744
Views
2
CrossRef citations to date
0
Altmetric
Reviews

An update on nutritional profile, phytochemical compounds, health benefits, and potential applications in the food industry of pulses seed coats: A comprehensive review

ORCID Icon, , , &

References

  • Akhtar, H. M. S., M. Abdin, S. Ahmed, and F. Aslam. 2021. Digestion by saliva, simulated gastric and small intestinal juices and in vitro fermentation by human gut microbiota of polysaccharides from cicer arietinum L. hulls: Chickpea hull polysaccharide effect on human gut. Journal of Microbiology, Biotechnology and Food Sciences 11 (2):e3966. doi: 10.15414/jmbfs.3966.
  • Akhtar, H. M. S., A. Riaz, Y. S. Hamed, M. Abdin, G. Chen, P. Wan, and X. Zeng. 2018. Production and characterization of CMC-based antioxidant and antimicrobial films enriched with chickpea hull polysaccharides. International Journal of Biological Macromolecules 118:469–77. doi: 10.1016/j.ijbiomac.2018.06.090.
  • Andrade, R. M. S. d., S. Silva, C. M. d. S. F. Costa, M. Veiga, E. Costa, M. S. L. Ferreira, E. C. B. d. A. Gonçalves, and M. E. Pintado. 2020. Potential prebiotic effect of fruit and vegetable byproducts flour using in vitro gastrointestinal digestion. Food Research International (Ottawa, ON) 137:109354. doi: 10.1016/j.foodres.2020.109354.
  • Arora, S., D. Singh, A. Rajput, A. Bhatia, A. Kumar, H. Kaur, P. Sharma, P. Kaur, S. Singh, S. Attri, et al. 2021. Plant-based polysaccharides and their health functions. Functional Foods in Health and Disease 11 (4):179–200. doi: 10.31989/ffhd.v11i5.773.
  • Bai, Z., J. Meng, X. Huang, G. Wu, S. Zuo, and S. Nie. 2020. Comparative study on antidiabetic function of six legume crude polysaccharides. International Journal of Biological Macromolecules 154:25–30. doi: 10.1016/j.ijbiomac.2020.03.072.
  • Barakat, H., V. Reim, and S. Rohn. 2015. Stability of saponins from chickpea, soy and faba beans in vegetarian, broccoli-based bars subjected to different cooking techniques. Food Research International 76:142–9. doi: 10.1016/j.foodres.2015.03.043.
  • Belghith Fendri, L., F. Chaari, M. Maaloul, F. Kallel, L. Abdelkafi, S. Ellouz Chaabouni, and D. Ghribi-Aydi. 2016. Wheat bread enrichment by pea and broad bean pods fibers: Effect on dough rheology and bread quality. LWT 73:584–91. doi: 10.1016/j.lwt.2016.06.070.
  • Boudjou, S., B. D. Oomah, F. Zaidi, and F. Hosseinian. 2013. Phenolics content and antioxidant and anti-inflammatory activities of legume fractions. Food Chemistry 138 (2–3):1543–50. doi: 10.1016/j.foodchem.2012.11.108.
  • Buathong, N., K. Chandarajoti, and S. Sae-tan. 2021. Anti-inflammatory potential of mung bean seed coat water extract in lipopolysaccharide-induced 3T3-L1 adipocytes. Agriculture and Natural Resources 55 (5):777–86. doi: 10.34044/j.anres.2021.55.5.08.
  • Çalışkantürk Karataş, S., D. Günay, and S. Sayar. 2017. In vitro evaluation of whole faba bean and its seed coat as a potential source of functional food components. Food Chemistry 230:182–8. doi: 10.1016/j.foodchem.2017.03.037.
  • Cao, D., H. Li, J. Yi, J. Zhang, H. Che, J. Cao, L. Yang, C. Zhu, and W. Jiang. 2011. Antioxidant properties of the mung bean flavonoids on alleviating heat stress. PLoS One 6 (6):e21071. doi: 10.1371/journal.pone.0021071.
  • Chan, C. B., J. Gupta, L. Kozicky, Z. Hashemi, and K. Yang. 2014. Improved glucose tolerance in insulin-resistant rats after pea hull feeding is associated with changes in lipid metabolism-targeted transcriptome. Applied Physiology, Nutrition, and Metabolism 39 (10):1112–9. doi: 10.1139/apnm-2014-0054.
  • Charoensiddhi, S., W. P. Chanput, and S. Sae-tan. 2022. Gut microbiota modulation, anti-diabetic and anti-inflammatory properties of polyphenol extract from mung bean seed coat (Vigna radiata L.). Nutrients 14 (11):2275. doi: 10.3390/nu14112275.
  • Chávez-Mendoza, C., K. I. Hernández-Figueroa, and E. Sánchez. 2018. Antioxidant capacity and phytonutrient content in the seed coat and cotyledon of common beans (Phaseolus vulgaris L.) from various regions in Mexico. Antioxidants 8 (1):5. doi: 10.3390/antiox8010005.
  • Chávez-Santoscoy, R. A., J. A. Gutierrez-Uribe, O. Granados, I. Torre-Villalvazo, S. O. Serna-Saldivar, N. Torres, B. Palacios-González, and A. R. Tovar. 2014a. Flavonoids and saponins extracted from black bean (Phaseolus vulgaris L.) seed coats modulate lipid metabolism and biliary cholesterol secretion in C57BL/6 mice. The British Journal of Nutrition 112 (6):886–99. doi: 10.1017/S0007114514001536.
  • Chávez-Santoscoy, R. A., J. A. Gutiérrez-Uribe, and S. O. Serna-Saldívar. 2013. Effect of flavonoids and saponins extracted from black bean (Phaseolus vulgaris L.) seed coats as cholesterol micelle disruptors. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 68 (4):416–23. doi: 10.1007/s11130-013-0384-7.
  • Chávez-Santoscoy, R. A., J. A. Gutiérrez-Uribe, S. O. Serna-Saldivar, and E. Perez-Carrillo. 2016a. Production of maize tortillas and cookies from nixtamalized flour enriched with anthocyanins, flavonoids and saponins extracted from black bean (Phaseolus vulgaris) seed coats. Food Chemistry 192:90–7. doi: 10.1016/j.foodchem.2015.06.113.
  • Chávez-Santoscoy, R. A., M. A. Lazo-Vélez, S. O. Serna-Sáldivar, and J. A. Gutiérrez-Uribe. 2016b. Delivery of flavonoids and saponins from black bean (Phaseolus vulgaris) seed coats incorporated into whole wheat bread. International Journal of Molecular Sciences 17 (2):222. doi: 10.3390/ijms17020222.
  • Chávez-Santoscoy, R. A., A. R. Tovar, S. O. Serna-Saldivar, N. Torres, and J. A. Gutiérrez-Uribe. 2014b. Conjugated and free sterols from black bean (Phaseolus vulgaris L.) seed coats as cholesterol micelle disruptors and their effect on lipid metabolism and cholesterol transport in rat primary hepatocytes. Genes & Nutrition 9 (1):367. doi: 10.1007/s12263-013-0367-1.
  • Cid-Gallegos, M. S., X. M. Sánchez-Chino, M. F. Juárez Chairez, I. Álvarez González, E. Madrigal-Bujaidar, and C. Jiménez-Martínez. 2020. Anticarcinogenic activity of phenolic compounds from sprouted legumes. Food Reviews International :1–16. doi: 10.1080/87559129.2020.1840581.
  • Cunningham, M., M. A. Azcarate-Peril, A. Barnard, V. Benoit, R. Grimaldi, D. Guyonnet, H. D. Holscher, K. Hunter, S. Manurung, D. Obis, et al. 2021. Shaping the future of probiotics and prebiotics. Trends in Microbiology 29 (8):667–85. doi: 10.1016/j.tim.2021.01.003.
  • Dalgetty, D. D., and B.-K. Baik. 2003. Isolation and characterization of cotyledon fibers from peas, lentils, and chickpeas. Cereal Chemistry Journal 80 (3):310–5. doi: 10.1094/CCHEM.2003.80.3.310.
  • Dalgetty, D. D., and B.-K. Baik. 2006. Fortification of bread with hulls and cotyledon fibers isolated from peas, lentils, and chickpeas. Cereal Chemistry Journal 83 (3):269–74. doi: 10.1094/CC-83-0269.
  • Das, A. K., P. K. Nanda, P. Madane, S. Biswas, A. Das, W. Zhang, and J. M. Lorenzo. 2020. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends in Food Science & Technology 99:323–36. doi: 10.1016/j.tifs.2020.03.010.
  • Davani-Davari, D., M. Negahdaripour, I. Karimzadeh, M. Seifan, M. Mohkam, S. Masoumi, A. Berenjian, and Y. Ghasemi. 2019. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods 8 (3):92. doi: 10.3390/foods8030092.
  • Díaz, A. M., G. V. Caldas, and M. W. Blair. 2010. Concentrations of condensed tannins and anthocyanins in common bean seed coats. Food Research International 43 (2):595–601. doi: 10.1016/j.foodres.2009.07.014.
  • Duan, X., X. Su, J. Shi, Y. You, M. Zhao, Y. Li, Y. Wang, and Y. Jiang. 2008. Inhibitory effect of anthocyanin extract from seed coat of black bean on pericarp browning and lipid peroxidation of litchi fruit during storage. Journal of Food Biochemistry 32 (4):415–30. doi: 10.1111/j.1745-4514.2008.00158.x.
  • El-Beltagy, A. E., and S. Alharthi. 2021. Free radical scavenging activity of some legumes hulls extract and its efficacy on oil oxidative stability. Journal of AOAC International 104 (2):472–8. doi: 10.1093/jaoacint/qsaa104.
  • Elessawy, F. M., N. Bazghaleh, A. Vandenberg, and R. W. Purves. 2020. Polyphenol profile comparisons of seed coats of five pulse crops using a semi-quantitative liquid chromatography-mass spectrometric method. Phytochemical Analysis: PCA 31 (4):458–71. doi: 10.1002/pca.2909.
  • Elessawy, F. M., A. Vandenberg, A. El-Aneed, and R. W. Purves. 2021. An untargeted metabolomics approach for correlating pulse crop seed coat polyphenol profiles with antioxidant capacity and iron chelation ability. Molecules 26 (13):3833. doi: 10.3390/molecules26133833.
  • Ertaş, N. 2021. Improving the cake quality by using red kidney bean applied different traditional processing methods. Journal of Food Processing and Preservation 45 (6):e15527. doi: 10.1111/jfpp.15527.
  • Eslami, M., A. Bahar, M. Hemati, Z. Rasouli Nejad, F. Mehranfar, S. Karami, N. M. Kobyliak, and B. Yousefi. 2021. Dietary pattern, colonic microbiota and immunometabolism interaction: New frontiers for diabetes mellitus and related disorders. Diabetic Medicine 38 (2):e14415. doi: 10.1111/dme.14415.
  • Feng, S., L. Wang, P. Shao, P. Sun, and C. S. Yang. 2022. A review on chemical and physical modifications of phytosterols and their influence on bioavailability and safety. Critical Reviews in Food Science and Nutrition, 62 (20):5638–57. doi: 10.1080/10408398.2021.1888692.
  • Fernando, S. 2021. Production of protein-rich pulse ingredients through dry fractionation: A review. LWT 141:110961. doi: 10.1016/j.lwt.2021.110961.
  • Ferreira, H., M. Vasconcelos, A. M. Gil, and E. Pinto. 2021. Benefits of pulse consumption on metabolism and health: A systematic review of randomized controlled trials. Critical Reviews in Food Science and Nutrition 61 (1):85–96. doi: 10.1080/10408398.2020.1716680.
  • Fiorucci, S., E. Distrutti, A. Carino, A. Zampella, and M. Biagioli. 2021. Bile acids and their receptors in metabolic disorders. Progress in Lipid Research 82:101094. doi: 10.1016/j.plipres.2021.101094.
  • Galgano, F., R. Tolve, T. Scarpa, M. C. Caruso, L. Lucini, B. Senizza, and N. Condelli. 2021. Extraction kinetics of total polyphenols, flavonoids, and condensed tannins of lentil seed coat: Comparison of solvent and extraction methods. Foods 10 (8):1810. doi: 10.3390/foods10081810.
  • Gan, R.-Y., Z.-Q. Deng, A.-X. Yan, N. P. Shah, W.-Y. Lui, C.-L. Chan, and H. Corke. 2016. Pigmented edible bean coats as natural sources of polyphenols with antioxidant and antibacterial effects. LWT 73:168–77. doi: 10.1016/j.lwt.2016.06.012.
  • García-Rivas, G., K. A. Youker, C. Orrego, J. Flores-Arredondo, C. E. Guerrero-Beltrán, A. Cordero-Reyes, J. A. Gutiérrez-Uribe, M. García, S. O. Serna-Saldivar, and G. Torre-Amione. 2015. Standardized extracts from black bean coats (Phaseolus vulgaris L.) prevent adverse cardiac remodeling in a murine model of non-ischemic cardiomyopathy. RSC Advances 5 (110):90858–65. doi: 10.1039/C5RA07715J.
  • Girish, T. K., V. M. Pratape, and U. J. S. Prasada Rao. 2012. Nutrient distribution, phenolic acid composition, antioxidant and alpha-glucosidase inhibitory potentials of black gram (Vigna mungo L.) and its milled by-products. Food Research International 46 (1):370–7. doi: 10.1016/j.foodres.2011.12.026.
  • Gobbetti, M., M. De Angelis, R. Di Cagno, A. Polo, and C. G. Rizzello. 2020. The sourdough fermentation is the powerful process to exploit the potential of legumes, pseudo-cereals and milling by-products in baking industry. Critical Reviews in Food Science and Nutrition 60 (13):2158–73. doi: 10.1080/10408398.2019.1631753.
  • Guajardo-Flores, D., M. García-Patiño, D. Serna-Guerrero, J. A. Gutiérrez-Uribe, and S. O. Serna-Saldívar. 2012. Characterization and quantification of saponins and flavonoids in sprouts, seed coats and cotyledons of germinated black beans. Food Chemistry 134 (3):1312–9. doi: 10.1016/j.foodchem.2012.03.020.
  • Guajardo-Flores, D., D. Serna-Guerrero, S. O. Serna-Saldívar, and D. A. Jacobo-Velázquez. 2014. Effect of germination and UV-C radiation on the accumulation of flavonoids and saponins in black bean seed coats. Cereal Chemistry Journal 91 (3):276–9. doi: 10.1094/CCHEM-08-13-0172-R.
  • Guillon, F., and M. M. J. Champ. 2002. Carbohydrate fractions of legumes: Uses in human nutrition and potential for health. British Journal of Nutrition 88 (S3):293–306. doi: 10.1079/BJN2002720.
  • Gutiérrez-del-Río, I., S. López-Ibáñez, P. Magadán-Corpas, L. Fernández-Calleja, Á. Pérez-Valero, M. Tuñón-Granda, E. M. Miguélez, C. J. Villar, and F. Lombó. 2021. Terpenoids and polyphenols as natural antioxidant agents in food preservation. Antioxidants 10 (8):1264. doi: 10.3390/antiox10081264.
  • Gutöhrlein, F., S. Drusch, and S. Schalow. 2020. Extraction of low methoxylated pectin from pea hulls via RSM. Food Hydrocolloids 102:105609. doi: 10.1016/j.foodhyd.2019.105609.
  • Ha, T. J., J. E. Park, K.-S. Lee, W. D. Seo, S.-B. Song, M.-H. Lee, S. Kim, J.-I. Kim, E. Oh, S.-B. Pae, et al. 2021. Identification of anthocyanin compositions in black seed coated Korean adzuki bean (Vigna angularis) by NMR and UPLC-Q-Orbitrap-MS/MS and screening for their antioxidant properties using different solvent systems. Food Chemistry 346:128882. doi: 10.1016/j.foodchem.2020.128882.
  • Hashemi, Z., K. Yang, H. Yang, A. Jin, J. Ozga, and C. B. Chan. 2015. Cooking enhances beneficial effects of pea seed coat consumption on glucose tolerance, incretin, and pancreatic hormones in high-fat-diet–fed rats. Applied Physiology, Nutrition, and Metabolism 40 (4):323–33. doi: 10.1139/apnm-2014-0380/M25794240.
  • Hou, D., F. Liu, X. Ren, Q. Shen, and S. Zhou. 2021a. Protective mechanism of mung bean coat against hyperlipidemia in mice fed with a high-fat diet: Insight from hepatic transcriptome analysis. Food & Function 12 (24):12434–47. doi: 10.1039/D1FO02455H.
  • Hou, D., J. Tang, M. Huan, F. Liu, S. Zhou, and Q. Shen. 2022. Alteration of fecal microbiome and metabolome by mung bean coat improves diet-induced non-alcoholic fatty liver disease in mice. Food Science and Human Wellness 11 (5):1259–72. doi: 10.1016/j.fshw.2022.04.023.
  • Hou, D., L. Yousaf, Y. Xue, J. Hu, J. Wu, X. Hu, N. Feng, and Q. Shen. 2019. Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients 11 (6):1238. doi: 10.3390/nu11061238.
  • Hou, D., Q. Zhao, B. Chen, X. Ren, L. Yousaf, and Q. Shen. 2021b. Dietary supplementation with mung bean coat alleviates the disorders in serum glucose and lipid profile and modulates gut microbiota in high-fat diet and streptozotocin-induced prediabetic mice. Journal of Food Science 86 (9):4183–96. doi: 10.1111/1750-3841.15866.
  • Hou, D., Q. Zhao, L. Yousaf, B. Chen, Y. Xue, and Q. Shen. 2020. A comparison between whole mung bean and decorticated mung bean: Beneficial effects on the regulation of serum glucose and lipid disorders and the gut microbiota in high-fat diet and streptozotocin-induced prediabetic mice. Food & Function 11 (6):5525–37. doi: 10.1039/D0FO00379D.
  • Hou, D., Q. Zhao, L. Yousaf, Y. Xue, and Q. Shen. 2021c. Beneficial effects of mung bean seed coat on the prevention of high-fat diet-induced obesity and the modulation of gut microbiota in mice. European Journal of Nutrition 60 (4):2029–45. doi: 10.1007/s00394-020-02395-x.
  • Hung, T. V., P. D. Handson, V. C. Amenta, W. S. A. Kyle, and R. S. T. Yu. 1988. Mineral composition and distribution in lupin seeds and in flour, spray dried powder and protein isolate produced from the seeds. Journal of the Science of Food and Agriculture 45 (2):145–54. doi: 10.1002/jsfa.2740450206.
  • Inhae, K., C. Seojin, H. T. Joung, C. Munji, W. Hae-Ri, L. B. Won, and L. Myoungsook. 2015. Effects of mung bean (Vigna radiata L.) ethanol extracts decrease proinflammatory cytokine-induced lipogenesis in the KK-ay diabese mouse model. Journal of Medicinal Food 18 (8):841–9. doi: 10.1089/jmf.2014.3364.
  • Jakobek, L., and P. Matić. 2019. Non-covalent dietary fiber - Polyphenol interactions and their influence on polyphenol bioaccessibility. Trends in Food Science & Technology 83:235–47. doi: 10.1016/j.tifs.2018.11.024.
  • Jang, Y.-H., M.-J. Kang, E.-O. Choe, M. Shin, and J.-I. Kim. 2014. Mung bean coat ameliorates hyperglycemia and the antioxidant status in type 2 diabetic db/db mice. Food Science and Biotechnology 23 (1):247–52. doi: 10.1007/s10068-014-0034-3.
  • Jia, R., S. Ge, S. Ren, Y. Luo, L. Xiu, H. Liu, and D. Cai. 2021. Antibacterial mechanism of adzuki bean seed coat polyphenols and their potential application in preservation of fresh raw beef. International Journal of Food Science & Technology 56 (10):5025–39. doi: 10.1111/ijfs.15292.
  • Jiang, H., W. Zhang, X. Li, C. Shu, W. Jiang, and J. Cao. 2021. Nutrition, phytochemical profile, bioactivities and applications in food industry of pitaya (Hylocereus spp.) peels: A comprehensive review. Trends in Food Science & Technology 116:199–217. doi: 10.1016/j.tifs.2021.06.040.
  • Jiang, L., W. Wang, P. Wen, M. Shen, H. Li, Y. Ren, Y. Xiao, Q. Song, Y. Chen, Q. Yu, et al. 2020. Two water-soluble polysaccharides from mung bean skin: Physicochemical characterization, antioxidant and antibacterial activities. Food Hydrocolloids 100:105412. doi: 10.1016/j.foodhyd.2019.105412.
  • Jin, M., M. Li, R. Huang, X. Wu, Y. Sun, and Z. Xu. 2021. Structural features and anti-inflammatory properties of pectic polysaccharides: A review. Trends in Food Science & Technology 107:284–98. doi: 10.1016/j.tifs.2020.10.042.
  • Kan, L., S. Nie, J. Hu, Z. Liu, and M. Xie. 2016. Antioxidant activities and anthocyanins composition of seed coats from twenty-six kidney bean cultivars. Journal of Functional Foods 26:622–31. doi: 10.1016/j.jff.2016.08.030.
  • Kasprzak, M., and Z. Rzedzicki. 2010. Effect of pea seed coat admixture on physical properties and chemical composition of bread. International Agrophysics 24:149–56.
  • Kaya, E., N. B. Tuncel, and N. Yılmaz Tuncel. 2017. The effect of ultrasound on some properties of pulse hulls. Journal of Food Science and Technology 54 (9):2779–88. doi: 10.1007/s13197-017-2714-5.
  • Kaya, E., N. Yılmaz Tuncel, and N. B. Tuncel. 2018. Utilization of lentil, pea, and faba bean hulls in Turkish noodle production. Journal of Food Science and Technology 55 (5):1734–45. doi: 10.1007/s13197-018-3086-1.
  • Khatija, A., and N. Marikkar. 2022. Biochemical study on the anti-hyperglycemic effects of coconut testa (Cocos nucifera L.) and red kidney bean (Phaseolus vulgaris) seed coat in streptozotocin-induced diabetic rats. Journal of Food Chemistry & Nanotechnology 8 (1):6–12. doi: 10.17756/jfcn.2022-120.
  • Kilua, A., H. Chihiro, K.-H. Han, K. Homma, N. Fukuma, T. Kamitani, T. Suzuki, and M. Fukushima. 2020. Whole kidney bean (Phaseolus vulgaris) and bean hull reduce the total serum cholesterol, modulate the gut microbiota and affect the caecal fermentation in rats. Bioactive Carbohydrates and Dietary Fibre 24:100232. doi: 10.1016/j.bcdf.2020.100232.
  • Korish, M. 2015. Faba bean hulls as a potential source of pectin. Journal of Food Science and Technology 52 (9):6061–6. doi: 10.1007/s13197-014-1688-9.
  • Kumar, S., M. M. Abedin, A. K. Singh, and S. Das. 2020. Role of phenolic compounds in plant-defensive mechanisms. In, Plant phenolics in sustainable agriculture, ed. R. Lone, R. Shuab, and A. N. Kamili, vol. 1, 517–32. Singapore: Springer Singapore.
  • Lai, F., Q. Wen, L. Li, H. Wu, and X. Li. 2010. Antioxidant activities of water-soluble polysaccharide extracted from mung bean (Vigna radiata L.) hull with ultrasonic assisted treatment. Carbohydrate Polymers 81 (2):323–9. doi: 10.1016/j.carbpol.2010.02.011.
  • Lee, D. N., Y. S. Hung, T. S. Yang, J. H. Lin, and C. F. Weng. 2017. Aspergillus awamori-fermented mung bean seed coats enhance the antioxidant and immune responses of weaned pigs. Journal of Animal Physiology and Animal Nutrition 101 (5):e342–e351. doi: 10.1111/jpn.12611.
  • Levent, H. 2019. Physical, chemical and sensory evaluation of gluten-free tarhana with legume hulls and flours. Quality Assurance and Safety of Crops & Foods 11 (4):401–9. doi: 10.3920/QAS2018.1538.
  • Li, H., H. Shi, Y. He, X. Fei, and L. Peng. 2020. Preparation and characterization of carboxymethyl cellulose-based composite films reinforced by cellulose nanocrystals derived from pea hull waste for food packaging applications. International Journal of Biological Macromolecules 164:4104–12. doi: 10.1016/j.ijbiomac.2020.09.010.
  • Lingvay, I., P. Sumithran, R. V. Cohen, and C. W. le Roux. 2022. Obesity management as a primary treatment goal for type 2 diabetes: Time to reframe the conversation. The Lancet 399 (10322):394–405. doi: 10.1016/S0140-6736(21)01919-X.
  • Liu, N., X. Li, P. Zhao, X. Zhang, O. Qiao, L. Huang, L. Guo, and W. Gao. 2021. A review of chemical constituents and health-promoting effects of citrus peels. Food Chemistry 365:130585. doi: 10.1016/j.foodchem.2021.130585.
  • Luo, J., W. Cai, T. Wu, and B. Xu. 2016. Phytochemical distribution in hull and cotyledon of adzuki bean (Vigna angularis L.) and mung bean (Vigna radiate L.), and their contribution to antioxidant, anti-inflammatory and anti-diabetic activities. Food Chemistry 201:350–60. doi: 10.1016/j.foodchem.2016.01.101.
  • Luzardo-Ocampo, I., M. L. Cuellar-Nuñez, B. D. Oomah, and G. Loarca-Piña. 2020. Pulse by-products. In Food wastes and by‐products, eds. R. Campos-Vega, B. D. Oomah, and H. A. Vergara-Castañeda, 59–92. Hoboken, USA: John Wiley & Sons, Inc.
  • Ma, S., B. Xi, L. Yang, J. Sun, M. Zhao, and P. Bovet. 2021. Trends in the prevalence of overweight, obesity, and abdominal obesity among Chinese adults between 1993 and 2015. International Journal of Obesity 45 (2):427–37. doi: 10.1038/s41366-020-00698-x.
  • Ma, Y., J. Gao, Z. Wei, and F. Shahidi. 2021. Effect of in vitro digestion on phenolics and antioxidant activity of red and yellow colored pea hulls. Food Chemistry 337:127606. doi: 10.1016/j.foodchem.2020.127606.
  • Ma, Z., J. I. Boye, B. K. Simpson, S. O. Prasher, D. Monpetit, and L. Malcolmson. 2011. Thermal processing effects on the functional properties and microstructure of lentil, chickpea, and pea flours. Food Research International 44 (8):2534–44. doi: 10.1016/j.foodres.2010.12.017.
  • Mahbub, R., N. Francis, C. Blanchard, and A. Santhakumar. 2021. The anti-inflammatory and antioxidant properties of chickpea hull phenolic extracts. Food Bioscience 40:100850. doi: 10.1016/j.fbio.2020.100850.
  • Maneewan, S., P. Tangpromphan, and A. Jaree. 2021. Separation of vitexin and iso-vitexin from mung bean seed coats using a three-zone simulated moving bed (SMB). Waste and Biomass Valorization 12 (12):6601–18. doi: 10.1007/s12649-021-01493-z.
  • Martins, Z. E., O. Pinho, and I. M. P. L. V. O. Ferreira. 2017. Food industry by-products used as functional ingredients of bakery products. Trends in Food Science & Technology 67:106–28. doi: 10.1016/j.tifs.2017.07.003.
  • Mejri, F., S. Selmi, A. Martins, H. Benkhoud, T. Baati, H. Chaabane, L. Njim, M. L. M. Serralheiro, A. P. Rauter, and K. Hosni. 2018. Broad bean (Vicia faba L.) pods: A rich source of bioactive ingredients with antimicrobial, antioxidant, enzyme inhibitory, anti-diabetic and health-promoting properties. Food & Function 9 (4):2051–69. doi: 10.1039/C8FO00055G.
  • Mera, M., R. Jerez, H. Miranda, and J. Rouanet. 2004. Seed coat specific weight in Lupinus angustifolius: Influence of genotype and environment and relationship with seed coat proportion. Australian Journal of Agricultural Research 55 (11):1189–95. doi: 10.1071/AR04095.
  • Mirali, M., R. W. Purves, and A. Vandenberg. 2017. Profiling the phenolic compounds of the four major seed coat types and their relation to color genes in lentil. Journal of Natural Products 80 (5):1310–7. doi: 10.1021/acs.jnatprod.6b00872.
  • Mirzaei, M., K. Harismah, M. Soleimani, and S. Mousavi. 2021. Inhibitory effects of curcumin on aldose reductase and cyclooxygenase-2 enzymes. Journal of Biomolecular Structure & Dynamics 39 (17):6424–30. doi: 10.1080/07391102.2020.1800513.
  • Moïse, J. A., S. Han, L. Gudynaitę-Savitch, D. A. Johnson, and B. L. A. Miki. 2005. Seed coats: Structure, development, composition, and biotechnology. In Vitro Cellular & Developmental Biology - Plant 41 (5):620–44. doi: 10.1079/IVP2005686.
  • Mukai, Y., and S. Sato. 2011. Polyphenol-containing azuki bean (Vigna angularis) seed coats attenuate vascular oxidative stress and inflammation in spontaneously hypertensive rats. The Journal of Nutritional Biochemistry 22 (1):16–21. doi: 10.1016/j.jnutbio.2009.11.004.
  • Myint, H., H. Kishi, Y. Iwahashi, W. Saburi, S. Koike, and Y. Kobayashi. 2018. Functional modulation of caecal fermentation and microbiota in rat by feeding bean husk as a dietary fibre supplement. Beneficial Microbes 9 (6):963–74. doi: 10.3920/bm2017.0174.
  • Nattagh-Eshtivani, E., H. Barghchi, N. Pahlavani, M. Barati, Y. Amiri, A. Fadel, M. Khosravi, S. Talebi, P. Arzhang, R. Ziaei, et al. 2022. Biological and pharmacological effects and nutritional impact of phytosterols: A comprehensive review. Phytotherapy Research: PTR 36 (1):299–322. doi: 10.1002/ptr.7312.
  • Naumann, S., U. Schweiggert-Weisz, D. Haller, and P. Eisner. 2019. Retention of primary bile acids by lupin cell wall polysaccharides under in vitro digestion conditions. Nutrients 11 (9):2117. doi: 10.3390/nu11092117.
  • Negi, H., M. Gupta, R. Walia, M. Khataibeh, and M. Sarwat. 2021. Medicinal plants and natural products: More effective and safer pharmacological treatment for the management of obesity. Current Drug Metabolism 22 (12):918–30. doi: 10.2174/1389200222666210729114456.
  • Ni, Q., V. Ranawana, H. E. Hayes, N. J. Hayward, D. Stead, and V. Raikos. 2020. Addition of broad bean hull to wheat flour for the development of high-fiber bread: Effects on physical and nutritional properties. Foods 9 (9):1192. doi: 10.3390/foods9091192.
  • Nie, J., J. Huang, Q. Wu, X. Qin, and Z. Li. 2019. Uncovering the anti-proliferation mechanism and bioactive compounds in red kidney bean coat against B16-F10 melanoma cells by metabolomics and network pharmacology analysis. Food & Function 10 (2):912–24. doi: 10.1039/C8FO01738G.
  • Nie, J., X. Qin, and Z. Li. 2021. Revealing the anti-melanoma mechanism of n-BuOH fraction from the red kidney bean coat extract based on network pharmacology and transcriptomic approach. Food Research International (Ottawa, ON) 140:109880. doi: 10.1016/j.foodres.2020.109880.
  • Niño-Medina, G., D. Muy-Rangel, and V. Urías-Orona. 2017. Chickpea (Cicer arietinum) and soybean (Glycine max) hulls: Byproducts with potential use as a source of high value-added food products. Waste and Biomass Valorization 8 (4):1199–203. doi: 10.1007/s12649-016-9700-4.
  • Oghbaei, M., and J. Prakash. 2020. Effect of dehulling and cooking on nutritional quality of chickpea (Cicer arietinum L.) germinated in mineral fortified soak water. Journal of Food Composition and Analysis 94:103619. doi: 10.1016/j.jfca.2020.103619.
  • Oomah, B. D., A. Corbé, and P. Balasubramanian. 2010. Antioxidant and anti-inflammatory activities of bean (Phaseolus vulgaris L.) hulls. Journal of Agricultural and Food Chemistry 58 (14):8225–30. doi: 10.1021/jf1011193.
  • Otieno, M., I. Steffan-Dewenter, S. G. Potts, W. Kinuthia, M. J. Kasina, and M. P. D. Garratt. 2020. Enhancing legume crop pollination and natural pest regulation for improved food security in changing African landscapes. Global Food Security 26:100394. doi: 10.1016/j.gfs.2020.100394.
  • Palmer, J. P., A. Pajak, B. Robson, B. Zhang, J. Joshi, M. Diapari, K. P. Pauls, and F. Marsolais. 2021. Pectin acetylesterase 8 influences pectin acetylation in the seed coat, seed imbibition, and dormancy in common bean (Phaseolus vulgaris. L.). Legume Science: e130. doi: 10.1002/leg3.130.
  • Papotti, B., J. C. Escolà-Gil, J. Julve, F. Potì, and I. Zanotti. 2021. Impact of dietary lipids on the reverse cholesterol transport: What we learned from animal studies. Nutrients 13 (8):2643. doi: 10.3390/nu13082643.
  • Paranavitana, L., W. Y. Oh, J. Yeo, and F. Shahidi. 2021. Determination of soluble and insoluble-bound phenolic compounds in dehulled, whole, and hulls of green and black lentils using electrospray ionization (ESI)-MS/MS and their inhibition in DNA strand scission. Food Chemistry 361:130083. doi: 10.1016/j.foodchem.2021.130083.
  • Peña-Valdivia, C. B., and M. L. Ortega-Delgado. 1986. Partial chemical composition, free soluble sugars and unavailable carbohydrates in the embryonic axis and seed coat of Phaseolus vulgaris L. (Canario group). Qualitas Plantarum Plant Foods for Human Nutrition 36 (1):27–34. doi: 10.1007/BF01091750.
  • Peng, L., F. Guo, M. Pei, R. Tsao, X. Wang, L. Jiang, Y. Sun, and H. Xiong. 2022. Anti-inflammatory effect of lentil hull (Lens culinaris) extract via MAPK/NF-κB signaling pathways and effects of digestive products on intestinal barrier and inflammation in Caco-2 and Raw264.7 co-culture. Journal of Functional Foods 92:105044. doi: 10.1016/j.jff.2022.105044.
  • Perez-Hernandez, L. M., A. J. Hernández-Álvarez, M. Morgan, C. Boesch, and C. Orfila. 2021. Polyphenol bioaccessibility and anti-inflammatory activity of Mexican common beans (Phaseolus vulgaris L.) with diverse seed colour. CyTA - Journal of Food 19 (1):682–90. doi: 10.1080/19476337.2021.1965660.
  • Pitura, K., and S. D. Arntfield. 2019. Characteristics of flavonol glycosides in bean (Phaseolus vulgaris L.) seed coats. Food Chemistry 272:26–32. doi: 10.1016/j.foodchem.2018.07.220.
  • Pizzi, A. 2021. Tannins medical/pharmacological and related applications: A critical review. Sustainable Chemistry and Pharmacy 22:100481. doi: 10.1016/j.scp.2021.100481.
  • Plamada, D., and D. C. Vodnar. 2021. Polyphenols-gut microbiota interrelationship: A transition to a new generation of prebiotics. Nutrients 14 (1):137. doi: 10.3390/nu14010137.
  • Prietto, L., T. C. Mirapalhete, V. Z. Pinto, J. F. Hoffmann, N. L. Vanier, L.-T. Lim, A. R. Guerra Dias, and E. da Rosa Zavareze. 2017. pH-sensitive films containing anthocyanins extracted from black bean seed coat and red cabbage. LWT 80:492–500. doi: 10.1016/j.lwt.2017.03.006.
  • Proença, C., D. Ribeiro, M. Freitas, and E. Fernandes. 2022. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: A review. Critical Reviews in Food Science and Nutrition 62 (12):3137–207. doi: 10.1080/10408398.2020.1862755.
  • Qin, L., S. Chen, L. Xie, Q. Yu, Y. Chen, M. Shen, and J. Xie. 2022. Mechanisms of RAW264.7 macrophages immunomodulation mediated by polysaccharide from mung bean skin based on RNA-seq analysis. Food Research International (Ottawa, ON) 154:111017. doi: 10.1016/j.foodres.2022.111017.
  • Qin, W., L. Sun, M. Miao, and G. Zhang. 2021. Plant-sourced intrinsic dietary fiber: Physical structure and health function. Trends in Food Science & Technology 118:341–55. doi: 10.1016/j.tifs.2021.09.022.
  • Ribeiro, N. D., S. M. Maziero, M. Prigol, C. W. Nogueira, D. P. Rosa, and M. T. D. F. Possobom. 2012. Mineral concentrations in the embryo and seed coat of common bean cultivars. Journal of Food Composition and Analysis 26 (1-2):89–95. doi: 10.1016/j.jfca.2012.03.003.
  • Rodríguez-Martínez, B., B. Gullón, and R. Yáñez. 2021. Identification and recovery of valuable bioactive compounds from potato peels: A comprehensive review. Antioxidants 10 (10):1630. doi: 10.3390/antiox10101630.
  • Rodríguez Madrera, R., A. Campa Negrillo, B. Suárez Valles, and J. Ferreira Fernández. 2021. Phenolic content and antioxidant activity in seeds of common bean (Phaseolus vulgaris L.). Foods 10 (4):864. doi: 10.3390/foods10040864.
  • Sae-tan, S., T. Kumrungsee, and N. Yanaka. 2020. Mungbean seed coat water extract inhibits inflammation in LPS-induced acute liver injury mice and LPS-stimulated RAW 246.7 macrophages via the inhibition of TAK1/IκBα/NF-κB. Journal of Food Science and Technology 57 (7):2659–68. doi: 10.1007/s13197-020-04302-y.
  • Saldanha do Carmo, C., P. Silventoinen, C. T. Nordgård, C. Poudroux, T. Dessev, H. Zobel, A. K. Holtekjølen, K. I. Draget, U. Holopainen-Mantila, S. H. Knutsen, et al. 2020. Is dehulling of peas and faba beans necessary prior to dry fractionation for the production of protein- and starch-rich fractions? Impact on physical properties, chemical composition and techno-functional properties. Journal of Food Engineering 278:109937. doi: 10.1016/j.jfoodeng.2020.109937.
  • Sathyanarayana, S., and K. V. Harish Prashanth. 2019. Malting process has minimal influence on the structure of arabinan-rich rhamnogalacturonan pectic polysaccharides from chickpea (Cicer arietinum L.) hull. Journal of Food Science and Technology 56 (4):1732–43. doi: 10.1007/s13197-019-03600-4.
  • Sato, S., Y. Hori, J. Yamate, T. Saito, M. Kurasaki, and A. Hatai. 2005. Protective effect of dietary azuki bean (Vigna angularis) seed coats against renal interstitial fibrosis of rats induced by cisplatin. Nutrition (Burbank, Los Angeles County, CA) 21 (4):504–11. doi: 10.1016/j.nut.2004.07.019.
  • Semba, R. D., R. Ramsing, N. Rahman, K. Kraemer, and M. W. Bloem. 2021. Legumes as a sustainable source of protein in human diets. Global Food Security 28:100520. doi: 10.1016/j.gfs.2021.100520.
  • Shams, R., D. Masih, G. Ashraf, A. H. Dar, and Q. Rizvi. 2020. Microwave assisted extraction of pectin from dried hull of faba bean. Journal of Postharvest Technology 8 (1):13–22.
  • Shelepina, N. V. 2021. The development of a pectin extraction technology for pea hulls to expand the raw material base for the production of functional foods in Russia. IOP Conference Series: Earth and Environmental Science 720 (1):012023. doi: 10.1088/1755-1315/720/1/012023.
  • Singh, B., J. P. Singh, A. Kaur, and N. Singh. 2017a. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Research International (Ottawa, ON) 101:1–16. doi: 10.1016/j.foodres.2017.09.026.
  • Singh, B., J. P. Singh, K. Shevkani, N. Singh, and A. Kaur. 2017b. Bioactive constituents in pulses and their health benefits. Journal of Food Science and Technology 54 (4):858–70. doi: 10.1007/s13197-016-2391-9.
  • Singh, B., J. P. Singh, N. Singh, and A. Kaur. 2017c. Saponins in pulses and their health promoting activities: A review. Food Chemistry 233:540–9. doi: 10.1016/j.foodchem.2017.04.161.
  • Singh, B., N. Singh, S. Thakur, and A. Kaur. 2017d. Ultrasound assisted extraction of polyphenols and their distribution in whole mung bean, hull and cotyledon. Journal of Food Science and Technology 54 (4):921–32. doi: 10.1007/s13197-016-2356-z.
  • Singh, M., A. Manickavasagan, S. Shobana, and V. Mohan. 2021. Glycemic index of pulses and pulse-based products: A review. Critical Reviews in Food Science and Nutrition 61 (9):1567–88. doi: 10.1080/10408398.2020.1762162.
  • Singh, S., H. D. Singh, and K. C. Sikka. 1968. Distribution of nutrients in the anatomical parts of common Indian pulses. Cereal Chemistry 45:13–8.
  • Sosulski, F. W., and K. K. Wu. 1988. High-fiber breads containing field pea hulls, wheat, corn, and wild oat brans. Cereal Chemistry 65 (3):186–91.
  • Sreerama, Y. N., D. A. Neelam, V. B. Sashikala, and V. M. Pratape. 2010. Distribution of nutrients and antinutrients in milled fractions of chickpea and horse gram: Seed coat phenolics and their distinct modes of enzyme inhibition. Journal of Agricultural and Food Chemistry 58 (7):4322–30. doi: 10.1021/jf903101k.
  • Stanisavljević, N. S., M. D. Ilić, I. Z. Matić, Ž. S. Jovanović, T. Čupić, D. Č. Dabić, M. M. Natić, and Ž. L. Tešić. 2016. Identification of phenolic compounds from seed coats of differently colored European varieties of pea (Pisum sativum L.) and characterization of their antioxidant and in vitro anticancer activities. Nutrition and Cancer 68 (6):988–1000. doi: 10.1080/01635581.2016.1190019.
  • Sun, C., Y. Liu, L. Zhan, G. R. Rayat, J. Xiao, H. Jiang, X. Li, and K. Chen. 2021. Anti-diabetic effects of natural antioxidants from fruits. Trends in Food Science & Technology 117:3–14. doi: 10.1016/j.tifs.2020.07.024.
  • Supasatyankul, B., M. Saisriyoot, U. Klinkesorn, K. Rattanaporn, and S. Sae-Tan. 2022. Extraction of phenolic and flavonoid compounds from mung bean (Vigna radiata L.) seed coat by pressurized liquid extraction. Molecules 27 (7):2085. doi: 10.3390/molecules27072085.
  • Swaroopa, C., L. Kashmira, G. Vikas, and W. Rajan. 2022. Assessment of the prebiotic potential of seed coats from green gram (Vigna radiata) and black gram (Vigna mungo). Journal of Food Science and Technology 59 (2):583–8. doi: 10.1007/s13197-021-05043-2.
  • Tajoddin, M., M. Shinde, and J. Lalitha. 2010. Polyphenols of mung bean (Phaseolus aureus L.) cultivars differing in seed coat color: Effect of dehulling. Journal of New Seeds 11 (4):369–79. doi: 10.1080/1522886X.2010.520146.
  • Tao, M., R. Li, T. Xu, Z. Zhang, T. Wu, S. Pan, and X. Xu. 2021. Flavonoids from the mung bean coat promote longevity and fitness in Caenorhabditis elegans. Food & Function 12 (17):8196–207. doi: 10.1039/D1FO01322J.
  • Thakur, S., S. K. Gupta, V. Ali, P. Singh, and M. Verma. 2021. Aldose Reductase: A cause and a potential target for the treatment of diabetic complications. Archives of Pharmacal Research 44 (7):655–67. doi: 10.1007/s12272-021-01343-5.
  • Tiwari, U., and C. Brennan. 2021. Chapter 8 - Pulses nonstarch polysaccharides. In Pulse foods, ed. B. K. Tiwari, A. Gowen, and B. McKenna, 2nd ed., 177–92. London, UK: Academic Press.
  • Trigo, J. P., E. M. C. Alexandre, J. A. Saraiva, and M. E. Pintado. 2020. High value-added compounds from fruit and vegetable by-products – Characterization, bioactivities, and application in the development of novel food products. Critical Reviews in Food Science and Nutrition 60 (8):1388–416. doi: 10.1080/10408398.2019.1572588.
  • Troszyńska, A., and E. Ciska. 2011. Phenolic compounds of seed coats of white and coloured varieties of pea (Pisumsativum L.) and their total antioxidant activity. Czech Journal of Food Sciences 20 (1):15–22. doi: 10.17221/3504-CJFS.
  • Verma, A. K., R. Banerjee, and B. D. Sharma. 2011. Quality of low fat chicken nuggets: Effect of sodium chloride replacement and added chickpea (Cicer arietinum L.) hull flour. Asian-Australasian Journal of Animal Sciences 25 (2):291–8. doi: 10.5713/ajas.2011.11263.
  • Verma, A. K., R. Banerjee, and B. D. Sharma. 2015. Quality characteristics of low fat chicken nuggets: Effect of salt substitute blend and pea hull flour. Journal of Food Science and Technology 52 (4):2288–95. doi: 10.1007/s13197-013-1218-1.
  • Viana da Silva, M., M. R. C. Santos, I. R. Alves Silva, E. B. Macedo Viana, D. A. Dos Anjos, I. A. Santos, N. G. Barbosa de Lima, C. Wobeto, N. Jorge, and S. C. D. S. Lannes. 2021. Synthetic and natural antioxidants used in the oxidative stability of edible oils: An overview. Food Reviews International: 1–24. doi: 10.1080/87559129.2020.1869775.
  • Wei, T., X. Ji, J. Xue, Y. Gao, X. Zhu, and G. Xiao. 2021. Cyanidin-3-O-glucoside represses tumor growth and invasion in vivo by suppressing autophagy via inhibition of the JNK signaling pathways. Food & Function 12 (1):387–96. doi: 10.1039/D0FO02107E.
  • Xie, J., Q. Song, Q. Yu, Y. Chen, Y. Hong, and M. Shen. 2022. Dietary polysaccharide from mung bean [Vigna radiate (Linn.) Wilczek] skin modulates gut microbiota and short-chain fatty acids in mice. International Journal of Food Science & Technology 57 (5):2581–9. doi: 10.1111/ijfs.15030.
  • Xiong, M., M. Zhao, Z. Lu, and P. Balasubramanian. 2020. Genotypic variation for phenolic compounds in developing and whole seeds, and storage conditions influence visual seed quality of yellow dry bean genotypes. Canadian Journal of Plant Science 100 (3):284–95. doi: 10.1139/cjps-2019-0153.
  • Xu, H., Q. Zhou, B. Liu, K. Cheng, F. Chen, and M. Wang. 2021. Neuroprotective potential of mung bean (Vigna radiata L.) polyphenols in Alzheimer’s disease: A review. Journal of Agricultural and Food Chemistry 69 (39):11554–71. doi: 10.1021/acs.jafc.1c04049.
  • Yao, Y., F. Chen, M. Wang, J. Wang, and G. Ren. 2008. Antidiabetic activity of mung bean extracts in diabetic KK-Ay mice. Journal of Agricultural and Food Chemistry 56 (19):8869–73. doi: 10.1021/jf8009238.
  • Yeo, J., and F. Shahidi. 2020. Identification and quantification of soluble and insoluble-bound phenolics in lentil hulls using HPLC-ESI-MS/MS and their antioxidant potential. Food Chemistry 315:126202. doi: 10.1016/j.foodchem.2020.126202.
  • Yeo, J., R. Tsao, Y. Sun, and F. Shahidi. 2021. Liberation of insoluble-bound phenolics from lentil hull matrices as affected by Rhizopus oryzae fermentation: Alteration in phenolic profiles and their inhibitory capacities against low-density lipoprotein (LDL) and DNA oxidation. Food Chemistry 363:130275. doi: 10.1016/j.foodchem.2021.130275.
  • Zdunek, A., P. M. Pieczywek, and J. Cybulska. 2021. The primary, secondary, and structures of higher levels of pectin polysaccharides. Comprehensive Reviews in Food Science and Food Safety 20 (1):1101–17. doi: 10.1111/1541-4337.12689.
  • Zeb, A. 2020. Concept, mechanism, and applications of phenolic antioxidants in foods. Journal of Food Biochemistry 44 (9):e13394. doi: 10.1111/jfbc.13394.
  • Zhao, P., L. Chu, K. Wang, B. Zhao, Y. Li, K. Yang, and P. Wan. 2022. Analyses on the pigment composition of different seed coat colors in adzuki bean. Food Science & Nutrition. doi: 10.1002/fsn3.2866.
  • Zheng, Y., S. Liu, J. Xie, Y. Chen, R. Dong, X. Zhang, S. Liu, J. Xie, X. Hu, and Q. Yu. 2020. Antioxidant, α-amylase and α-glucosidase inhibitory activities of bound polyphenols extracted from mung bean skin dietary fiber. LWT 132:109943. doi: 10.1016/j.lwt.2020.109943.
  • Zhong, K., W. Lin, Q. Wang, and S. Zhou. 2012. Extraction and radicals scavenging activity of polysaccharides with microwave extraction from mung bean hulls. International Journal of Biological Macromolecules 51 (4):612–7. doi: 10.1016/j.ijbiomac.2012.06.032.
  • Zhong, L., H. Ali, Z. Fang, M. L. Wahlqvist, J. M. Hodgson, and S. K. Johnson. 2020. Lupin seed coat as a promising food ingredient: Physicochemical, nutritional, antioxidant properties, and effect of genotype and environment. International Journal of Food Science & Technology 55 (4):1816–24. doi: 10.1111/ijfs.14460.
  • Zhong, L., Z. Fang, M. L. Wahlqvist, G. Wu, J. M. Hodgson, and S. K. Johnson. 2018. Seed coats of pulses as a food ingredient: Characterization, processing, and applications. Trends in Food Science & Technology 80:35–42. doi: 10.1016/j.tifs.2018.07.021.
  • Zhong, L., G. Wu, Z. Fang, M. L. Wahlqvist, J. M. Hodgson, M. W. Clarke, E. Junaldi, and S. K. Johnson. 2019. Characterization of polyphenols in Australian sweet lupin (Lupinus angustifolius) seed coat by HPLC-DAD-ESI-MS/MS. Food Research International (Ottawa, ON) 116:1153–62. doi: 10.1016/j.foodres.2018.09.061.
  • Zhou, Y., J. Zheng, R.-Y. Gan, T. Zhou, D.-P. Xu, and H.-B. Li. 2017. Optimization of ultrasound-assisted extraction of antioxidants from the mung bean coat. Molecules 22 (4):638. doi: 10.3390/molecules22040638.
  • Zhu, M.-Z., F. Zhou, J. Ouyang, Q.-Y. Wang, Y.-L. Li, J.-L. Wu, J.-A. Huang, and Z.-H. Liu. 2021. Combined use of epigallocatechin-3-gallate (EGCG) and caffeine in low doses exhibits marked anti-obesity synergy through regulation of gut microbiota and bile acid metabolism. Food & Function 12 (9):4105–16. doi: 10.1039/D0FO01768J.
  • Zhu, S., W. Li, J. Li, A. Jundoria, A. E. Sama, and H. Wang. 2012. It is not just folklore: The aqueous extract of mung bean coat is protective against sepsis. Evidence-Based Complementary and Alternative Medicine 2012 (2012):1–10. doi: 10.1155/2012/498467.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.