892–9. doi: 10.1016/S0021-9258(18)50498-1.
  • Szebeni, J., H. Hauser, C. D. Eskelson, R. R. Watson, and K. H. Winterhalter. 1988. Interaction of hemoglobin derivatives with liposomes. Membrane cholesterol protects against the changes of hemoglobin. Biochemistry 27 (17):6425–34. doi: 10.1021/bi00417a034.
  • Tappel, A. L. 1955. Unsaturated lipide oxidation catalyzed by hematin compounds. The Journal of Biological Chemistry 217 (2):721–33.
  • Tatiyaborworntham, N, and M. P. Richards. 2018. Mechanisms involved in hemoglobin-mediated oxidation of lipids in washed fish muscle and inhibitory effects of phospholipase a2. Journal of the Science of Food and Agriculture 98 (7):2816–23. doi: 10.1002/jsfa.8779.
  • Tatiyaborworntham, N., J. Yin, and M. P. Richards. 2021. Factors influencing the antioxidant effect of phospholipase a2 against lipid oxidation promoted by trout hemoglobin and hemin in washed muscle. Food Chemistry 343:128428. doi: 10.1016/j.foodchem.2020.128428.
  • Terevinto, A., A. Ramos, G. Castroman, M. C. Cabrera, and A. Saadoun. 2010. Oxidative status, in vitro iron-induced lipid oxidation and superoxide dismutase, catalase and glutathione peroxidase activities in rhea meat. Meat Science 84 (4):706–10. doi: 10.1016/j.meatsci.2009.11.007.
  • Thanonkaew, A., S. Benjakul, W. Visessanguan, and E. A. Decker. 2005. Lipid oxidation in microsomal fraction of squid muscle (Loligo peali). Journal of Food Science 70 (8):C478–C82. doi: 10.1111/j.1365-2621.2005.tb11504.x.
  • Thanonkaew, A., S. Benjakul, W. Visessanguan, and E. A. Decker. 2007. Yellow discoloration of the liposome system of cuttlefish (Sepia pharaonis) as influenced by lipid oxidation. Food Chemistry 102 (1):219–24. doi: 10.1016/j.foodchem.2006.05.008.
  • Tolasa Yılmaz, Ş., Ş. Çaklı, E. B. Şen Yılmaz, F. Kırlangıç, and C. Lee. 2018. Effect of fillet temperature on lipoxygenase activity in sardine mince with and without milk protein concentrate. Lwt 90:38–44. doi: 10.1016/j.lwt.2017.12.006.
  • Tongnuanchan, P., S. Benjakul, and T. Prodpran. 2011. Roles of lipid oxidation and ph on properties and yellow discolouration during storage of film from red tilapia (Oreochromis niloticus) muscle protein. Food Hydrocolloids. 25 (3):426–33. doi: 10.1016/j.foodhyd.2010.07.013.
  • Tuomisto, H. L. 2018. The eco‐friendly burger. EMBO Reports 20 (1):e47395. doi: 10.15252/embr.201847395.
  • Tzankova, V., C. Gorinova, M. Kondeva-Burdina, R. Simeonova, S. Philipov, S. Konstantinov, P. Petrov, D. Galabov, and K. Yoncheva. 2017. Antioxidant response and biocompatibility of curcumin-loaded triblock copolymeric micelles. Toxicology Mechanisms and Methods 27 (1):72–80. doi: 10.1080/15376516.2016.1253811.
  • Undeland, I. 2016. Oxidative stability of seafood. In Oxidative stability and shelf life of foods containing oils and fats, 391–460. Amsterdam, Netherlands: Elsevier. doi: 10.1016/b978-1-63067-056-6.00011-2.
  • Undeland, I., H. O. Hultin, and M. P. Richards. 2002. Added triacylglycerols do not hasten hemoglobin-mediated lipid oxidation in washed minced cod muscle. Journal of Agricultural and Food Chemistry 50 (23):6847–53. doi: 10.1021/jf0201982.
  • Undeland, I., H. O. Hultin, and M. P. Richards. 2003. Aqueous extracts from some muscles inhibit hemoglobin-mediated oxidation of cod muscle membrane lipids. Journal of Agricultural and Food Chemistry 51 (10):3111–9. doi: 10.1021/jf020770p.
  • Undeland, I., H. G. Kristinsson, and H. O. Hultin. 2004. Hemoglobin-mediated oxidation of washed minced cod muscle phospholipids: Effect of ph and hemoglobin source. Journal of Agricultural and Food Chemistry 52 (14):4444–51. doi: 10.1021/jf030560s.
  • Vallejo-Cordoba, B., R. Rodriguez-Ramirez, and A. F. Gonzalez-Cordova. 2010. Capillary electrophoresis for bovine and ostrich meat characterisation. Food Chemistry 120 (1):304–7. doi: 10.1016/j.foodchem.2009.09.080.
  • Vieira, S., G. D. Zhang, and E. A. Decker. 2017. Biological implications of lipid oxidation products. Journal of the American Oil Chemists’ Society 94 (3):339–51. doi: 10.1007/s11746-017-2958-2.
  • Vitrac, H., C. Hauville, F. Collin, M. Couturier, P. Therond, M. Delaforge, S. Remita, D. Jore, and M. Gardes-Albert. 2005. Hydroperoxide characterisation as a signature of the micelle/monomer balance in radiation-induced peroxidation of arachidonate. Free Radical Research 39 (5):519–28. doi: 10.1080/10715760500092543.
  • Vossen, R. C. R. M., M. C. E. van Dam-Mieras, G. Hornstra, and R. F. A. Zwaal. 1993. Continuous monitoring of lipid-peroxidation by measuring conjugated diene formation in an aqueous liposome suspension. Lipids 28 (9):857–61. doi: 10.1007/BF02536243.
  • Wang, Z. M., Z. F. He, A. M. Emara, X. Gan, and H. J. Li. 2019. Effects of malondialdehyde as a byproduct of lipid oxidation on protein oxidation in rabbit meat. Food Chemistry 288:405–12. doi: 10.1016/j.foodchem.2019.02.126.
  • Wills, E. 1964. The effect of inorganic iron on the thiobarbituric acid method for the determination of lipid peroxides. Biochimica et Biophysica Acta (BBA) – Specialized Section on Lipids and Related Subjects 84 (4):475–7. doi: 10.1016/0926-6542(64)90016-2.
  • Wills, E. D. 1966. Mechanisms of lipid peroxide formation in animal tissues. The Biochemical Journal 99 (3):667–76. doi: 10.1042/bj0990667.
  • Windmueller, H. G. 1982. Glutamine utilization by the small intestine. In Advances in enzymology – and related areas of molecular biology, ed. D. Purich, 201–37. Hoboken, New Jersey: John Wiley & Sons. doi: 10.1002/9780470122983.ch6.
  • Wu, G., A. G. Borbolla, and D. A. Knabe. 1994. The uptake of glutamine and release of arginine, citrulline and proline by the small intestine of developing pigs. The Journal of Nutrition 124 (12):2437–44. doi: 10.1093/jn/124.12.437.
  • Wu, H., M. Abdollahi, and I. Undeland. 2021a. Effect of recovery technique, antioxidant addition and compositional features on lipid oxidation in protein enriched products from cod- salmon and herring backbones. Food Chemistry 360:129973. doi: 10.1016/j.foodchem.2021.129973.
  • Wu, H., B. Forghani, M. Abdollahi, and I. Undeland. 2022a. Lipid oxidation in sorted herring (Clupea harengus) filleting co-products from two seasons and its relationship to composition. Food Chemistry 373 (Pt B):131523.
  • Wu, H., S. Ghirmai, and I. Undeland. 2020. Stabilization of herring (Clupea harengus) by-products against lipid oxidation by rinsing and incubation with antioxidant solutions. Food Chemistry 316 (126337):126337. doi: 10.1016/j.foodchem.2020.126337.
  • Wu, H., M. P. Richards, and I. Undeland. 2022b. Lipid oxidation and antioxidant delivery systems in muscle food. Comprehensive Reviews in Food Science and Food Safety 21 (2):1275–99. doi: 10.1111/1541-4337.12890.
  • Wu, H., C. Tullberg, S. Ghirmai, and I. Undeland. 2022c. Pro-oxidative activity of trout and bovine hemoglobin during digestion using a static in vitro gastrointestinal model. Food Chemistry 393:133356. doi: 10.1016/j.foodchem.2022.133356.
  • Wu, H., S. Xiao, J. Yin, J. Zhang, and M. P. Richards. 2021b. Impact of lipid composition and muscle microstructure on myoglobin-mediated lipid oxidation in washed cod and pig muscle. Food Chemistry 336:127729. doi: 10.1016/j.foodchem.2020.127729.
  • Wu, H., S. Xiao, J. Yin, J. Zhang, and M. P. Richards. 2021c. Mechanisms involved in the inhibitory effects of free fatty acids on lipid peroxidation in turkey muscle. Food Chemistry 342:128333. doi: 10.1016/j.foodchem.2020.128333.
  • Wu, H., J. Yin, S. L. Xiao, J. H. Zhang, and M. P. Richards. 2022d. Quercetin as an inhibitor of hemoglobin-mediated lipid oxidation: Mechanisms of action and use of molecular docking. Food Chemistry 384:132473. doi: 10.1016/j.foodchem.2022.132473.
  • Wu, H., J. Yin, J. H. Zhang, and M. P. Richards. 2017. Factors affecting lipid oxidation due to pig and turkey hemolysate. Journal of Agricultural and Food Chemistry 65 (36):8011–7. 36doi: 10.1021/acs.jafc.7b02764.
  • Xiao, S. L., H. Zhuang, G. H. Zhou, and J. H. Zhang. 2018. Investigation of inhibition of lipid oxidation by l-carnosine using an oxidized-myoglobin-mediated washed fish muscle system. Lwt 97:703–10. doi: 10.1016/j.lwt.2018.08.003.
  • Yamauchi, R., T. Kinoshita, Y. Hasegawa, and S. Iwamoto. 2017. Hemin- and myoglobin-catalyzed reaction of 1-palmitoyl-2-linoleoyl-3-sn-phosphatidylcholine 13-hydroperoxide with gamma-tocopherol in micelles and liposomes. Chemistry and Physics of Lipids 209:37–44. doi: 10.1016/j.chemphyslip.2017.11.005.
  • Yamazaki, H., K. Inoue, C. G. Turvy, F. P. Guengerich, and T. Shimada. 1997. Effects of freezing, thawing, and storage of human liver samples on the microsomal contents and activities of cytochrome p450 enzymes. Drug Metabolism and Disposition: The Biological Fate of Chemicals 25 (2):168–74.
  • Yan, L, and X. Qiu-Zhou. 2006. Dietary glutamine supplementation improves structure and function of intestine of juvenile jian carp (Cyprinus carpio var. Jian). Aquaculture 256 (1-4):389–94. doi: 10.1016/j.aquaculture.2006.02.011.
  • Yang, Y., Y. Sun, D. Pan, Y. Wang, and J. Cao. 2018. Effects of high pressure treatment on lipolysis-oxidation and volatiles of marinated pork meat in soy sauce. Meat Science 145:186–94. doi: 10.1016/j.meatsci.2018.06.036.
  • Yin, D., H. Lingnert, B. Ekstrand, and U. T. Brunk. 1992. Fenton reagents may not initiate lipid peroxidation in an emulsified linoleic acid model system. Free Radical Biology and Medicine 13 (5):543–56. doi: 10.1016/0891-5849(92)90149-B.
  • Yin, J., E. M. Becker, M. L. Andersen, and L. H. Skibsted. 2012. Green tea extract as food antioxidant. Synergism and antagonism with alpha-tocopherol in vegetable oils and their colloidal systems. Food Chemistry 135 (4):2195–202. doi: 10.1016/j.foodchem.2012.07.025.
  • Yin, J., W. Zhang, and M. P. Richards. 2017. Attributes of lipid oxidation due to bovine myoglobin, hemoglobin and hemolysate. Food Chemistry 234:230–5. doi: 10.1016/j.foodchem.2017.04.182.
  • Yin, M. C, and C. Faustman. 1993. Influence of temperature, ph, and phospholipid-composition upon the stability of myoglobin and phospholipid – a liposome model. Journal of Agricultural and Food Chemistry 41 (6):853–7. doi: 10.1021/jf00030a002.
  • Yin, S., C. Faustman, N. Tatiyaborworntham, R. Ramanathan, and Q. Sun. 2013. The effects of hne on ovine oxymyoglobin redox stability in a microsome model. Meat Science 95 (2):224–8. doi: 10.1016/j.meatsci.2013.04.055.
  • Zalkin, H, and A. L. Tappel. 1960. Studies of the mechanism of vitamin E action. Iv. Lipide peroxidation in the vitamin e-deficient rabbit. Archives of Biochemistry and Biophysics 88 (1):113–7. doi: 10.1016/0003-9861(60)90205-8.
  • Zhang, Y. F., X. J. Tian, Y. Z. Jiao, Y. Wang, J. Dong, N. Yang, Q. H. Yang, W. Qu, and W. H. Wang. 2022. Free iron rather than heme iron mainly induces oxidation of lipids and proteins in meat cooking. Food Chemistry 382:132345. doi: 10.1016/j.foodchem.2022.132345.
  • Zhou, F., S. Jongberg, M. Zhao, W. Sun, and L. H. Skibsted. 2016. Iron(ii) initiation of lipid and protein oxidation in pork: The role of oxymyoglobin. Journal of Agricultural and Food Chemistry 64 (22):4618–26. doi: 10.1021/acs.jafc.6b01168.