718
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Health functions and related molecular mechanisms of ellagitannin-derived urolithins

, , ORCID Icon, , , ORCID Icon, , , , & show all

References

  • Abdelazeem, K. M., M. Z. Kalo, S. Beer-Hammer, and F. Lang. 2021. The gut microbiota metabolite urolithin A inhibits NF-kB activation in LPS stimulated BMDMs. Scientific Reports 11 (1): 1–16. doi: 10.1038/s41598-021-86514-6.
  • Adachi, S.-I., K. Sasaki, S. Kondo, W. Komatsu, F. Yoshizawa, H. Isoda, and K. Yagasaki. 2020. Antihyperuricemic effect of urolithin A in cultured hepatocytes and model mice. Molecules 25 (21):5136–51. doi: 10.3390/molecules25215136.
  • Ahsan, A., Y.-R. Zheng, X. L. Wu, W. D. Tang, M. R. Liu, S. J. Ma, L. Jiang, W. W. Hu, X. N. Zhang, and Z. Chen. 2019. Urolithin A-activated autophagy but not mitophagy protects against ischemic neuronal injury by inhibiting ER stress in vitro and in vivo. CNS Neuroscience & Therapeutics 25 (9):976–86. doi: 10.1111/cns.13136.
  • Alauddin, M., T. Okumura, J. Rajaxavier, S. Khozooei, S. Pöschel, S. Takeda, Y. Singh, S. Y. Brucker, D. Wallwiener, A. Koch, et al. 2020. Gut bacterial metabolite urolithin A decreases actin polymerization and migration in cancer cells. Molecular Nutrition & Food Research 64 (7):1900390. doi: 10.1002/mnfr.201900390.
  • Andreux, P. A., W. Blanco-Bose, D. Ryu, F. Burdet, M. Ibberson, P. Aebischer, J. Auwerx, A. Singh, and C. Rinsch. 2019. The mitophagy activator urolithin A is safe and induces a molecular signature of improved mitochondrial and cellular health in humans. Nature Metabolism 1 (6):595–603. doi: 10.1038/s42255-019-0073-4.
  • Bakkalbaşi, E., O. Menteş, and N. Artik. 2009. Food ellagitannins-occurrence, effects of processing and storage. Critical Reviews in Food Science and Nutrition 49 (3):283–98. doi: 10.1080/10408390802064404.
  • Bayle, M., C. Roques, B. Marion, M. Audran, C. Oiry, F. M. M. Bressolle-Gomeni, and G. Cros. 2016. Development and validation of a liquid chromatography-electrospray ionization-tandem mass spectrometry method for the determination of urolithin C in rat plasma and its application to a pharmacokinetic study. Journal of Pharmaceutical and Biomedical Analysis 131 (30):33–9. doi: 10.1016/j.jpba.2016.07.046.
  • Bayle, M., J. Neasta, M. Dall'Asta, G. Gautheron, A. Virsolvy, J.-F. Quignard, E. Youl, R. Magous, J.-F. Guichou, A. Crozier, et al. 2019. The ellagitannin metabolite urolithin C is a glucose-dependent regulator of insulin secretion through activation of L-type calcium channels. British Journal of Pharmacology 176 (20):4065–78. doi: 10.1111/bph.14821.
  • Beltran, D., M. Romo-Vaquero, J. C. Espin, F. A. Tomas-Barberan, and M. V. Selma. 2018. Ellagibacter isourolithinifaciens gen. nov., sp. nov., a new member of the family eggerthellaceae, isolated from human gut. International Journal of Systematic and Evolutionary Microbiology 68 (5):1707–12. doi: 10.1099/ijsem.0.002735.
  • Bhat, Z. Y., P. Cadnapaphornchai, K. Ginsburg, M. Sivagnanam, S. Chopra, C. K. Treadway, H. S. Lin, G. Yoo, A. Sukari, and M. D. Doshi. 2015. Understanding the risk factors and long-term consequences of cisplatin-associated acute kidney injury: an observational cohort study. PLoS One 10 (11):e0142225–9. doi: 10.1371/journal.pone.0142225.
  • Boakye, Y. D., L. Groyer, and E. H. Heiss. 2018. An increased autophagic flux contributes to the anti-inflammatory potential of urolithin A in macrophages. Biochimica et Biophysica Acta. General Subjects 1862 (1):61–70. doi: 10.1016/j.bbagen.2017.10.006.
  • Boyd, A. W., P. F. Bartlett, and M. Lackmann. 2014. Therapeutic targeting of EPH receptors and their ligands. Nature Reviews. Drug Discovery 13 (1):39–62. doi: 10.1038/nrd4175.
  • Bratic, A, and N. G. Larsson. 2013. The role of mitochondria in aging. The Journal of Clinical Investigation 123 (3):951–7. doi: 10.1172/JCI64125.
  • Cai, Y. Z., S. Mei, X. Jie, Q. Luo, and H. Corke. 2006. Structure-radical scavenging activity relationships of phenolic compounds from traditional chinese medicinal plants. Life Sciences 78 (25):2872–88. doi: 10.1016/j.lfs.2005.11.004.
  • Cao, S.-Y., C.-N. Zhao, X.-Y. Xu, G.-Y. Tang, H. Corke, R.-Y. Gan, and H.-B. Li. 2019. Dietary plants, gut microbiota, and obesity: effects and mechanisms. Trends in Food Science & Technology 92 (2019):194–204. doi: 10.1016/j.tifs.2019.08.004.
  • Cao, S. Y., B. Y. Li, R. Y. Gan, Q. Q. Mao, Y. F. Wang, A. Shang, J. M. Meng, X. Y. Xu, X. L. Wei, and H. B. Li. 2020. The in vivo antioxidant and hepatoprotective actions of selected Chinese teas. Foods 9 (3):262–23. doi: 10.3390/foods9030262.
  • Cásedas, G., F. Les, C. Choya-Foces, M. Hugo, and V. López. 2020. The metabolite urolithin-A ameliorates oxidative stress in neuro-2a cells, becoming a potential neuroprotective agent. Antioxidants 9 (2):177–93. doi: 10.3390/antiox9020177.
  • Chen, P., F. Chen, J. Lei, Q. Li, and B. Zhou. 2019. Activation of the miR-34a-mediated SIRT1/mTOR signaling pathway by urolithin A attenuates D-galactose-induced brain aging in mice. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics 16 (4):1269–82. doi: 10.1007/s13311-019-00753-0.
  • Chen, P., J. Lei, F. Chen, and B. Zhou. 2020. Ameliorative effect of urolithin A on D-gal-induced liver and kidney damage in aging mice via its antioxidative, anti-inflammatory and antiapoptotic properties. RSC Advances 10 (14):8027–38. doi: 10.1039/d0ra00774a.
  • Cheng, F., J. Dou, Y. Zhang, X. Wang, H. Wei, Z. Zhang, Y. Cao, and Z. Wu. 2021. Urolithin A inhibits epithelial–mesenchymal transition in lung cancer cells via P53-Mdm2-snail pathway. OncoTargets and Therapy 14 (14):3199–208. doi: 10.2147/OTT.S305595.
  • Cohen, E. E. W., R. B. Bell, C. B. Bifulco, B. Burtness, M. L. Gillison, K. J. Harrington, Q. T. Le, N. Y. Lee, R. Leidner, R. L. Lewis, et al. 2019. The society for immunotherapy of cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). Journal for Immunotherapy of Cancer 7 (1):184. doi: 10.1186/s40425-019-0662-5.
  • Crudo, F., A. Barilli, P. Mena, B. M. Rotoli, D. Del Rio, C. Dall'Asta, and L. Dellafiora. 2021. An in vitro study on the transport and phase II metabolism of the mycotoxin alternariol in combination with the structurally related gut microbial metabolite urolithin C. Toxicology Letters 340 (2021):15–22. doi: 10.1016/j.toxlet.2021.01.007.
  • Cruz-Jentoft, A. J., G. Bahat, J. Bauer, Y. Boirie, O. Bruyère, T. Cederholm, C. Cooper, F. Landi, Y. Rolland, A. A. Sayer, Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2, et al. 2019. Sarcopenia: revised European consensus on definition and diagnosis. Age and Ageing 48 (1):16–31. doi: 10.1093/ageing/afy169.
  • Cui, G. H., W. Q. Chen, and Z. Y. Shen. 2018. Urolithin A shows anti-atherosclerotic activity via activation of class B scavenger receptor and activation of Nef2 signaling pathway. Pharmacological Reports 70 (3):519–24. doi: 10.1016/j.pharep.2017.04.020.
  • Dahiya, N. R., B. Chandrasekaran, V. Kolluru, M. Ankem, C. Damodaran, and M. V. Vadhanam. 2018. A natural molecule, urolithin A, downregulates androgen receptor activation and suppresses growth of prostate cancer. Molecular Carcinogenesis 57 (10):1332–41. doi: 10.1002/mc.22848.
  • Dellafiora, L., M. Milioli, A. Falco, M. Interlandi, A. Mohamed, M. Frotscher, B. Riccardi, P. Puccini, D. Del Rio, G. Galaverna, et al. 2020. A hybrid in silico/in vitro target fishing study to mine novel targets of urolithin A and B: a step towards a better comprehension of their estrogenicity. Molecular Nutrition & Food Research 64 (16):2000289–31. doi: 10.1002/mnfr.202000289.
  • Ding, S.-L., Z.-Y. Pang, Z.-M. Chen, Z. Li, X.-X. Liu, Q.-L. Zhai, J.-M. Huang, and Z.-Y. Ruan. 2020. Urolithin a attenuates IL-1β-induced inflammatory responses and cartilage degradation via inhibiting the MAPK/NF-κB signaling pathways in rat articular chondrocytes. Journal of Inflammation (London, England) 17(:13– doi: 10.1186/s12950-020-00242-8.
  • Diop, E. H. A., E. F. Queiroz, L. Marcourt, S. Kicka, S. Rudaz, T. Diop, T. Soldati, and J. L. Wolfender. 2019. Antimycobacterial activity in a single-cell infection assay of ellagitannins from Combretum aculeatum and their bioavailable metabolites. Journal of Ethnopharmacology 238 (2019):111832–1. doi: 10.1016/j.jep.2019.111832.
  • El-Wetidy, M. S., R. Ahmad, I. Rady, H. Helal, M. I. Rady, M.-A. Vaali-Mohammed, K. Al-Khayal, T. B. Traiki, and M.-H. Abdulla. 2021. Urolithin A induces cell cycle arrest and apoptosis by inhibiting Bcl-2, increasing p53-p21 proteins and reactive oxygen species production in colorectal cancer cells. Cell Stress & Chaperones 26 (3):473–93. doi: 10.1007/s12192-020-01189-8.
  • Espin, J. C., M. Larrosa, M. T. Garcia-Conesa, and F. Tomas-Barberan. 2013. Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far. Evidence-Based Complementary and Alternative Medicine: eCAM 2013:270418–5. doi: 10.1155/2013/270418.
  • Evtyugin, D. D., S. Magina, and D. V. Evtuguin. 2020. Recent advances in the production and applications of ellagic acid and its derivatives: a review. Molecules 25 (12):2745–20. doi: 10.3390/molecules25122745.
  • Farha, A. K., R.-Y. Gan, H.-B. Li, D.-T. Wu, A. G. Atanasov, K. Gul, J.-R. Zhang, Q.-Q. Yang, and H. Corke. 2020a. The anticancer potential of the dietary polyphenol rutin: current status, challenges, and perspectives. Critical Reviews in Food Science and Nutrition 62 (3):832–28. doi: 10.1080/10408398.2020.1829541.
  • Farha, A. K., Q.-Q. Yang, G. Kim, H.-B. Li, F. Zhu, H.-Y. Liu, R.-Y. Gan, and H. Corke. 2020b. Tannins as an alternative to antibiotics. Food Bioscience 38 (2020):100751–14. doi: 10.1016/j.fbio.2020.100751.
  • Ferlay, J., M. Ervik, F. Lam, M. Colombet, L. Mery, and M. Piñeros. 2020. Global cancer observatory: Cancer today. Lyon: International Agency for Research on Cancer; 2020.
  • Fu, X., L.-F. Gong, Y.-F. Wu, Z. Lin, B.-J. Jiang, L. Wu, and K.-H. Yu. 2019. Urolithin A targets the PI3K/Akt/NF-κB pathways and prevents IL-1β-induced inflammatory response in human osteoarthritis: in vitro and in vivo studies. Food & Function 10 (9):6135–46. doi: 10.1039/c9fo01332.
  • Gandhi, G. R., G. Jothi, T. Mohana, A. B. S. Vasconcelos, M. M. Montalvao, G. Hariharan, G. Sridharan, P. M. Kumar, R. Q. Gurgel, H. B. Li, et al. 2021. Anti-inflammatory natural products as potential therapeutic agents of rheumatoid arthritis: a systematic review. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 93 (2021):153766–12. doi: 10.1016/j.phymed.2021.153766.
  • Gandhi, G. R., A. B. S. Vasconcelos, D. T. Wu, H. B. Li, P. J. Antony, H. Li, F. Geng, R. Q. Gurgel, N. Narain, and R. Y. Gan. 2020. Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: a systematic review of in vitro and in vivo studies. Nutrients 12 (10):2907–32. doi: 10.3390/nu12102907.
  • Gao, H., X. Huang, Y. Tong, and X. Jiang. 2020. Urolithin B improves cardiac function and reduces susceptibility to ventricular arrhythmias in rats after myocardial infarction. European Journal of Pharmacology 871 (2020):172936. doi: 10.1016/j.ejphar.2020.172936.
  • Ghosh, N., A. Das, N. Biswas, S. Gnyawali, K. Singh, M. Gorain, C. Polcyn, S. Khanna, S. Roy, and C. K. Sen. 2020. Urolithin A augments angiogenic pathways in skeletal muscle by bolstering NAD + and SIRT1. Scientific Reports 10 (1):1–13. doi: 10.1038/s41598-020-76564-7.
  • Giménez-Bastida, J. A., M. A. Ávila-Gálvez, J. C. Espín, and A. González-Sarrías. 2020. The gut microbiota metabolite urolithin A, but not other relevant urolithins, induces p53-dependent cellular senescence in human colon cancer cells. Food and Chemical Toxicology 139 (2020):111260–10. doi: 10.1016/j.fct.2020.111260.
  • Giménez-Bastida, J. A., A. Gonzalez-Sarrias, M. Larrosa, F. Tomas-Barberan, J. C. Espin, and M. T. Garcia-Conesa. 2012. Ellagitannin metabolites, urolithin A glucuronide and its aglycone urolithin A, ameliorate TNF-alpha-induced inflammation and associated molecular markers in human aortic endothelial cells. Molecular Nutrition & Food Research 56 (5):784–96. doi: 10.1002/mnfr.201100677.
  • Giorgio, C., P. Mena, D. Del Rio, F. Brighenti, E. Barocelli, I. Hassan Mohamed, D. Callegari, A. Lodola, and M. Tognolini. 2015. The ellagitannin colonic metabolite urolithin D selectively inhibits Epha2 phosphorylation in prostate cancer cells. Molecular Nutrition & Food Research 59 (11):2155–67. doi: 10.1002/mnfr.201500470.
  • Gong, Z., J. Huang, B. Xu, Z. Ou, L. Zhang, X. Lin, X. Ye, X. Kong, D. Long, X. Sun, et al. 2019. Urolithin A attenuates memory impairment and neuroinflammation in APP/PS1 mice. Journal of Neuroinflammation 16 (1):1–13. doi: 10.1186/s12974-019-1450-3.
  • González-Sarrías, A., V. Miguel, G. Merino, R. Lucas, J. C. Morales, F. Tomás-Barberán, A. I. Alvarez, and J. C. Espín. 2013. The gut microbiota ellagic acid-derived metabolite urolithin A and its sulfate conjugate are substrates for the drug efflux transporter breast cancer resistance protein (ABCG2/BCRP). Journal of Agricultural and Food Chemistry 61 (18):4352–9. doi: 10.1021/jf4007505.
  • González-Sarrías, A., M. Á. Núñez-Sánchez, R. García-Villalba, F. A. Tomás-Barberán, and J. C. Espín. 2017. Antiproliferative activity of the ellagic acid-derived gut microbiota isourolithin A and comparison with its urolithin A isomer: the role of cell metabolism. European Journal of Nutrition 56 (2):831–41. doi: 10.1007/s00394-015-1131-7.
  • González-Sarrias, A., M. A. Nunez-Sanchez, J. Tome-Carneiro, F. A. Tomas-Barberan, M. T. Garcia-Conesa, and J. C. Espin. 2016. Comprehensive characterization of the effects of ellagic acid and urolithins on colorectal cancer and key-associated molecular hallmarks: microrna cell specific induction of CDKN1A (p21) as a common mechanism involved. Molecular Nutrition and Food Research 60 (4):701–16. doi: 10.1002/mnfr.201500780.
  • Gonzalez-Sarrias, A., J. Tome-Carneiro, A. Bellesia, F. A. Tomas-Barberan, and J. C. Espin. 2015. The ellagic acid-derived gut microbiota metabolite, urolithin A, potentiates the anticancer effects of 5-fluorouracil chemotherapy on human colon cancer cells. Food & Function 6 (5):1460–9. doi: 10.1039/c5fo00120j.
  • Guada, M., R. Ganugula, M. Vadhanam, and M. N. V. Ravi Kumar. 2017. Urolithin A mitigates cisplatin-induced nephrotoxicity by inhibiting renal inflammation and apoptosis in an experimental rat model. The Journal of Pharmacology and Experimental Therapeutics 363 (1):58–65. doi: 10.1124/jpet.117.242420.
  • Gyawali, B., S. P. Hey, and A. S. Kesselheim. 2019. Assessment of the clinical benefit of cancer drugs receiving accelerated approval. JAMA Internal Medicine 179 (7):906–13. doi: 10.1001/jamainternmed.2019.0462.
  • Han, Q., D. Su, C. Shi, P. Liu, Y. Wang, B. Zhu, and X. Xia. 2020. Urolithin A attenuated ox-LDL-induced cholesterol accumulation in macrophages partly through regulating miR-33a and ERK/AMPK/SREBP1 signaling pathways. Food & Function 11 (4):3432–40. doi: 10.1039/C9FO02471A.
  • Han, Q. A., C. Yan, L. Wang, G. Li, Y. Xu, and X. Xia. 2016. Urolithin A attenuates ox-LDL-induced endothelial dysfunction partly by modulating microRNA-27 and ERK/PPAR-gamma pathway. Molecular Nutrition & Food Research 60 (9):1933–43. doi: 10.1002/mnfr.201500827.
  • Heilman, J., P. Andreux, N. Tran, C. Rinsch, and W. Blanco-Bose. 2017. Safety assessment of urolithin A, a metabolite produced by the human gut microbiota upon dietary intake of plant derived ellagitannins and ellagic acid. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 108 (Pt A):289–97. doi: 10.1016/j.fct.2017.07.050.
  • Hering, N. A., J. Luettig, B. Jebautzke, J. D. Schulzke, and R. Rosenthal. 2021. The punicalagin metabolites ellagic acid and urolithin A exert different strengthening and anti-inflammatory effects on tight junction-mediated intestinal barrier function in vitro. Frontiers in Pharmacology 12:610164. doi: 10.3389/fphar.2021.610164.
  • Hodgkinson, K., L. A. Forrest, N. Vuong, K. Garson, B. Djordjevic, and B. C. Vanderhyden. 2018. GREB1 is an estrogen receptor-regulated tumour promoter that is frequently expressed in ovarian cancer. Oncogene 37 (44):5873–86. doi: 10.1038/s41388-018-0377-y.
  • Ishimoto, H., M. Shibata, Y. Myojin, H. Ito, Y. Sugimoto, A. Tai, and T. Hatano. 2011. In vivo anti-inflammatory and antioxidant properties of ellagitannin metabolite urolithin A. Bioorganic & Medicinal Chemistry Letters 21 (19):5901–4. doi: 10.1016/j.bmcl.2011.07.086.
  • Ito, H. 2011. Metabolites of the ellagitannin geraniin and their antioxidant activities. Planta Medica 77 (11):1110–5. doi: 10.1055/s-0030-1270749.
  • Jing, T., J. Liao, K. Shen, X. Chen, Z. Xu, W. Tian, Y. Wang, B. Jin, and H. Pan. 2019. Protective effect of urolithin A on cisplatin-induced nephrotoxicity in mice via modulation of inflammation and oxidative stress. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 129:108–14. doi: 10.1016/j.fct.2019.04.031.
  • Kallio, T., J. Kallio, M. Jaakkola, M. Maki, P. Kilpelainen, and V. Virtanen. 2013. Urolithins display both antioxidant and pro-oxidant activities depending on assay system and conditions. Journal of Agricultural and Food Chemistry 61 (45):10720–9. doi: 10.1021/jf403208d.
  • Kang, I., Y. Kim, F. A. Tomas-Barberan, J. C. Espin, and S. Chung. 2016. Urolithin A, C, and D, but not iso-urolithin A and urolithin B, attenuate triglyceride accumulation in human cultures of adipocytes and hepatocytes. Molecular Nutrition & Food Research 60 (5):1129–38. doi: 10.1002/mnfr.201500796.
  • Kim, K. B., S. Lee, and J. H. Kim. 2020. Neuroprotective effects of urolithin A on H2O2-induced oxidative stress-mediated apoptosis in SK-N-MC cells. Nutrition Research and Practice 14 (1):3–11. doi: 10.4162/nrp.2020.
  • Kinney, J. W., S. M. Bemiller, A. S. Murtishaw, A. M. Leisgang, A. M. Salazar, and B. T. Lamb. 2018. Inflammation as a central mechanism in Alzheimer's disease. Alzheimer's & Dementia (New York, N. Y.) 4 (2018):575–90. doi: 10.1016/j.trci.2018.06.014.
  • Komatsu, W., H. Kishi, K. Yagasaki, and S. Ohhira. 2018. Urolithin A attenuates pro-inflammatory mediator production by suppressing PI3-K/Akt/NF-kappaB and JNK/AP-1 signaling pathways in lipopolysaccharide-stimulated RAW264 macrophages: possible involvement of NADPH oxidase-derived reactive oxygen species. European Journal of Pharmacology 833 (2018):411–24. doi: 10.1016/j.ejphar.2018.06.023.
  • Kujawska, M., M. Jourdes, M. Kurpik, M. Szulc, H. Szaefer, P. Chmielarz, G. Kreiner, V. Krajka-Kuźniak, P. Ł. Mikołajczak, P.-L. Teissedre, et al. 2019. Neuroprotective effects of pomegranate juice against Parkinson's disease and presence of ellagitannins-derived metabolite-urolithin A in the brain. International Journal of Molecular Sciences 21 (1):202–20. doi: 10.3390/ijms21010202.
  • Lacas, B., J. Bourhis, J. Overgaard, Q. Zhang, V. Grégoire, M. Nankivell, B. Zackrisson, Z. Szutkowski, R. Suwiński, M. Poulsen, MARCH Collaborative Group, et al. 2017. Role of radiotherapy fractionation in head and neck cancers (March): an updated meta-analysis. The Lancet. Oncology 18 (9):1221–37. doi: 10.1016/S1470-2045(17)30458-8.
  • Lall, N. 2018. Medicinal plants for holistic health and well-being. London, United Kingdom: Academic Press, an Imprint of Elsevier.
  • Larrosa, M., A. Gonzalez-Sarrias, M. J. Yanez-Gascon, M. V. Selma, M. Azorin-Ortuno, S. Toti, F. Tomas-Barberan, P. Dolara, and J. C. Espin. 2010. Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on phenolic metabolism. The Journal of Nutritional Biochemistry 21 (8):717–25. doi: 10.1016/j.jnutbio.2009.04.012.
  • Larsson, L., H. Degens, M. Li, L. Salviati, Y. I. Lee, W. Thompson, J. L. Kirkland, and M. Sandri. 2019. Sarcopenia: aging-related loss of muscle mass and function. Physiological Reviews 99 (1):427–511. doi: 10.1152/physrev.00061.2017.
  • Lee, G., J. S. Park, E. J. Lee, J. H. Ahn, and H. S. Kim. 2019. Anti-inflammatory and antioxidant mechanisms of urolithin B in activated microglia. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 55 (2018):50–7. doi: 10.1016/j.phymed.2018.06.032.
  • Lee, H. J., Y. H. Jung, G. E. Choi, J. S. Kim, C. W. Chae, J. R. Lim, S. Y. Kim, J. H. Yoon, J. H. Cho, S.-J. Lee, et al. 2021. Urolithin A suppresses high glucose-induced neuronal amyloidogenesis by modulating TGM2-dependent ER-mitochondria contacts and calcium homeostasis. Cell Death and Differentiation 28 (1):184–202. doi: 10.1038/s41418-020-0593-1.
  • Les, F., J. M. Arbones-Mainar, M. S. Valero, and V. Lopez. 2018. Pomegranate polyphenols and urolithin A inhibit alpha-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. Journal of Ethnopharmacology 220 (2018):67–74. doi: 10.1016/j.jep.2018.03.029.
  • Li, B. Y., X. Y. Xu, R. Y. Gan, Q. C. Sun, J. M. Meng, A. Shang, Q. Q. Mao, and H. B. Li. 2019. Targeting gut microbiota for the prevention and management of diabetes mellitus by dietary natural products. Foods 8 (10):440–18. doi: 10.3390/foods8100440.
  • Li, Q., K. Li, Z. Chen, and B. Zhou. 2020. Anti-renal fibrosis and anti-inflammation effect of urolithin B, ellagitannin-gut microbial-derived metabolites in unilateral ureteral obstruction rats. Journal of Functional Foods 65 (2020):103748–13. doi: 10.1016/j.jff.2019.103748.
  • Liberal, J., A. Carmo, C. Gomes, M. T. Cruz, and M. T. Batista. 2017. Urolithins impair cell proliferation, arrest the cell cycle and induce apoptosis in UMUC3 bladder cancer cells. Investigational New Drugs 35 (6):671–81. doi: 10.1007/s10637-017-0483-7.
  • Lin, J., J. Zhuge, X. Zheng, Y. Wu, Z. Zhang, T. Xu, Z. Meftah, H. Xu, Y. Wu, N. Tian, et al. 2020a. Urolithin A-induced mitophagy suppresses apoptosis and attenuates intervertebral disc degeneration via the AMPK signaling pathway. Free Radical Biology & Medicine 150 (2020):109–19. doi: 10.1016/j.freeradbiomed.2020.02.024.
  • Lin, X.-H., X.-J. Ye, Q.-F. Li, Z. Gong, X. Cao, J.-H. Li, S.-T. Zhao, X.-D. Sun, X.-S. He, and A.-G. Xuan. 2020b. Urolithin A prevents focal cerebral ischemic injury via attenuating apoptosis and neuroinflammation in mice. Neuroscience 448 (2020):94–106. doi: 10.1016/j.neuroscience.2020.09.027.
  • Liu, C. F., X. L. Li, Z. L. Zhang, L. Qiu, S. X. Ding, J. X. Xue, G. P. Zhao, and J. Li. 2019. Antiaging effects of urolithin A on replicative senescent human skin fibroblasts. Rejuvenation Research 22 (3):191–200. doi: 10.1089/rej.2018.2066.
  • Liu, H., H. Kang, C. Song, Z. Lei, L. Li, J. Guo, Y. Xu, H. Guan, Z. Fang, and F. Li. 2018. Urolithin A inhibits the catabolic effect of TNF-alpha on nucleus pulposus cell and alleviates intervertebral disc degeneration in vivo. Frontiers in Pharmacology 9:1043:1–11. doi: 10.3389/fphar.2018.01043.
  • Livingston, S., S. Mallick, D. A. Lucas, M. S. Sabir, Z. L. Sabir, H. Purdin, S. Nidamanuri, C. A. Haussler, M. R. Haussler, and P. W. Jurutka. 2020. Pomegranate derivative urolithin A enhances vitamin D receptor signaling to amplify serotonin-related gene induction by 1,25-dihydroxyvitamin D. Biochemistry and Biophysics Reports 24 (2020):100825–11. doi: 10.1016/j.bbrep.2020.100825.
  • Lv, M., C. Shi, F. Pan, J. Shao, L. Feng, G. Chen, C. Ou, J. Zhang, and W. Fu. 2019. Urolithin B suppresses tumor growth in hepatocellular carcinoma through inducing the inactivation of Wnt/catenin signaling. Journal of Cellular Biochemistry 120 (10):17273–82. doi: 10.1002/jcb.28989.
  • Loos, R. J. F, and G. S. H. Yeo. 2022. The genetics of obesity: from discovery to biology. Nature Reviews. Genetics 23 (2):120–33. doi: 10.1038/s41576-021-00414-z.
  • Luo, M., R. Y. Gan, B. Y. Li, Q. Q. Mao, A. Shang, X. Y. Xu, H. Y. Li, and H. B. Li. 2021. Effects and mechanisms of tea on Parkinson’s disease, Alzheimer’s disease and depression. Food Reviews International 2021:1–29. doi: 10.1080/87559129.2021.1904413.
  • Manigandan, S, and J. W. Yun. 2020. Urolithin A induces brown-like phenotype in 3T3-L1 white adipocytes via β3-adrenergic receptor-p38 MAPK signaling pathway. Biotechnology and Bioprocess Engineering 25 (3):345–55. doi: 10.1007/s12257-020-0149-8.
  • Mathijssen, R. H., A. Sparreboom, and J. Verweij. 2014. Determining the optimal dose in the development of anticancer agents. Nature Reviews. Clinical Oncology 11 (5):272–81. doi: 10.1038/nrclinonc.2014.40.
  • Muku, G. E., I. A. Murray, J. C. Espin, and G. H. Perdew. 2018. Urolithin A is a dietary microbiota-derived human aryl hydrocarbon receptor antagonist. Metabolites 8 (4):86–18. doi: 10.3390/metabo8040086.
  • Nagai, H, and Y. H. Kim. 2017. Cancer prevention from the perspective of global cancer burden patterns. Journal of Thoracic Disease 9 (3):448–51. doi: 10.21037/jtd.2017.02.75.
  • Newman, D. J, and G. M. Cragg. 2020. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products 83 (3):770–803. doi: 10.1021/acs.jnatprod.9b01285.
  • Norden, E, and E. H. Heiss. 2019. Urolithin A gains in antiproliferative capacity by reducing the glycolytic potential via the p53/TIGAR axis in colon cancer cells. Carcinogenesis 40 (1):93–101. doi: 10.1093/carcin/bgy158.
  • Núñez-Sánchez, M. Á., A. Karmokar, A. González-Sarrías, R. García-Villalba, F. A. Tomás-Barberán, M. T. García-Conesa, K. Brown, and J. C. Espín. 2016. In vivo relevant mixed urolithins and ellagic acid inhibit phenotypic and molecular colon cancer stem cell features: a new potentiality for ellagitannin metabolites against cancer. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 92 (2016):8–16. doi: 10.1016/j.fct.2016.03.011.
  • Piwowarski, J. P., A. K. Kiss, S. Granica, and T. Moeslinger. 2015. Urolithins, gut microbiota-derived metabolites of ellagitannins, inhibit lps-induced inflammation in RAW 264.7 murine macrophages. Molecular Nutrition & Food Research 59 (11):2168–77. doi: 10.1002/mnfr.201500264.
  • Qiu, Z., B. Zhou, L. Jin, H. Yu, L. Liu, Y. Liu, C. Qin, S. Xie, and F. Zhu. 2013. In vitro antioxidant and antiproliferative effects of ellagic acid and its colonic metabolite, urolithins, on human bladder cancer T24 cells. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 59 (2013):428–37. doi: 10.1016/j.fct.2013.06.025.
  • Qiu, Z., J. Zhou, C. Zhang, Y. Cheng, J. Hu, and G. Zheng. 2018. Antiproliferative effect of urolithin A, the ellagic acid-derived colonic metabolite, on hepatocellular carcinoma HepG2.2.15 cells by targeting Lin28a/let-7a axis. Brazilian Journal of Medical and Biological Research 51 (7):1–8. doi: 10.1590/1414-431x20187220.
  • Reach, G., V. Pechtner, R. Gentilella, A. Corcos, and A. Ceriello. 2017. Clinical inertia and its impact on treatment intensification in people with type 2 diabetes mellitus. Diabetes & Metabolism 43 (6):501–11. doi: 10.1016/j.diabet.2017.06.003.
  • Ren, J., N. N. Wu, S. Wang, J. R. Sowers, and Y. Zhang. 2021. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiological Reviews 101 (4):1745–807. doi: 10.1152/physrev.00030.2020.
  • Reuter, S., S. C. Gupta, M. M. Chaturvedi, and B. B. Aggarwal. 2010. Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biology & Medicine 49 (11):1603–16. doi: 10.1016/j.freeradbiomed.2010.09.006.
  • Rodriguez, J., N. Pierre, D. Naslain, F. Bontemps, D. Ferreira, F. Priem, L. Deldicque, and M. Francaux. 2017. Urolithin B, a newly identified regulator of skeletal muscle mass. Journal of Cachexia, Sarcopenia and Muscle 8 (4):583–97. doi: 10.1002/jcsm.12190.
  • Roessner, A., D. Kuester, P. Malfertheiner, and R. Schneider-Stock. 2008. Oxidative stress in ulcerative colitis-associated carcinogenesis. Pathology, Research and Practice 204 (7):511–24. doi: 10.1016/j.prp.2008.04.011.
  • Rubinsztein, D. C., G. Marino, and G. Kroemer. 2011. Autophagy and aging. Cell 146 (5):682–95. doi: 10.1016/j.cell.2011.07.030.
  • Rudno-Rudzińska, J., W. Kielan, E. Frejlich, K. Kotulski, W. Hap, K. Kurnol, P. Dzierżek, M. Zawadzki, and A. Hałoń. 2017. A review on Eph/ephrin, angiogenesis and lymphangiogenesis in gastric, colorectal and pancreatic cancers. Chinese Journal of Cancer Research = Chung-Kuo Yen Cheng Yen Chiu 29 (4):303–12. doi: 10.21147/j.issn.1000-9604.2017.04.03.
  • Rupiani, S., L. Guidotti, M. Manerba, L. D. Ianni, E. Giacomini, F. Falchi, G. D. Stefano, M. Roberti, and M. Recanatini. 2016. Synthesis of natural urolithin M6, a galloflavin mimetic, as a potential inhibitor of lactate dehydrogenase A. Organic & Biomolecular Chemistry 14 (46):10981–7. doi: 10.1039/C6OB01977C.
  • Ryu, D., L. Mouchiroud, P. A. Andreux, E. Katsyuba, N. Moullan, A. A. Nicolet-Dit-Felix, E. G. Williams, P. Jha, G. Lo Sasso, D. Huzard, et al. 2016. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nature Medicine 22 (8):879–88. doi: 10.1038/nm.4132.
  • Saha, P., B. S. Yeoh, R. Singh, B. Chandrasekar, P. K. Vemula, B. Haribabu, M. Vijay-Kumar, and V. R. Jala. 2016. Gut microbiota conversion of dietary ellagic acid into bioactive phytoceutical urolithin A inhibits heme peroxidases. PLoS One 11 (6):e0156811–21. doi: 10.1371/journal.pone.0156811.
  • Sala, R., P. Mena, M. Savi, F. Brighenti, A. Crozier, M. Miragoli, D. Stilli, and D. Del Rio. 2015. Urolithins at physiological concentrations affect the levels of pro-inflammatory cytokines and growth factor in cultured cardiac cells in hyperglucidic conditions. Journal of Functional Foods 15 (2015):97–105. doi: 10.1016/j.jff.2015.03.019.
  • Saleem, Y. I. M., H. Albassam, and M. Selim. 2020. Urolithin A induces prostate cancer cell death in p53-dependent and in p53-independent manner. European Journal of Nutrition 59 (4):1607–18. doi: 10.1007/s00394-019-02016-2.
  • Sánchez-González, C., C. J. Ciudad, V. Noé, and M. Izquierdo-Pulido. 2014. Walnut polyphenol metabolites, urolithins A and B, inhibit the expression of the prostate-specific antigen and the androgen receptor in prostate cancer cells. Food & Function 5 (11):2922–30. doi: 10.1039/C4FO00542B.
  • Sanchez-Gonzalez, C., C. J. Ciudad, M. Izquierdo-Pulido, and V. Noe. 2016. Urolithin A causes p21 up-regulation in prostate cancer cells. European Journal of Nutrition 55 (3):1099–112. doi: 10.1007/s00394-015-0924-z.
  • Savi, M., L. Bocchi, L. Bresciani, A. Falco, F. Quaini, P. Mena, F. Brighenti, A. Crozier, D. Stilli, and D. Del Rio. 2018. Trimethylamine-N-oxide (TMAO)-induced impairment of cardiomyocyte function and the protective role of urolithin B-glucuronide. Molecules 23 (3):549–12. doi: 10.3390/molecules23030549.
  • Savi, M., L. Bocchi, P. Mena, M. Dall’Asta, A. Crozier, F. Brighenti, D. Stilli, and D. Del Rio. 2017. In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovascular Diabetology 16 (1):1–13. doi: 10.1186/s12933-017-0561-3.
  • Seeram, N. P., S. M. Henning, Y. Zhang, M. Suchard, Z. Li, and D. Heber. 2006. Pomegranate juice ellagitannin metabolites are present in human plasma and some persist in urine for up to 48 hours. The Journal of Nutrition 136 (10):2481–5. doi: 10.1093/jn/136.10.2481. PMID: 16988113.
  • Sekar, D., R. Krishnan, M. Panagal, P. Sivakumar, V. Gopinath, and V. Basam. 2016. Deciphering the role of microRNA 21 in cancer stem cells (CSCs). Genes & Diseases 3 (4):277–81. doi: 10.1016/j.gendis.2016.05.002.
  • Selma, M. V., D. Beltran, R. Garcia-Villalba, J. C. Espin, and F. A. Tomas-Barberan. 2014a. Description of urolithin production capacity from ellagic acid of two human intestinal gordonibacter species. Food & Function 5 (8):1779–84. doi: 10.1039/c4fo00092g.
  • Selma, M. V., M. Romo-Vaquero, R. García-Villalba, A. González-Sarrías, F. A. Tomás-Barberán, and J. C. Espín. 2016. The human gut microbial ecology associated with overweight and obesity determines ellagic acid metabolism. Food & Function 7 (4):1769–74. doi: 10.1039/c5fo01100k.
  • Selma, M. V., F. A. Tomas-Barberan, D. Beltran, R. Garcia-Villalba, and J. C. Espin. 2014b. Gordonibacter urolithinfaciens sp. nov., a urolithin-producing bacterium isolated from the human gut. International Journal of Systematic and Evolutionary Microbiology 64 (Pt 7):2346–52. doi: 10.1099/ijs.0.055095-0.
  • Seravalle, G, and G. Grassi. 2017. Obesity and hypertension. Pharmacological Research 122 (2017):1–7. doi: 10.1016/j.phrs.2017.05.013.
  • Shang, A., R. Y. Gan, X. Y. Xu, Q. Q. Mao, P. Z. Zhang, and H. B. Li. 2021. Effects and mechanisms of edible and medicinal plants on obesity: an updated review. Critical Reviews in Food Science and Nutrition 61 (12):2061–77. doi: 10.1080/10408398.2020.1769548.
  • Shang, A., H. Y. Liu, M. Luo, Y. Xia, X. Yang, H. Y. Li, D. T. Wu, Q. Sun, F. Geng, H. B. Li, et al. 2022. Sweet tea (Lithocarpus polystachyus rehd.) as a new natural source of bioactive dihydrochalcones with multiple health benefits. Critical Reviews in Food Science and Nutrition 62 (4):917–34. doi: 10.1080/10408398.2020.1830363.
  • Sharma, M., L. Li, J. Celver, C. Killian, A. Kovoor, and N. P. Seeram. 2010. Effects of fruit ellagitannin extracts, ellagic acid, and their colonic metabolite, urolithin A, on wnt signaling. Journal of Agricultural and Food Chemistry 58 (7):3965–9. doi: 10.1021/jf902857v.
  • Shen, P.-X., X. Li, S.-Y. Deng, L. Zhao, Y.-Y. Zhang, X. Deng, B. Han, J. Yu, Y. Li, Z.-Z. Wang, et al. 2021. Urolithin A ameliorates experimental autoimmune encephalomyelitis by targeting aryl hydrocarbon receptor. EBioMedicine 64 (2021):103227–13. doi: 10.1016/j.ebiom.2021.103227.
  • Shukur, K. T., T. Ercetin, C. Luise, W. Sippl, O. Sirkecioglu, M. Ulgen, G. P. Coskun, M. Yarim, M. Gazi, and H. O. Gulcan. 2021. Design, synthesis, and biological evaluation of new urolithin amides as multitarget agents against Alzheimer’s disease. Archiv Der Pharmazie 354 (5):2000467–11. doi: 10.1002/ardp.202000467.
  • Singh, R., S. Chandrashekharappa, P. K. Vemula, B. Haribabu, and V. R. Jala. 2020. Microbial metabolite urolithin B inhibits recombinant human monoamine oxidase A enzyme. Metabolites 10 (6):258–7. doi: 10.3390/metabo10060258.
  • Spigoni, V., P. Mena, M. Cito, F. Fantuzzi, R. C. Bonadonna, F. Brighenti, A. D. Cas, and D. Del Rio. 2016. Effects on nitric oxide production of urolithins, gut-derived ellagitannin metabolites, in human aortic endothelial cells. Molecules 21 (8):1009–13. doi: 10.3390/molecules21081009.
  • Stanisławska, I. J., S. Granica, J. P. Piwowarski, J. Szawkało, K. Wiązecki, Z. Czarnocki, and A. K. Kiss. 2019. The activity of urolithin A and M4 valerolactone, colonic microbiota metabolites of polyphenols, in a prostate cancer in vitro model. Planta Medica 85 (2):118–25. doi: 10.1055/a-0755-7715.
  • Stohs, S. J, and V. Badmaev. 2016. A review of natural stimulant and non-stimulant thermogenic agents. Phytotherapy Research: PTR 30 (5):732–40. doi: 10.1002/ptr.5583.
  • Stolarczyk, M., J. P. Piwowarski, S. Granica, J. Stefańska, M. Naruszewicz, and A. K. Kiss. 2013. Extracts from Epilobium sp. herbs, their components and gut microbiota metabolites of epilobium ellagitannins, urolithins, inhibit hormone-dependent prostate cancer cells-(LNCaP) proliferation and PSA secretion: effect of epilobium on prostate cells proliferation and PSA secretion. Phytotherapy Research: PTR 27 (12):1842–8. doi: 10.1002/ptr.4941.
  • Tang, L., Y. Mo, Y. Li, Y. Zhong, S. He, Y. Zhang, Y. Tang, S. Fu, X. Wang, and A. Chen. 2017. Urolithin A alleviates myocardial ischemia/reperfusion injury via PI3K/Akt pathway. Biochemical and Biophysical Research Communications 486 (3):774–80. doi: 10.1016/j.bbrc.2017.03.119.
  • Tao, J., S. Li, R. Y. Gan, C. N. Zhao, X. Meng, and H. B. Li. 2020. Targeting gut microbiota with dietary components on cancer: effects and potential mechanisms of action. Critical Reviews in Food Science and Nutrition 60 (6):1025–37. doi: 10.1080/10408398.2018.1555789.
  • Toney, A. M., R. Fan, Y. Xian, V. Chaidez, A. E. Ramer-Tait, and S. Chung. 2019. Urolithin A, a gut metabolite, improves insulin sensitivity through augmentation of mitochondrial function and biogenesis. Obesity (Silver Spring, Md.) 27 (4):612–20. doi: 10.1002/oby.22404.
  • Toney, A. M., M. Albusharif, D. Works, L. Polenz, S. Schlange, V. Chaidez, A. E. Ramer-Tait, and S. Chung. 2020. Differential effects of whole red raspberry polyphenols and their gut metabolite urolithin A on neuroinflammation in BV-2 microglia. International Journal of Environmental Research and Public Health 18 (1):68–11. doi: 10.3390/ijerph18010068.
  • Totiger, T. M., S. Srinivasan, V. R. Jala, P. Lamichhane, A. R. Dosch, A. A. Gaidarski, C. Joshi, S. Rangappa, J. Castellanos, P. K. Vemula, et al. 2019. Urolithin A, a novel natural compound to target PI3K/AKT/mTOR pathway in pancreatic cancer. Molecular Cancer Therapeutics 18 (2):301–11. doi: 10.1158/1535-7163.MCT-18-0464.
  • Toubal, S., C. Oiry, M. Bayle, G. Cros, and J. Neasta. 2020. Urolithin C increases glucose-induced ERK activation which contributes to insulin secretion. Fundamental & Clinical Pharmacology 34 (5):571–80. doi: 10.1111/fcp.12551.
  • Tuohetaerbaike, B., Y. Zhang, Y. Tian, N. N. Zhang, J. Kang, X. Mao, Y. Zhang, and X. Li. 2020. Pancreas protective effects of urolithin A on type 2 diabetic mice induced by high fat and streptozotocin via regulating autophagy and AKT/mTOR signaling pathway. Journal of Ethnopharmacology 250 (2020):112479. doi: 10.1016/j.jep.2019.112479.
  • Velagapudi, R., I. Lepiarz, A. El-Bakoush, F. O. Katola, H. Bhatia, B. L. Fiebich, and O. A. Olajide. 2019. Induction of autophagy and activation of SIRT‐1 deacetylation mechanisms mediate neuroprotection by the pomegranate metabolite urolithin A in BV2 microglia and differentiated 3D human neural progenitor cells. Molecular Nutrition & Food Research 63 (10):1801237. doi: 10.1002/mnfr.201801237.
  • Vicinanza, R., Y. Zhang, S. M. Henning, and D. Heber. 2013. Pomegranate juice metabolites, ellagic acid and urolithin A, synergistically inhibit androgen-independent prostate cancer cell growth via distinct effects on cell cycle control and apoptosis. Evidence-Based Complementary and Alternative Medicine: eCAM 2013 (10):247504–12. doi: 10.1155/2013/247504.
  • Wagner, A. D., N. L. Syn, M. Moehler, W. Grothe, W. P. Yong, B. C. Tai, J. Ho, and S. Unverzagt. 2017. Chemotherapy for advanced gastric cancer. The Cochrane Database of Systematic Reviews 8 (8):CD004064–219. doi: 10.1002/14651858.CD004064.pub4.
  • Wang, S. T., W. C. Chang, C. Hsu, and N. W. Su. 2017. Antimelanogenic effect of urolithin A and urolithin B the colonic metabolites of ellagic acid, in b16 melanoma cells. Journal of Agricultural and Food Chemistry 65 (32):6870–6. doi: 10.1021/acs.jafc.7b02442.
  • Wang, Y., H. Huang, Y. Jin, K. Shen, X. Chen, Z. Xu, B. Jin, and H. Pan. 2019. Role of TFEB in autophagic modulation of ischemia reperfusion injury in mice kidney and protection by urolithin A. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 131 (2019):110591. doi: 10.1016/j.fct.2019.110591.
  • Wang, Y., Z. Qiu, B. Zhou, C. Liu, J. Ruan, Q. Yan, J. Liao, and F. Zhu. 2015. In vitro antiproliferative and antioxidant effects of ­urolithin A, the colonic metabolite of ellagic acid, on hepatocellular carcinomas HepG2 cells. Toxicology in Vitro: An International Journal Published in Association with BIBRA 29 (5):1107–15. doi: 10.1016/j.tiv.2015.04.008.
  • Xia, B., X. C. Shi, B. C. Xie, M. Q. Zhu, Y. Chen, X. Y. Chu, G. H. Cai, M. Liu, S. Z. Yang, G. A. Mitchell, et al. 2020. Urolithin A exerts antiobesity effects through enhancing adipose tissue thermogenesis in mice. PLoS Biology 18 (3):e3000688–26. doi: 10.1371/journal.pbio.3000688.
  • Xu, J., C. Yuan, G. Wang, J. Luo, H. Ma, L. Xu, Y. Mu, Y. Li, N. P. Seeram, X. Huang, et al. 2018. Urolithins attenuate LPS-induced neuroinflammation in BV2 microglia via MAPK, Akt, and NF-κB signaling pathways. Journal of Agricultural and Food Chemistry 66 (3):571–80. doi: 10.1021/acs.jafc.7b03285.
  • Xu, X. Y., C. N. Zhao, S. Y. Cao, G. Y. Tang, R. Y. Gan, and H. B. Li. 2020. Effects and mechanisms of tea for the prevention and management of cancers: an updated review. Critical Reviews in Food Science and Nutrition 60 (10):1693–705. doi: 10.1080/10408398.2019.1588223.
  • Xu, X. Y., C. N. Zhao, B. Y. Li, G. Y. Tang, A. Shang, R. Y. Gan, Y. B. Feng, and H. B. Li. 2021. Effects and mechanisms of tea on obesity. Critical Reviews in Food Science and Nutrition 1–18. doi: 10.1080/10408398.2021.1992748.
  • Yang, J., Y. Guo, S. M. Henning, B. Chan, J. Long, J. Zhong, R. Acin-Perez, A. Petcherski, O. Shirihai, D. Heber, et al. 2020. Ellagic acid and its microbial metabolite urolithin A alleviate diet-induced insulin resistance in mice. Molecular Nutrition and Food Research 64 (19):1–17. doi: 10.1002/mnfr.202000091.
  • Yao, X., K. Panichpisal, N. Kurtzman, and K. Nugent. 2007. Cisplatin nephrotoxicity: a review. The American Journal of the Medical Sciences 334 (2):115–24. doi: 10.1097/MAJ.0b013e31812dfe1e.
  • Yin, P., J. Zhang, L. Yan, L. Yang, L. Sun, L. Shi, C. Ma, and Y. Liu. 2017. Urolithin C, a gut metabolite of ellagic acid, induces apoptosis in PC12 cells through a mitochondria-mediated pathway. RSC Advances 7 (28):17254–63. doi: 10.1039/C7RA01548H.
  • Yuan, T., H. Ma, W. Liu, D. B. Niesen, N. Shah, R. Crews, K. N. Rose, D. A. Vattem, and N. P. Seeram. 2016. Pomegranate’s neuroprotective effects against Alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites. ACS Chemical Neuroscience 7 (1):26–33. doi: 10.1021/acschemneuro.5b00260.
  • Zhang, W., J. H. Chen, I. Aguilera-Barrantes, C. W. Shiau, X. Sheng, L. S. Wang, G. D. Stoner, and Y. W. Huang. 2016. Urolithin A suppresses the proliferation of endometrial cancer cells by mediating estrogen receptor-alpha-dependent gene expression. Molecular Nutrition & Food Research 60 (11):2387–95. doi: 10.1002/mnfr.201600048.
  • Zhang, S., T. Al-Maghout, H. Cao, L. Pelzl, M. S. Salker, M. Veldhoen, A. Cheng, F. Lang, and Y. Singh. 2019. Gut bacterial metabolite urolithin A (UA) mitigates Ca2+ entry in T cells by regulating miR-10a-5p. Frontiers in Immunology 10:1921. doi: 10.3389/fimmu.2019.01737.
  • Zhang, Y., Y. Zhang, G. Halemahebai, L. Tian, H. Dong, and G. Aisker. 2021. Urolithin A, a pomegranate metabolite, protects pancreatic β cells from apoptosis by activating autophagy. Journal of Ethnopharmacology 272 (2021):113628–0. doi: 10.1016/j.jep.2020.113628.
  • Zhao, C., B. Liu, S. Piao, X. Wang, D. B. Lobell, Y. Huang, M. Huang, Y. Yao, S. Bassu, P. Ciais, et al. 2017. Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences of the United States of America 114 (35):9326–31. doi: 10.1073/pnas.1701762114.
  • Zhao, R., X. Long, J. Yang, L. Du, X. Zhang, J. Li, and C. Hou. 2019. Pomegranate peel polyphenols reduce chronic low-grade inflammatory responses by modulating gut microbiota and decreasing colonic tissue damage in rats fed a high-fat diet. Food & Function 10 (12):8273–85. doi: 10.1039/C9FO02077B.
  • Zhou, B., J. Wang, G. Zheng, and Z. Qiu. 2016. Methylated urolithin A, the modified ellagitannin-derived metabolite, suppresses cell viability of DU145 human prostate cancer cells via targeting miR-21. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 97 (2016):375–84. doi: 10.1016/j.fct.2016.10.005.
  • Zhou, D. D., M. Luo, S. Y. Huang, A. Saimaiti, A. Shang, R. Y. Gan, and H. B. Li. 2021a. Effects and mechanisms of resveratrol on aging and age-related diseases. Oxidative Medicine and Cellular Longevity 2021:9932218–5. doi: 10.1155/2021/9932218.
  • Zhou, D. D., M. Luo, A. Shang, Q. Q. Mao, B. Y. Li, R. Y. Gan, and H. B. Li. 2021b. Antioxidant food components for the prevention and treatment of cardiovascular diseases: effects, mechanisms, and clinical studies. Oxidative Medicine and Cellular Longevity 2021:6627355–17. doi: 10.1155/2021/6627355.
  • Zhou, J., C. Zhang, G. H. Zheng, and Z. Qiu. 2018. Emblic leafflower (Phyllanthus emblica L.) fruits ameliorate vascular smooth muscle cell dysfunction in hyperglycemia: an underlying mechanism involved in ellagitannin metabolite urolithin A. Evidence-Based Complementary and Alternative Medicine: eCAM 2018:8478943–11. doi: 10.1155/2018/8478943.
  • Zou, D., R. Ganugula, M. Arora, M. B. Nabity, D. Sheikh-Hamad, and M. N. V. R. Kumar. 2019. Oral delivery of nanoparticle urolithin A normalizes cellular stress and improves survival in mouse model of cisplatin-induced AKI. American Journal of Physiology. Renal Physiology 317 (5):F1255–F1264. doi: 10.1152/ajprenal.00346.2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.