637
Views
1
CrossRef citations to date
0
Altmetric
Reviews

The magical smell and taste: Can coffee be good to patients with cardiometabolic disease?

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Abic. 2016. Abic- Brazilian association of the coffee industry. Accessed September 15, 2016. https://www.abic.com.br/.
  • Agudelo-Ochoa, G. M., I. C. Pulgarín-Zapata, C. M. Velásquez-Rodriguez, M. Duque-Ramírez, M. Naranjo-Cano, M. M. Quintero-Ortiz, O. J. Lara-Guzmán, and K. Muñoz-Durango. 2016. Coffee consumption increases the antioxidant capacity of plasma and has no effect on the lipid profile or vascular function in healthy adults in a randomized controlled trial. The Journal of Nutrition 146 (3):524–31. doi: 10.3945/jn.115.224774.
  • Ahola, A. J., C. Forsblom, V. Harjutsalo, and P. H. Groop. 2019. Dietary intake in type 1 diabetes at different stages of diabetic kidney disease. Diabetes Research and Clinical Practice 155:107775. doi: 10.1016/j.diabres.2019.06.016.
  • Akash, M. S., K. Rehman, and S. Chen. 2014. Effects of coffee on type 2 diabetes mellitus. Nutrition (Burbank, Los Angeles County, CA) 30 (7–8):755–63. doi: 10.1016/j.nut.2013.11.020.
  • Aljahdali, N., P. Gadonna-Widehem, P. M. Anton, and F. Carbonero. 2020. Gut microbiota modulation by dietary barley malt melanoidins. Nutrients 12 (1):241. doi: 10.3390/nu12010241.
  • Al-Megrin, W. A., M. F. El-Khadragy, M. H. Hussein, S. Mahgoub, D. M. Abdel-Mohsen, H. Taha, A. A. A. Bakkar, A. E. Abdel Moneim, and H. K. Amin. 2020. Green coffea arabica extract ameliorates testicular injury in high-fat diet/streptozotocin-induced diabetes in rats. Journal of Diabetes Research 2020 (6762709):6762709.
  • Alperet, D. J., S. A. Rebello, E. Y. Khoo, Z. Tay, S. S. Seah, B. C. Tai, E. S. Tai, S. Emady-Azar, C. J. Chou, C. Darimont, et al. 2020. The effect of coffee consumption on insulin sensitivity and other biological risk factors for type 2 diabetes: A randomized placebo-controlled trial. The American Journal of Clinical Nutrition 111 (2):448–58. doi: 10.1093/ajcn/nqz306.
  • Alvarenga, L., R. Salarolli, L. F. M. F. Cardozo, R. S. Santos, J. S. de Brito, J. A. Kemp, D. Reis, B. R. de Paiva, P. Stenvinkel, B. Lindholm, et al. 2020. Impact of curcumin supplementation on expression of inflammatory transcription factors in hemodialysis patients: A pilot randomized, double-blind, controlled study. Clinical Nutrition 39 (12):3594–600. doi: 10.1016/j.clnu.2020.03.007.
  • Amin, N., E. Byrne, J. Johnson, G. Chenevix-Trench, S. Walter, I. M. Nolte, J. M. Vink, R. Rawal, M. Mangino, A. Teumer, kConFab Investigators, et al. 2012. Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM. Molecular Psychiatry 17 (11):1116–29. doi: 10.1038/mp.2011.101.
  • Angeloni, G., L. Guerrini, P. Masella, M. Innocenti, M. Bellumori, and A. Parenti. 2019. Characterization and comparison of cold brew and cold drip coffee extraction methods. Journal of the Science of Food and Agriculture 99 (1):391–9. doi: 10.1002/jsfa.9200.
  • Aoun, M. H., N. Hilal, C. Beaini, G. Sleilaty, J. Hajal, C. Boueri, and D. Chelala. 2021. Effects of caffeinated and decaffeinated coffee on hemodialysis-related headache (CoffeeHD): A randomized multicenter clinical trial. Journal of Renal Nutrition: The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation 31 (6):648–60. doi: 10.1053/j.jrn.2021.01.025.
  • Aoyagi, R., M. Funakoshi-Tago, Y. Fujiwara, and H. Tamura. 2014. Coffee inhibits adipocyte differentiation via inactivation of PPARγ. Biological & Pharmaceutical Bulletin 37 (11):1820–5. doi: 10.1248/bpb.b14-00378.
  • Arfian, N., D. A. P. Wahyudi, I. B. Zulfatina, A. N. Citta, N. Anggorowat, A. Multazam, M. M. Romi, and D. C. R. Sari. 2019. Chlorogenic acid attenuates kidney ischemic/reperfusion injury via reducing inflammation, tubular injury, and myofibroblast formation. BioMed Research International 2019:5423703. doi: 10.1155/2019/5423703.
  • Arion, W. J., W. K. Canfield, F. C. Ramos, P. W. Schindler, H. J. Burger, H. Hemmerle, G. Schubert, P. Below, and A. W. Herling. 1997. Chlorogenic acid and hydroxynitrobenzaldehyde: new inhibitors of hepatic glucose 6-phosphatase. Archives of Biochemistry and Biophysics 339 (2):315–22. doi:10.1006/abbi.1996.9874. PMID: 9056264
  • Asano, I., Y. Ikeda, S. Fujii, and H. Iino. 2004. Effects of mannooligosaccharides from coffee on microbiota and short chain fatty acids in rat cecum. Food Science and Technology Research 10 (3):273–7. doi: 10.3136/fstr.10.273.
  • Ashihara, H., H. Sano, and A. Crozier. 2008. Caffeine and related purine alkaloids: Biosynthesis, catabolism, function and genetic engineering. Phytochemistry 69 (4):841–56. doi: 10.1016/j.phytochem.2007.10.029.
  • Badmos, S., S. H. Lee, and N. Kuhnert. 2019. Comparison and quantification of chlorogenic acids for differentiation of green Robusta and Arabica coffee beans. Food Research International 126:108544.
  • Baeza, G., E. M. Bachmair, S. Wood, R. Mateos, L. Bravo, and B. de Roos. 2017. The colonic metabolites dihydrocaffeic acid and dihydroferulic acid are more effective inhibitors of in vitro platelet activation than their phenolic precursors. Food & Function 8 (3):1333–42. doi: 10.1039/c6fo01404f.
  • Bao, L., J. Li, D. Zha, L. Zhang, P. Gao, T. Yao, and X. Wu. 2018. Chlorogenic acid prevents diabetic nephropathy by inhibiting oxidative stress and inflammation through modulation of the Nrf2/HO-1 and NF-ĸB pathways. International Immunopharmacology 54:245–53. doi: 10.1016/j.intimp.2017.11.021.
  • Beaudoin, M. S., L. E. Robinson, and T. E. Graham. 2011. An oral lipid challenge and acute intake of caffeinated coffee additively decrease glucose tolerance in healthy men. Journal of Nutrition 141: 574–581.
  • Bhandarkar, N. S., L. Brown, and S. K. Panchal. 2019. Chlorogenic acid attenuates high-carbohydrate, high-fat diet-induced cardiovascular, liver, and metabolic changes in rats. Nutrition Research (New York, NY) 62:78–88. doi: 10.1016/j.nutres.2018.11.002.
  • Bhandarkar, N. S., P. Mouatt, M. E. Majzoub, T. Thomas, L. Brown, and S. K. Panchal. 2021. Coffee pulp, a by-product of coffee production, modulates gut microbiota and improves metabolic syndrome in high-carbohydrate, high-fat diet-fed rats. Pathogens 10 (11):1369. doi: 10.3390/pathogens10111369.
  • Bhandarkar, N. S., P. Mouatt, P. Goncalves, T. Thomas, L. Brown, and S. K. Panchal. 2020. Modulation of gut microbiota by spent coffee grounds attenuates diet-induced metabolic syndrome in rats. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 34 (3):4783–97. doi: 10.1096/fj.201902416RR.
  • Bhupathiraju, S. N., A. Pan, J. E. Manson, W. C. Willett, R. M. Van Dam, and F. B. Hu. 2014. Changes in coffee intake and subsequent risk of type 2 diabetes: Three large cohorts of US men and women. Diabetologia 57 (7):1346–54. doi: 10.1007/s00125-014-3235-7.
  • Bicho, N. C., A. E. Leitão, J. C. Ramalho, N. B. De Alvarenga, and F. C. Lidon. 2013. Identification of Chemical Clusters Discriminators of Arabica and Robusta Green Coffee. International Journal of Food Properties 16 (4):895–904. doi:10.1080/10942912.2011.573114.
  • Bigotte Vieira, M., R. Magriço, C. Viegas Dias, L. Leitão, and J. S. Neves. 2019. Caffeine consumption and mortality in chronic kidney disease: A nationally representative analysis. Nephrology Dialysis Transplantation 34 (6):974–80. doi: 10.1093/ndt/gfy234.
  • Binello, A., G. Cravotto, J. Menzio, and S. Tagliapietra. 2021. Polycyclic aromatic hydrocarbons in coffee samples: Enquiry into processes and analytical methods. Food Chemistry 344:128631. doi: 10.1016/j.foodchem.2020.128631.
  • Blanchard, J, and S. J. Sawers. 1983a. The absolute bioavailability of caffeine in man. European Journal of Clinical Pharmacology 24 (1):93–8. doi: 10.1007/BF00613933.
  • Boekema, J., M. Samsom, and G. P. Van Be. 1999. Café e função gastrointestinal: Fatos e ficção: Uma revisão. Scandinavian Journal of Gastroenterology 34 (230):35–9.
  • Boettler, U., K. Sommerfeld, N. Volz, G. Pahlke, N. Teller, V. Somoza, R. Lang, T. Hofmann, and D. Marko. 2011. Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. The Journal of Nutritional Biochemistry 22 (5):426–40.
  • Boettler, U., N. Volz, G. Pahlke, N. Teller, C. Kotyczka, V. Somoza, H. Stiebitz, G. Bytof, I. Lantz, R. Lang, et al. 2011. Coffees rich in chlorogenic acid or N-methylpyridinium induce chemopreventive phase II-enzymes via the Nrf2/ARE pathway in vitro and in vivo. Molecular Nutrition & Food Research 55 (5):798–802.
  • Boon, E. A. J., K. D. Croft, S. Shinde, J. M. Hodgson, and N. C. Ward. 2017. The acute effect of coffee on endothelial function and glucose metabolism following a glucose load in healthy human volunteers. Food & Function 8 (9):3366–73. doi: 10.1039/C7FO00926G.
  • Bravo, L., R. Mateos, and B. Sarriá. 2019. CHAPTER 5: Preventive effect of coffee against cardiovascular diseases. In Coffee, 105–46. Croydon, UK: British Library.
  • Busbee, P. B., M. Rouse, M. Nagarkatti, and P. S. Nagarkatti. 2013. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders. Nutrition Reviews 71 (6):353. doi: 10.1111/nure.12024.
  • Caetano, C., A. Valente, T. Oliveira, and C. Garagarza. 2019. Coffee consumption in hemodialysis patients: How many? European Journal of Clinical Nutrition 73 (6):924–9. doi: 10.1038/s41430-018-0328-2.
  • Caffeine Infographic: (EUFIC). XXXX. Caffeine Infographic: (EUFIC) [Internet]. Disponível em. https://www.eufic.org/en/whats-in-food/article/caffeine-infographic.
  • Cai, L., D. Ma, Y. Zhang, Z. Liu, and P. Wang. 2021b. The effect of coffee consumption on serum lipids: A meta-analysis of randomized controlled trials. European Journal of Clinical Nutrition 66 (8):872–7. doi: 10.1038/ejcn.2012.68.
  • Calderón-Pérez, L., E. Llauradó, J. Companys, L. Pla-Pagà, A. Pedret, L. Rubió, M. J. Gosalbes, S. Yuste, R. Solà, and R. M. Valls. 2021. Interplay between dietary phenolic compound intake and the human gut microbiome in hypertension: A cross-sectional study. Food Chemistry 344:128567. doi: 10.1016/j.foodchem.2020.128567.
  • Carlström, M., and S. C. Larsson. 2018. Coffee consumption and reduced risk of developing type 2 diabetes: A systematic review with meta-analysis. Nutrition Reviews 76 (6):395–417. doi: 10.1093/nutrit/nuy014.
  • Caro-Gómez, E., J. Sierra, J. Escobar, R. Álvarez-Quintero, M. Naranjo, S. Medina, E. Velásquez-Mejía, J. Tabares-Guevara, J. Jaramillo, Y. León-Varela, et al. 2019. Green coffee extract improves cardiometabolic parameters and modulates gut microbiota in high-fat-diet-fed ApoE -/- mice. Nutrients 11 (3):497. doi: 10.3390/nu11030497.
  • Cavalcanti, M. H., J. P. S. Roseira, E. D. S. Leandro, and S. F. Arruda. 2022. Effect of a freeze-dried coffee solution in a high-fat diet-induced obesity model in rats: Impact on inflammatory response, lipid profile, and gut microbiota. PloS One 17 (1):e0262270. doi: 10.1371/journal.pone.0262270.
  • Chan, L., C. T. Hong, and C. H. Bai. 2021. Coffee consumption and the risk of cerebrovascular disease: A meta-analysis of prospective cohort studies. BMC Neurology 21 (1):380. doi: 10.1186/s12883-021-02411-5.
  • Chen, H., W. Huang, X. Huang, S. Liang, E. Gecceh, H. O Santos, V. Khani, and X. Jiang. 2020. Effects of green coffee bean extract on C-reactive protein levels: A systematic review and meta-analysis of randomized controlled trials. Complementary Therapies in Medicine 52:102498. doi: 10.1016/j.ctim.2020.102498.
  • Chen, W. P., and L. D. Wu. 2014. Chlorogenic acid suppresses interleukin-1β-induced inflammatory mediators in human chondrocytes. International Journal of Clinical and Experimental Pathology 7 (12):8797–801.
  • Chen, X. 2019. A review on coffee leaves: Phytochemicals, bioactivities and applications. Critical Reviews in Food Science and Nutrition 59 (6):1008–25. doi: 10.1080/10408398.2018.1546667.
  • Chen, X.-M., Z. Ma, and D. D. Kitts. 2018. Effects of processing method and age of leaves on phytochemical profiles and bioactivity of coffee leaves. Food Chemistry 249:143–53. doi: 10.1016/j.foodchem.2017.12.073.
  • Cheng, D., H. Li, J. Zhou, and S. Wang. 2019. Chlorogenic acid relieves lead-induced cognitive impairments and hepato-renal damage via regulating the dysbiosis of the gut microbiota in mice. Food & Function 10 (2):681–90. doi: 10.1039/c8fo01755g.
  • Chieng, D, and P. M. Kistler. 2021. Coffee and tea on cardiovascular disease (CVD) prevention. Trends in Cardiovascular Medicine 9:S1050.
  • Cho, A. S., S. M. Jeon, M. J. Kim, J. Yeo, K. I. Seo, M. S. Choi, and M. K. Lee. 2010. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food and Chemical Toxicology 48 (3):937–43. doi: 10.1016/j.fct.2010.01.003.
  • Cho, H. J., J. Y. Yoo, A. N. Kim, S. Moon, J. Choi, I. Kim, K. P. Ko, J. E. Lee, and S. K. Park. 2022. Association of coffee drinking with all-cause and cause-specific mortality in over 190,000 individuals: Data from two prospective studies. International Journal of Food Sciences and Nutrition 73 (4):513–21. doi: 10.1080/09637486.2021.2002829.
  • Choi, B. K., S. B. Park, D. R. Lee, H. J. Lee, Y. Y. Jin, S. H. Yang, and J. W. Suh. 2016. Green coffee bean extract improves obesity by decreasing body fat in high-fat diet-induced obese mice. Asian Pacific Journal of Tropical Medicine 9 (7):635–43. doi: 10.1016/j.apjtm.2016.05.017.
  • Chong, C. W., L. C. Wong, C. S. J. Teh, N. H. Ismail, P. Q. Chan, C. S. Lim, S. C. Yap, and I. K. S. Yap. 2020. Coffee consumption revealed sex differences in host endogenous metabolism and gut microbiota in healthy adults. Journal of Food Biochemistry 44 (12):e13535. doi:10.1111/jfbc.13535. PMC: 33103260
  • Clark, I., and H. P. Landolt. 2017. Coffee, caffeine, and sleep: A systematic review of epidemiological studies and randomized controlled trials. Sleep Medicine Reviews 31:70–8. doi: 10.1016/j.smrv.2016.01.006.
  • Clifford, M. N. 1999. Chlorogenic acids and other cinnamates - nature, occurrence and dietary burden. Journal of the Science of Food and Agriculture 79 (3):362–72. doi: 10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D.
  • Coreta-Gomes, F. M., G. R. Lopes, C. P. Passos, I. M. Vaz, F. Machado, C. F. G. C. Geraldes, M. J. Moreno, L. Nyström, and M. A. Coimbra. 2020. In vitro hypocholesterolemic effect of coffee compounds. Nutrients 12 (2):437. doi: 10.3390/nu12020437.
  • Cornelis, M. C. 2012. Coffee intake. Progress in Molecular Biology and Translational Science 108:293–322. doi: 10.1016/B978-0-12-398397-8.00012-5.
  • Cornelis, M. C., A. El-Sohemy, E. K. Kabagambe, and H. Campos. 2006. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 295 (10):1135–41. doi: 10.1001/jama.295.10.1135.
  • Cornelis, M. C., and R. M. van Dam. 2021. Genetic determinants of liking and intake of coffee and other bitter foods -and beverages. Scientific Reports 11 (1):23845. doi: 10.1038/s41598-021-03153-7.
  • Cornelis, M. C., E. M. Byrne, T. Esko, M. A. Nalls, A. Ganna, N. Paynter, K. L. Monda, N. Amin, K. Fischer, F. Renstrom, The Coffee and Caffeine Genetics Consortium, et al. 2015. Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Molecular Psychiatry 20 (5):647–56. doi: 10.1038/mp.2014.107.
  • Cornelis, M. C., T. Kacprowski, C. Menni, S. Gustafsson, E. Pivin, J. Adamski, A. Artati, C. B. Eap, G. Ehret, N. Friedrich, Swiss Kidney Project on Genes in Hypertension (SKIPOGH) team, et al. 2016. Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Human Molecular Genetics 25 (24):ddw334–5482. doi: 10.1093/hmg/ddw334.
  • Cowan, T. E., M. S. A. Palmnäs, J. Yang, M. R. Bomhof, K. L. Ardell, R. A. Reimer, H. J. Vogel, and J. Shearer. 2014. Chronic coffee consumption in the diet-induced obese rat: Impact on gut microbiota and serum metabolomics. The Journal of Nutritional Biochemistry 25 (4):489–95. doi: 10.1016/j.jnutbio.2013.12.009.
  • Davinelli, S., and G. Scapagnini. 2022. Interactions between dietary polyphenols and aging gut microbiota: A review. BioFactors (Oxford, England) 48 (2):274–84. doi: 10.1002/biof.1785.
  • de Melo Pereira, G. V., D. P. de Carvalho Neto, A. I. MagalhãesJúnior, F. G. do Prado, M. G. B. Pagnoncelli, S. G. Karp, and C. R. Soccol. 2020. Chemical composition and health properties of coffee and coffee by-products. Advances in Food and Nutrition Research 91:65–96.
  • Del Giorno, R., S. Scanzio, E. De Napoli, K. Stefanelli, S. Gabutti, C. Troiani, and L. Gabutti. 2022. Habitual coffee and caffeinated beverages consumption is inversely associated with arterial stiffness and central and peripheral blood pressure. International Journal of Food Science and Nutrition 73 (1):106–15. doi: 10.1080/09637486.2021.1926935.
  • Denden, S., B. Bouden, A. Haj Khelil, J. Ben Chibani, and M. H. Hamdaoui. 2016. Gender and ethnicity modify the association between the CYP1A2 rs762551 polymorphism and habitual coffee intake: Evidence from a meta-analysis. Genetics and Molecular Research 15 (2).gmr7487. doi: 10.4238/gmr.15027487.
  • Di Maso, M., P. Boffetta, E. Negri, C. La Vecchia, and F. Bravi. 2021. Caffeinated coffee consumption and health outcomes in the US population: A dose-response meta-analysis and estimation of disease cases and deaths avoided. Advances in Nutrition (Bethesda, MD) 12 (4):1160–76. doi: 10.1093/advances/nmaa177.
  • Du, Y., Y. Lv, W. Zha, X. Hong, and Q. Luo. 2020. Effect of coffee consumption on dyslipidemia: A meta-analysis of randomized controlled trials. Nutrition, Metabolism and Cardiovascular Diseases 30 (12):2159–70. doi: 10.1016/j.numecd.2020.08.017.
  • Durán, C. A. A., A. Tsukui, F. K. F. Santos, S. T. Martinez, H. R. Bizzo, and C. M. Rezende. 2017. Coffee: General aspects and its use beyond drinking. Revista Virtual de Quimica. 9 (1), 107–134. DOI: 10.21577/1984-6835.20170010
  • Espinosa, J. C. C. A., and F. E. Sobrino Mejía. 2017. Caffeine and headache: Specific remarks. Neurologia (Barcelona, Spain) 32 (6):394–8.
  • Eulalia, C., N. Luciano, G. Paolo, and R. Antonietta. 2022. Are taste variations associated with the liking of sweetened and unsweetened coffee? Physiology & Behavior 244:113655. doi: 10.1016/j.physbeh.2021.113655.
  • European Union. 2011. Commission Regulation (EU) No 835/2011. Official Journal of European Union L214/5 835/2011.
  • Farias-Pereira, R., C. S. Park, and Y. Park. 2019. Mechanisms of action of coffee bioactive components on lipid metabolism. Food Science and Biotechnology 28 (5):1287–96. doi: 10.1007/s10068-019-00662-0.
  • Ferraro, P. M., and G. C. Curhan. 2022. More good news: Coffee prevents kidney stones. American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation 79 (1):3–4. doi: 10.1053/j.ajkd.2021.07.002.
  • Folwarczna, J., A. Janas, M. Pytlik, U. Cegieła, L. Śliwiński, Z. Krivošíková, K. Štefíková, and M. Gajdoš. 2016. Effects of trigonelline, an alkaloid present in coffee, on diabetes-induced disorders in the rat skeletal system. Nutrients 8 (3):133. doi: 10.3390/nu8030133.
  • Folwarczna, J., A. Janas, U. Cegieła, M. Pytlik, L. Śliwiński, M. Matejczyk, A. Nowacka, K. Rudy, Z. Krivošíková, K. Štefíková, et al. 2017. Caffeine at a moderate dose did not affect the skeletal system of rats with streptozotocin-induced diabetes. Nutrients 9 (11):1196. doi: 10.3390/nu9111196.
  • Fujii, Y., N. Osaki, T. Hase, and A. Shimotoyodome. 2015. Ingestion of coffee polyphenols increases postprandial release of the active glucagon-like peptide-1 (GLP-1(7-36)) amide in C57BL/6J mice. Journal of Nutritional Science 4:e9.
  • Gao, F., Y. Zhang, S. Ge, and H. Lu. 2018. Coffee consumption is positively related to insulin secretion in the Shanghai High-Risk Diabetic Screen (SHiDS) Study. Nutrition and Metabolism 15 (1):11.
  • García-Cordero, J., J. L. Sierra-Cinos, M. A. Seguido, S. González-Rámila, R. Mateos, L. Bravo-Clemente, and B. Sarriá. 2022. Regular consumption of green coffee phenol, oat β-glucan and green coffee phenol/oat β-glucan supplements does not change body composition in subjects with overweight and obesity. Foods 11 (5):679. doi: 10.3390/foods11050679.
  • Gil-Madrigal, A. K., T. B. González-Castro, C. A. Tovilla-Zárate, D. G. Aguilar-Velázquez, T. G. Gómez-Peralta, I. E. Juárez-Rojop, M. L. López-Narváez, E. Carmona-Díaz, A. Fresan, J. L. Ble-Castillo, et al. 2018. Lack of association of coffee consumption with the prevalence of self-reported type 2 diabetes mellitus in a Mexican population: A cross-sectional study. International Journal of Environmental Research and Public Health 15 (10):2100. doi: 10.3390/ijerph15102100.
  • Gkouskou, K. G., G. Georgiopoulos, I. Vlastos, E. Lazou, D. Chaniotis, T. G. Papaioannou, C. S. Mantzoros, D. Sanoudou, and A. G. Eliopoulos. 2022. CYP1A2 polymorphisms modify the association of habitual coffee consumption with appetite, macronutrient intake, and body mass index: Results from an observational cohort and a cross-over randomized study. International Journal of Obesity (2005) 46 (1):162–8. doi: 10.1038/s41366-021-00972-6.
  • Godos, J., F. R. Pluchinotta, S. Marventano, S. Buscemi, G. Li Volti, F. Galvano, and G. Grosso. 2014. Coffee components and cardiovascular risk: Beneficial and detrimental effects. International Journal of Food Sciences and Nutrition 65 (8):925–36. doi: 10.3109/09637486.2014.940287.
  • González, S., N. Salazar, S. Ruiz-Saavedra, M. Gómez-Martín, C. G. de Los Reyes-Gavilán, and M. Gueimonde. 2020. Long-term coffee consumption is associated with fecal microbial composition in humans. Nutrients 12 (5):1287. doi: 10.3390/nu12051287.
  • Greenberg, J. A., D. R. Owen, and A. Geliebter. 2010. Decaffeinated coffee and glucose metabolism in young men. Diabetes Care 33 (2):278–80. doi: 10.2337/dc09-1539.
  • Grioni, S., C. Agnoli, S. Sieri, V. Pala, F. Ricceri, G. Masala, C. Saieva, S. Panico, A. Mattiello, P. Chiodini, et al. 2015. Espresso coffee consumption and risk of coronary heart disease in a large Italian cohort. Plos ONE 10 (5):e0126550. doi: 10.1371/journal.pone.0126550.
  • Guessous, I., C. B. Eap, and M. Bochud. 2014. Blood pressure in relation to coffee and caffeine consumption. Current Hypertension Reports 16 (9):468. doi: 10.1007/s11906-014-0468-2.
  • Ha, H. R., J. Chen, S. Krahenbuhl, and F. Follath. 1996. Biotransformation of caffeine by cDNA-expressed human cytochromes P-450. European Journal of Clinical Pharmacology 49 (4):309–15. doi: 10.1007/BF00226333.
  • He, W. J., J. Chen, A. C. Razavi, E. A. Hu, M. E. Grams, B. Yu, C. R. Parikh, E. Boerwinkle, L. Bazzano, L. Qi, et al. 2021. Metabolites Associated with Coffee Consumption and Incident Chronic Kidney Disease. Clinical Journal of the American Society of Nephrology : CJASN 16 (11):1620–9. doi:10.2215/CJN.05520421. PMID: 34737201
  • Herber-Gast, G. C. M., H. Van Essen, W. M. Verschuren, C. D. Stehouwer, R. T. Gansevoort, S. J. Bakker, and A. M. Spijkerman. 2016. Coffee and tea consumption in relation to estimated glomerular filtration rate: Results from the population-based longitudinal Doetinchem Cohort Study. The American Journal of Clinical Nutrition 103 (5):1370–7. doi: 10.3945/ajcn.115.112755.
  • Higashi, Y. 2019. Coffee and endothelial function: A coffee paradox? Nutrients 11 (9):2104. doi: 10.3390/nu11092104.
  • Ilavenil, S., D. H. Kim, Y. I. Jeong, M. V. Arasu, M. Vijayakumar, P. N. Prabhu, S. Srigopalram, and K. C. Choi. 2015. Trigonelline protects the cardiocyte from hydrogen peroxide induced apoptosis in H9c2 cells. Asian Pacific Journal of Tropical Medicine 8 (4):263–8. doi: 10.1016/S1995-7645(14)60328-X.
  • Ilmiawati, C., F. Fitri, Z. D. Rofinda, and M. Reza. 2020. Green coffee extract modifies body weight, serum lipids and TNF-α in high-fat diet-induced obese rats. BMC Research Notes 13 (1):208. doi: 10.1186/s13104-020-05052-y.
  • Iriondo-DeHond, A., M. Iriondo-DeHond, and M. D. Del Castillo. 2020. Applications of compounds from coffee processing by-products. Biomolecules 10 (9):1219. doi: 10.3390/biom10091219.
  • Jiang, R., J. M. Hodgson, E. Mas, K. D. Croft, and N. C. Ward. 2016. Chlorogenic acid improves ex vivo vessel function and protects endothelial cells against HOCl-induced oxidative damage, via increased production of nitric oxide and induction of Hmox-1. Journal of Nutritional Biochemistry 27:53–60. doi: 10.1016/j.jnutbio.2015.08.017.
  • Jin, T., J. Youn, A. N. Kim, M. Kang, K. Kim, J. Sung, and J. E. Lee. 2020. Interactions of habitual coffee consumption by genetic polymorphisms with the risk of prediabetes and type 2 diabetes combined. Nutrients 12 (8):2228. doi: 10.3390/nu12082228.
  • Jokura, H., I. Watanabe, M. Umeda, T. Hase, and A. Shimotoyodome. 2015. Coffee polyphenol consumption improves postprandial hyperglycemia associated with impaired vascular endothelial function in healthy male adults. Nutrition Research (New York, NY) 35 (10):873–81. doi: 10.1016/j.nutres.2015.07.005.
  • Kaczmarczyk-Sedlak, I., J. Folwarczna, L. Sedlak, M. Zych, W. Wojnar, I. Szumińska, D. Wyględowska-Promieńska, and E. Mrukwa-Kominek. 2019. Effect of caffeine on biomarkers of oxidative stress in lenses of rats with streptozotocin-induced diabetes. Archives of Medical Science: AMS 15 (4):1073–80. doi: 10.5114/aoms.2019.85461.
  • Kajikawa, M., T. Maruhashi, T. Hidaka, Y. Nakano, S. Kurisu, T. Matsumoto, Y. Iwamoto, S. Kishimoto, S. Matsui, Y. Aibara, et al. 2019. Coffee with a high content of chlorogenic acids and low content of hydroxyhydroquinone improves postprandial endothelial dysfunction in patients with borderline and stage 1 hypertension. European Journal of Nutrition 58 (3):989–96. doi: 10.1007/s00394-018-1611-7.
  • Kalaska, B., L. Piotrowski, A. Leszczynska, B. Michalowski, K. Kramkowski, T. Kaminski, J. Adamus, A. Marcinek, J. Gebicki, A. Mogielnicki, et al. 2014. Antithrombotic effects of pyridinium compounds formed from trigonelline upon coffee roasting. Journal of Agricultural and Food Chemistry 62 (13):2853–60. doi: 10.1021/jf5008538.
  • Kanbay, M., D. Siriopol, S. Copur, L. Tapoi, L. Benchea, M. Kuwabara, P. Rossignol, A. Ortiz, A. Covic, and B. Afsar. 2021. Effect of coffee consumption on renal outcome: A systematic review and meta-analysis of clinical studies. Journal of Renal Nutrition: The Official Journal of the Council on Renal Nutrition of the National Kidney Foundation 31 (1):5–20. doi: 10.1053/j.jrn.2020.08.004.
  • Kempf, K., H. Kolb, B. Gärtner, G. Bytof, H. Stiebitz, I. Lantz, R. Lang, T. Hofmann, and S. Martin. 2015. Cardiometabolic effects of two coffee blends differing in content for major constituents in overweight adults: A randomized controlled trial. European Journal of Nutrition 54 (5):845–54. doi: 10.1007/s00394-014-0763-3.
  • Kennedy, O. J., N. Pirastu, R. Poole, J. A. Fallowfield, P. C. Hayes, E. J. Grzeszkowiak, M. W. Taal, J. F. Wilson, J. Parkes, and P. J. Roderick. 2020. Coffee consumption and kidney function: A Mendelian randomization study. American Journal of Kidney Diseases 75 (5):753–61. doi: 10.1053/j.ajkd.2019.08.025.
  • Kim, A. N., H. J. Cho, J. Youn, T. Jin, M. Kang, J. Sung, and J. E. Lee. 2020. Coffee consumption, genetic polymorphisms, and the risk of type 2 diabetes mellitus: A pooled analysis of four prospective cohort studies. International Journal of Environmental Research and Public Health 17 (15):5379. doi: 10.3390/ijerph17155379.
  • Kolb, H., K. Kempf, and S. Martin. 2020. Health effects of coffee: Mechanism unraveled? Nutrients 12 (6):1842. doi: 10.3390/nu12061842.
  • Kolb, H., S. Martin, and K. Kempf. 2021. Coffee and lower risk of type 2 diabetes: Arguments for a causal relationship. Nutrients 13 (4):1144. doi: 10.3390/nu13041144.
  • Komorita, Y., T. Ohkuma, M. Iwase, H. Fujii, H. Ide, Y. Oku, T. Higashi, A. Oshiro, W. Sakamoto, M. Yoshinari, et al. 2022. Relationship of coffee consumption with a decline in kidney function among patients with type 2 diabetes: The Fukuoka Diabetes Registry. Journal of Diabetes Investigation.13(6):1030–1038. doi: 10.1111/jdi.13769.
  • Kusumah, J., and E. Gonzalez de Mejia. 2022. Coffee constituents with antiadipogenic and antidiabetic potentials: A narrative review. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 161:112821. doi: 10.1016/j.fct.2022.112821.
  • Lafay, S., A. Gil-Izquierdo, C. Manach, C. Morand, C. Besson, and A. Scalbert. 2006. Chlorogenic acid is absorbed in its intact form in the stomach of rats. The Journal of Nutrition 136 (5):1192–7. doi: 10.1093/jn/136.5.1192.
  • Lara-Guzmán, O. J., R. Álvarez, and K. Muñoz-Durango. 2021. Changes in the plasma lipidome of healthy subjects after coffee consumption reveal potential cardiovascular benefits: A randomized controlled trial. Free Radical Biology & Medicine 176:345–55. doi: 10.1016/j.freeradbiomed.2021.10.012.
  • Lee, J.-H., M.-K. Oh, J.-T. Lim, H.-G. Kim, and W.-J. Lee. 2016. Effect of Coffee Consumption on the Progression of Type 2 Diabetes Mellitus among Prediabetic Individuals. Korean Journal of Family Medicine 37 (1):7–13. doi:10.4082/kjfm.2016.37.1.7. PMID: 26885316
  • Lew, Q. L. J., T. H. Jafar, A. Jin, J. M. Yuan, and W. P. Koh. 2018. Consumption of coffee but not of other caffeine-containing beverages reduces the risk of end-stage renal disease in the Singapore Chinese health study. The Journal of Nutrition 148 (8):1315–22. doi: 10.1093/jn/nxy075.
  • Li, W., D. Wang, S. Cao, X. Yin, Y. Gong, Y. Gan, Y. Zhou, and Z. Lu. 2016. Sleep duration and risk of stroke events and stroke mortality: A systematic review and meta-analysis of prospective cohort studies. International Journal of Cardiology 223:870–6. doi: 10.1016/j.ijcard.2016.08.302.
  • Liang, N., and D. D. Kitts. 2015. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 8 (1):16. doi: 10.3390/nu8010016.
  • Lim, Y., Y. Park, S. K. Choi, S. Ahn, and J. H. Ohn. 2019. The effect of coffee consumption on the prevalence of diabetes mellitus: The 2012-2016 Korea national health and nutrition examination survey. Nutrients 11 (10):2377. doi: 10.3390/nu11102377.
  • Liu, Y. T., D. M. Tantoh, L. Wang, O. N. Nfor, S. Y. Hsu, C. C. Ho, C. C. 0. Lung, H. R. Chang, and Y. P. Liaw. 2020. Interaction between Coffee Drinking and TRIB1 rs17321515 single nucleotide polymorphism on coronary heart disease in a Taiwanese population. Nutrients 12 (5):1301. doi: 10.3390/nu12051301.
  • Lohsiriwat, S., N. Puengna, and S. Leelakusolvong. 2006. Effect of caffeine on lower esophageal sphincter pressure in Thai healthy volunteers. Diseases of the Esophagus: Official Journal of the International Society for Diseases of the Esophagus 19 (3):183–8. doi: 10.1111/j.1442-2050.2006.00562.x.
  • Lonati, E., T. Carrozzini, I. Bruni, P. Mena, L. Botto, E. Cazzaniga, D. Del Rio, M. Labra, P. Palestini, and A. Bulbarelli. 2022. Coffee-derived phenolic compounds activate Nrf2 antioxidant pathway in I/R injury in vitro model: A nutritional approach preventing age related-damages. Molecules (Basel, Switzerland) 27 (3):1049. doi: 10.3390/molecules27031049.
  • Lopez-Garcia, E., E. Orozco-Arbeláez, L. M. Leon-Muñoz, P. Guallar-Castillon, A. Graciani, J. R. Banegas, and F. Rodríguez-Artalejo. 2016. Habitual coffee consumption and 24-h blood pressure control in older adults with hypertension. Clinical Nutrition (Edinburgh, Scotland) 35 (6):1457–63. doi: 10.1016/j.clnu.2016.03.021.
  • Lou, Z., H. Wang, S. Zhu, C. Ma, Z. Wang et, al. 2011. Antibacterial activity and mechanism of action of chlorogenic acid. Journal of Food Science 76 (6):M398–M403. doi: 10.1111/j.1750-3841.2011.02213.x.
  • Ludwig, I. A., M. N. Clifford, M. E. J. Lean, H. Ashihara, and A. Crozier. 2014. Coffee:; Biochemistry and potential impact on health. Food & Function 5 (8):1695–717. doi: 10.1039/c4fo00042k.
  • Ludwig, I. A., M. Paz de Peña, C. Concepción, and C. Alan. 2013. Catabolism of coffee chlorogenic acids by human colonic microbiota. BioFactors (Oxford, England) 39 (6):623–32. doi: 10.1002/biof.1124.
  • Mansour, A., M. R. Mohajeri-Tehrani, S. Karimi, et al. 2020. Short term effects of coffee components consumption on gut microbiota in patients with non-alcoholic fatty liver and diabetes: A pilot randomized placebo-controlled, clinical trial. EXCLI J 19:241–50.
  • Mao, Y., L. Yang, Q. Chen, G. Li, Y. Sun, J. Wu, Z. Xiong, Y. Liu, H. Li, J. Liu, et al. 2020. The influence of CYP1A1 and CYP1A2 polymorphisms on stroke risk in the Chinese population. Lipids in Health and Disease 19 (1):221. doi: 10.1186/s12944-020-01370-z.
  • Martina, S. J., P. A. P. Govindan, and A. S. Wahyuni. 2019. The difference in effect of arabica coffee gayo beans and leaf (coffea arabica gayo) extract on decreasing blood sugar levels in healthy mice. Open Access Macedonian Journal of Medical Sciences 7 (20):3363–5. doi: 10.3889/oamjms.2019.423.
  • Martínez-López, S., B. Sarriá, R. Mateos, and L. Bravo-Clemente. 2019. Moderate consumption of a soluble green/roasted coffee rich in caffeoylquinic acids reduces cardiovascular risk markers: Results from a randomized, cross-over, controlled trial in healthy and hypercholesterolemic subjects. European Journal of Nutrition 58 (2):865–78. doi: 10.1007/s00394-018-1726-x.
  • Martini, D., A. Rosi, M. Tassotti, M. Antonini, M. Dall’Asta, L. Bresciani, F. Fantuzzi, V. Spigoni, R. Domínguez-Perles, D. Angelino, et al. 2021. Effect of coffee and cocoa-based confectionery containing coffee on markers of cardiometabolic health: Results from the pocket-4-life project. European Journal of Nutrition 60 (3):1453–63. doi: 10.1007/s00394-020-02347-5.
  • Martini, D., C. Del Bo’, M. Tassotti, P. Riso, D. Del Rio, F. Brighenti, and M. Porrini. 2016. Coffee consumption and oxidative stress: A review of human intervention studies. Molecules 21 (8):979. doi: 10.3390/molecules21080979.
  • Martins, A. L. 2012. History of coffee. 2nd ed. São Paulo: Contexto.
  • Maurin, O., A. P. Davis, M. Chester, E. F. Mvungi, Y. Jaufeerally-Fakim, and M. F. Fay. 2007. Towards a phylogeny for coffea (Rubiaceae): Identifying well-supported lineages based on nuclear and plastid DNA sequences. Annals of Botany 100 (7):1565–83. doi: 10.1093/aob/mcm257.
  • Mesas, A. E., L. M. Leon-Muñoz, F. Rodriguez-Artalejo, and E. Lopez-Garcia. 2011. The effect of coffee on blood pressure and cardiovascular disease in hypertensive individuals: A systematic review and meta-analysis. The American Journal of Clinical Nutrition 94 (4):1113–26. doi: 10.3945/ajcn.111.016667.
  • Mihai, S., E. Codrici, I. D. Popescu, A. M. Enciu, L. Albulescu, L. G. Necula, C. Mambet, G. Anton, and C. Tanase. 2018. Inflammation-related mechanisms in chronic kidney disease prediction, progression, and outcome. Journal of Immunology Research 2018:2180373. doi: 10.1155/2018/2180373.
  • Mikołajczyk-Stecyna, J., A. M. Malinowska, and A. Chmurzynska. 2017. TAS2R38 and CA6 genetic polymorphisms, frequency of bitter food intake, and blood biomarkers among elderly woman. Appetite 116:57–64. doi: 10.1016/j.appet.2017.04.029.
  • Miranda, A. M., A. C. Goulart, I. M. Benseñor, P. A. Lotufo, and D. M. Marchioni. 2021. Coffee consumption and risk of hypertension: A prospective analysis in the cohort study. Clinical Nutrition (Edinburgh, Scotland) 40 (2):542–9. doi: 10.1016/j.clnu.2020.05.052.
  • Mitchell, D. C., C. A. Knight, J. Hockenberry, R. Teplansky, and T. J. Hartman. 2014. Beverage caffeine intakes in the U.S. Food and Chemical Toxicology. An International Journal Published for the British Industrial Biological Research Association 63:136–42.
  • Muchtaridi, F. N. 2014. Tinjauan Kimia Dan Aspek Farmakologi Senyawa Asam Klorogenat Pada Biji Kopi: Review. Indonesia: Farmaka Suplemen.
  • Naylor, L. H., D. Zimmermann, M. Guitard-Uldry, L. Poquet, A. Lévêques, B. Eriksen, R. Bel Rhlid, N. Galaffu, C. D’Urzo, A. De Castro, et al. 2021. Acute dose-response effect of coffee-derived chlorogenic acids on the human vasculature in healthy volunteers: A randomized controlled trial. The American Journal of Clinical Nutrition 113 (2):370–9. doi: 10.1093/ajcn/nqaa312.
  • Nehlig, A. 2018. Interindividual differences in caffeine metabolism and factors driving caffeine consumption. Pharmacological Reviews 70 (2):384–411. doi: 10.1124/pr.117.014407.
  • Nehlig, A., J. L. Daval, and G. Debry. 1992. Caffeine and the central nervous system: Mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Research. Brain Research Reviews 17 (2):139–70. doi: 10.1016/0165-0173(92)90012-b.
  • Neves, J. S., L. Leitão, and R. Magriço. 2018. Caffeine consumption and mortality in diabetes: An analysis of NHANES 1999-2010. Front Endocrinol (Lausanne) 9:547.
  • Nikić, P. M., B. R. Andrić, B. B. Stojimirović, J. Trbojevic-Stanković, and Z. Bukumirić. 2014. Habitual coffee consumption enhances attention and vigilance in hemodialysis patients. BioMed Research International 2014:707460. doi: 10.1155/2014/707460.
  • Nikpayam, O., M. Najafi, S. Ghaffari, M. A. Jafarabadi, G. Sohrab, and N. Roshanravan. 2019. Effects of green coffee extract on fasting blood glucose, insulin concentration and homeostatic model assessment of insulin resistance (HOMA-IR): A systematic review and meta-analysis of interventional studies. Diabetology & Metabolic Syndrome 11 (1):91. doi: 10.1186/s13098-019-0489-8.
  • Nishitsuji, K., S. Watanabe, J. Xiao, R. Nagatomo, H. Ogawa, T. Tsunematsu, H. Umemoto, Y. Morimoto, H. Akatsu, K. Inoue, et al. 2018. Effect of coffee or coffee components on gut microbiome and short-chain fatty acids in a mouse model of metabolic syndrome. Scientific Reports 8 (1):16173. doi: 10.1038/s41598-018-34571-9.
  • Noguchi, K., T. Matsuzaki, M. Sakanashi, N. Hamadate, T. Uchida, M. Kina-Tanada, H. Kubota, J. Nakasone, M. Sakanashi, S. Ueda, et al. 2015. Effect of caffeine contained in a cup of coffee on microvascular function in healthy subjects. Journal of Pharmacological Sciences 127 (2):217–22. doi: 10.1016/j.jphs.2015.01.003.
  • Notara, V., D. B. Panagiotakos, M. Kouvari, D. Tzanoglou, G. Kouli, Y. Mantas, Y. Kogias, P. Stravopodis, G. Papanagnou, S. Zombolos, GREECS Study Investigators, et al. 2015. Study Investigators. The role of coffee consumption on the 10-year (2004-2014) Acute Coronary Syndrome (ACS) incidence among cardiac patients: The GREECS observational study. International Journal of Food Sciences and Nutrition 66 (6):722–8. doi: 10.3109/09637486.2015.1077795.
  • Ochiai, R., Y. Sugiura, Y. Shioya, K. Otsuka, Y. Katsuragi, and T. Hashiguchi. 2014. Coffee polyphenols improve peripheral endothelial function after glucose loading in healthy male adults. Nutrition Research 34 (2):155–9. doi: 10.1016/j.nutres.2013.11.001.
  • Osama, H., M. A. Abdelrahman, Y. M. Madney, H. S. Harb, H. Saeed, and M. E. A. Abdelrahim. 2021. Coffee and type 2 diabetes risk: Is the association mediated by adiponectin, leptin, c-reactive protein or Interleukin-6? A systematic review and meta-analysis. International Journal of Clinical Practice 75 (6):e13. doi: 10.1111/ijcp.13983.
  • Palatini, P., E. Benetti, L. Mos, G. Garavelli, A. Mazzer, S. Cozzio, C. Fania, and E. Casiglia. 2015. Association of coffee consumption and CYP1A2 polymorphism with risk of impaired fasting glucose in hypertensive patients. European Journal of Epidemiology 30 (3):209–17. doi: 10.1007/s10654-015-9990-z.
  • Palatini, P., G. Ceolotto, F. Ragazzo, F. Dorigatti, F. Saladini, I. Papparella, L. Mos, G. Zanata, and M. Santonastaso. 2009. CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. Journal of Hypertension 27 (8):1594–601. doi: 10.1097/HJH.0b013e32832ba850.
  • Park, J. B. 2022. In vivo effects of coffee containing javamide-I/-II on body weight, LDL, HDL, total cholesterol, triglycerides, leptin, adiponectin, C-reactive protein, sE-selectin, TNF-α, and MCP-1. Current Developments in Nutrition 6 (1):nzab145.
  • Pedruzzi, L. M., M. B. Stockler-Pinto, M. Leite, and D. Mafra. 2012. Nrf2-keap1 system versus NF-κB: The good and the evil in chronic kidney disease? Biochimie 94 (12):2461–6. doi: 10.1016/j.biochi.2012.07.015.
  • Peerapen, P., W. Boonmark, and V. Thongboonkerd. 2022. Trigonelline prevents kidney stone formation processes by inhibiting calcium oxalate crystallization, growth and crystal-cell adhesion, and downregulating crystal receptors. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 149:112876. doi: 10.1016/j.biopha.2022.112876.
  • Pérez-Burillo, S., S. Pastoriza, A. Fernández-Arteaga, G. Luzón, N. Jiménez-Hernández, G. D’Auria, M. P. Francino, and J. Á. Rufián-Henares. 2019. Spent coffee grounds extract, rich in mannooligosaccharides, promotes a healthier gut microbial community in a dose-dependent manner. Journal of Agricultural and Food Chemistry 67 (9):2500–9. doi: 10.1021/acs.jafc.8b06604.
  • Pérez-Burillo, S., S. Rajakaruna, S. Pastoriza, O. Paliy, and J. A. Rufián-Henares. 2020. Bioactivity of food melanoidins is mediated by gut microbiota. Food Chemistry 316:126309. doi: 10.1016/j.foodchem.2020.126309.
  • Pimentel, G. D., J. C. Zemdegs, J. A. Theodoro, and J. F. Mota. 2009. Does long-term coffee intake reduce type 2 diabetes mellitus risk? Diabetology & Metabolic Syndrome 1 (1):6. doi: 10.1186/1758-5996-1-6.
  • Pirastu, N., M. Kooyman, M. Traglia, A. Robino, S. M. Willems, G. Pistis, P. d’Adamo, N. Amin, A. d’Eustacchio, L. Navarini, et al. 2014. Association analysis of bitter receptor genes in five isolated populations identifies a significant correlation between TAS2R43 variants and coffee liking. PloS One 9 (3):e92065. doi: 10.1371/journal.pone.0092065.
  • Priftis, A., D. Mitsiou, M. Halabalaki, G. Ntasi, D. Stagos, L. A. Skaltsounis, and D. Kouretas. 2018. Roasting has a distinct effect on the antimutagenic activity of coffee varieties. Mutation Research, Genetic Toxicology and Environmental Mutagenesis 829–830:33–42. doi: 10.1016/j.mrgentox.2018.03.003.
  • Ramalakshmi, K., L. J. M. Rao, Y. Takano-Ishikawa, and M. Goto. 2009. Bioactivities of low-grade green coffee and spent coffee in different in vitro model systems. Food Chemistry 115 (1):79–85. doi: 10.1016/j.foodchem.2008.11.063.
  • Ramos, L. V., T. H. M. da Costa, and S. F. Arruda. 2022. The effect of coffee consumption on glucose homeostasis and redox-inflammatory responses in high-fat diet-induced obese rats. The Journal of Nutritional Biochemistry 100:108881. doi: 10.1016/j.jnutbio.2021.108881.
  • Reis, C. E. G., C. L. R. d S. Paiva, A. A. Amato, A. Lofrano-Porto, S. Wassell, L. J. C. Bluck, J. G. Dórea, and T. H. M. da Costa. 2018. Decaffeinated coffee improves insulin sensitivity in healthy men. British Journal of Nutrition 119 (9):1029–38. doi: 10.1017/S000711451800034X.
  • Robertson, T. M., M. N. Clifford, S. Penson, P. Williams, and M. D. Robertson. 2018. Postprandial glycaemic and lipaemic responses to chronic coffee consumption may be modulated by CYP1A2 polymorphisms. British Journal of Nutrition 119 (7):792–800. doi: 10.1017/S0007114518000260.
  • Rocha, C. T. 2009. Market integration analysis of the main coffee producing and consuming countries. Masters diss., Federal University of Lavras.
  • Roshan, H., O. Nikpayam, M. Sedaghat, and G. Sohrab. 2018. Effects of green coffee extract supplementation on anthropometric indices, glycaemic control, blood pressure, lipid profile, insulin resistance and appetite in patients with the metabolic syndrome: A randomised clinical trial. The British Journal of Nutrition 119 (3):250–8. doi: 10.1017/S0007114517003439.
  • Rubach, M., R. Lang, E. Seebach, M. M. Somoza, T. Hofmann, and V. Somoza. 2012. Multiparametric approach to identify coffee components that regulate mechanisms of gastric acid secretion. Molecular Nutrition & Food Research 56 (2):325–35. doi: 10.1002/mnfr.201100453.
  • Ruggiero, E., A. Di Castelnuovo, S. Costanzo, M. Persichillo, A. De Curtis, C. Cerletti, M. B. Donati, G. de Gaetano, L. Iacoviello, and M. Bonaccio, Moli-sani Study Investigators. 2021. Daily coffee drinking is associated with lower risks of cardiovascular and total mortality in a general Italian population: Results from the Moli-sani Study. The Journal of Nutrition 151 (2):395–404. doi: 10.1093/jn/nxaa365.
  • Sakamaki, T., K. Kayaba, K. Kotani, M. Namekawa, T. Hamaguchi, N. Nakaya, and S. Ishikawa. 2021. Coffee consumption and mortality in Japan with 18 years of follow-up: The Jichi Medical School Cohort Study. Public Health 191:23–30. doi: 10.1016/j.puhe.2020.10.021.
  • Samsonowicz, M., E. Regulska, D. Karpowicz, and B. Leśniewska. 2019. Antioxidant properties of coffee substitutes rich in polyphenols and minerals. Food Chemistry 278:101–9. doi: 10.1016/j.foodchem.2018.11.057.
  • Santos, R. M, and D. R. Lima. 2016. Coffee consumption, obesity and type 2 diabetes: A mini-review. European Journal of Nutrition 55 (4):1345–58. doi: 10.1007/s00394-016-1206-0.
  • Sarriá, B., J. L. Sierra-Cinos, L. García-Diz, S. Martínez-López, R. Mateos, and L. Bravo-Clemente. 2020. Green/roasted coffee may reduce cardiovascular risk in hypercholesterolemic subjects by decreasing body weight, abdominal adiposity and blood pressure. Foods 9 (9):1191. doi: 10.3390/foods9091191.
  • Sarriá, B., S. Martínez-López, J. L. Sierra-Cinos, L. García-Diz, R. Mateos, and L. Bravo-Clemente. 2018. Regularly consuming a green/roasted coffee blend reduces the risk of metabolic syndrome. European Journal of Nutrition 57 (1):269–78. doi: 10.1007/s00394-016-1316-8.
  • Saud, S., and A. M. Salamatullah. 2021. Relationship between the chemical composition and the biological functions of coffee. Molecules 26 (24):7634. doi: 10.3390/molecules26247634.
  • Sauer, T., M. Raithel, J. Kressel, G. Münch, and M. Pischetsrieder. 2013. Activation of the transcription factor Nrf2 in macrophages, Caco-2 cells and intact human gut tissue by Maillard reaction products and coffee. Amino Acids 44 (6):1427–39. doi: 10.1007/s00726-012-1222-1.
  • Scalbert, A., C. Morand, C. Manach, and C. Rémésy. 2002. Absorption and metabolism of polyphenols in the gut and impact on health. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 56 (6):276–82. doi: 10.1016/s0753-3322(02)00205-6.
  • Schüttler, D., W. S. Rudi, A. Bauer, W. Hamm, and S. Brunner. 2022. Impact of energy drink versus coffee consumption on periodic repolarization dynamics: An interventional study. European Journal of Nutrition 61 (5):2847–51. doi: 10.1007/s00394-022-02853-8.
  • Shabir, A., A. Hooton, J. Tallis, and F. M. Higgins. 2018. The influence of caffeine expectancies on sport, exercise, and cognitive performance. Nutrients 10 (10):1528. doi: 10.3390/nu10101528.
  • Shan, J., J. Fu, Z. Zhao, X. Kong, H. Huang, L. Luo, and Z. Yin. 2009. Chlorogenic acid inhibits lipopolysaccharideinduced cyclooxygenase-2 expression in RAW264.7 cells through suppressing NF-κB and JNK/AP-1 activation. International Immunopharmacology 9 (9):1042–8. doi: 10.1016/j.intimp.2009.04.011.
  • Shao, C., H. Tang, X. Wang, and J. He. 2021. Coffee consumption and stroke risk: Evidence from a systematic review and meta-analysis of more than 2.4 million men and women. Journal of Stroke and Cerebrovascular Diseases: The Official Journal of National Stroke Association 30 (1):105452.
  • Shen, T., Y. C. Park, S. H. Kim, J. Lee, and J. Y. Cho. 2010. Nuclear factor-kappaB/signal transducers and activators of transcription-1-mediated inflammatory responses in lipopolysaccharide-activated macrophages are a major inhibitory target of kahweol, a coffee diterpene. Biological & Pharmaceutical Bulletin 33 (7):1159–64. doi: 10.1248/bpb.33.1159.
  • Shokouh, P., P. B. Jeppesen, C. B. Christiansen, F. B. Mellbye, K. Hermansen, and S. Gregersen. 2019. Efficacy of arabica versus robusta coffee in improving weight, insulin resistance, and liver steatosis in a rat model of type-2 diabetes. Nutrients 11 (9):2074. doi: 10.3390/nu11092074.
  • Shokouh, P., P. B. Jeppesen, K. Hermansen, C. Laustsen, H. Stødkilde-Jørgensen, S. J. Hamilton-Dutoit, M. Søndergaard Schmedes, H. Qi, T. Stokholm Nørlinger, and S. Gregersen. 2018. Effects of unfiltered coffee and bioactive coffee compounds on the development of metabolic syndrome components in a high-fat-/high-fructose-fed rat model. Nutrients 10 (10):1547. doi: 10.3390/nu10101547.
  • Signori, C., J. M. T. A. Meessen, R. Laaksonen, A. P. Maggioni, D. Novelli, A. Blanda, A. Jylhä, E. Nicolis, G. Targher, L. Tavazzi, et al. 2021. Coffee, atrial fibrillation, and circulating ceramides in patients with chronic heart failure. Journal of Agricultural and Food Chemistry 69 (38):11236–45. doi: 10.1021/acs.jafc.1c03741.
  • Simon, J., K. Fung, Z. Raisi-Estabragh, N. Aung, M. Y. Khanji, M. Kolossváry, B. Merkely, P. B. Munroe, N. C. Harvey, S. K. Piechnik, et al. 2022. Light to moderate coffee consumption is associated with lower risk of death: A UK Biobank study. European Journal of Preventive Cardiology: 29(6):982–991. doi: 10.1093/eurjpc/zwac008.
  • Siswanto, F. M., R. Sakuma, A. Oguro, and S. Imaoka. 2022. Chlorogenic acid activates Nrf2/SKN-1 and prolongs the lifespan of Caenorhabditis elegans via the Akt-FOXO3/DAF16a-DDB1 pathway and activation of DAF16f. Journals of Gerontology - Series A Biological Sciences and Medical Sciences: glac062. doi: 10.1093/gerona/glac062.
  • Somoza, V., T. Hofmann, I. Lantz, and H. Stiebitz. 2010. European Patent Office. EP2269468A1.
  • Song, J., N. Zhou, W. Ma, X. Gu, B. Chen, Y. Zeng, L. Yang, and M. Zhou. 2019. Modulation of gut microbiota by chlorogenic acid pretreatment on rats with adrenocorticotropic hormone induced depression-like behavior. Food & Function 10 (5):2947–57. doi: 10.1039/c8fo02599a.
  • Srithongkul, T., and P. Ungprasert. 2020. Coffee consumption is associated with a decreased risk of incident chronic kidney disease: A systematic review and meta-analysis of cohort studies. European Journal of Internal Medicine 77:111–6. doi: 10.1016/j.ejim.2020.04.018.
  • Srivastava, B., S. Sen, S. Bhakta, and K. Sen. 2022. Effect of caffeine on the possible amelioration of diabetic neuropathy: A spectroscopic study. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 264:120322. doi: 10.1016/j.saa.2021.120322.
  • Stalmach, A., G. Williamson, and A. Crozier. 2014. Impact of dose on the bioavailability of coffee chlorogenic acids in humans. Food & Function 5 (8):1727–37. doi: 10.1039/C4FO00316K.
  • Stefanello, N., R. M. Spanevello, S. Passamonti, L. Porciúncula, C. D. Bonan, A. A. Olabiyi, J. B. Teixeira da Rocha, C. E. Assmann, V. M. Morsch, and M. R. C. Schetinger. 2019. Coffee, caffeine, chlorogenic acid, and the purinergic system. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 123:298–313. doi: 10.1016/j.fct.2018.10.005.
  • Steffen, M., C. Kuhle, D. Hensrud, P. J. Erwin, and M. H. Murad. 2012. The effect of coffee consumption on blood pressure and the development of hypertension: A systematic review and meta-analysis. Journal of Hypertension 30 (12):2245–54.
  • Stevens, L. M., E. Linstead, J. L. Hall, and D. P. Kao. 2021. Association between coffee intake and incident heart failure risk: A machine learning analysis of the FHS, the ARIC study, and the CHS. Circulation. Heart Failure 14 (2):e006799. doi: 10.1161/CIRCHEARTFAILURE.119.006799.
  • Surma, S., and S. Oparil. 2021. Coffee and arterial hypertension. Current Hypertension Reports 23 (7):38. doi: 10.1007/s11906-021-01156-3.
  • Suzuki, A., T. Nomura, H. Jokura, N. Kitamura, A. Saiki, and A. Fujii. 2019. Chlorogenic acid-enriched green coffee bean extract affects arterial stiffness assessed by the cardio-ankle vascular index in healthy men: A pilot study. International Journal of Food Sciences and Nutrition 70 (7):901–8. doi: 10.1080/09637486.2019.1585763.
  • Suzuki, M., D. Shindo, R. Suzuki, Y. Shirataki, and H. Waki. 2017. Combined long-term caffeine intake and exercise inhibits the development of diabetic nephropathy in OLETF rats. Journal of Applied Physiology (Bethesda, MD: 1985) 122 (5):1321–8. doi: 10.1152/japplphysiol.00278.2016.
  • Tagliazucchi, D., A. Helal, E. Verzelloni, and A. Conte. 2012. The type and concentration of milk increase the in vitro bioaccessibility of coffee chlorogenic acids. Journal of Agricultural and Food Chemistry 60 (44):11056–64. doi: 10.1021/jf302694a.
  • Tfouni, S. A. V., C. S. Serrate, F. M. Leme, M. C. R. Camargo, C. R. A. Teles, K. Cipolli, and R. P. Z. Furlani. 2013. Polycyclic aromatic hydrocarbons in coffee brew: Influence of roasting and brewing procedures in two Coffea cultivars. LWT - Food Science and Technology 50 (2):526–30. doi: 10.1016/j.lwt.2012.08.015.
  • Tom, E. N., C. Girard-Thernier, and C. Demougeot. 2016. The Janus face of chlorogenic acid on vascular reactivity: A study on rat isolated vessels. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 23 (10):1037–42. doi: 10.1016/j.phymed.2016.06.012.
  • Toydemir, G., L. M. P. Loonen, P. B. Venkatasubramanian, J. J. Mes, J. M. Wells, and N. De Wit. 2021. Coffee induces AHR- and Nrf2-mediated transcription in intestinal epithelial cells. Food Chemistry 341 (Pt 2):128261. doi: 10.1016/j.foodchem.2020.128261.
  • Tsirimiagkou, C., E. D. Basdeki, A. A. Kyriazopoulou Korovesi, C. Chairistanidou, D. S. Ouamer, A. Argyris, P. P. Sfikakis, K. Karatzi, and A. D. Protogerou. 2021. Habitual consumption of instant coffee is favorably associated with arterial stiffness but not with atheromatosis. Clinical Nutrition ESPEN 45:363–8. doi: 10.1016/j.clnesp.2021.07.018.
  • Van Dam, R. M, and E. J. M. Feskens. 2002. Coffee consumption and risk of type 2 diabetes mellitus. Lancet.360(9344):1477–8. doi: 10.1016/S0140-6736(02)11436-X.
  • Van Dam, R. M. 2006. Coffee and type 2 diabetes: From beans to beta-cells. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD 16 (1):69–77. doi: 10.1016/j.numecd.2005.10.003.
  • Van Rymenant, E., J. Van Camp, B. Pauwels, C. Boydens, L. Vanden Daele, K. Beerens, P. Brouckaert, G. Smagghe, A. Kerimi, G. Williamson, et al. 2017. Ferulic acid-4-O-sulfate rather than ferulic acid relaxes arteries and lowers blood pressure in mice. The Journal of Nutritional Biochemistry 44:44–51. doi: 10.1016/j.jnutbio.2017.02.018.
  • Van Westing, A. C., L. K. Küpers, and J. M. Geleijnse. 2020. Diet and kidney function: A literature review. Current Hypertension Reports 22 (2):14. doi: 10.1007/s11906-020-1020-1.
  • Vossoughinia, H., M. Salari, E. Mokhtari Amirmajdi, H. Saadatnia, S. Abedini, A. Shariati, M. Shariati, and A. Khosravi Khorashad. 2014. An epidemiological study of gastroesophageal reflux disease and related risk factors in urban population of Mashhad, Iran. Iranian Red Crescent Medical Journal 16 (12):e15832. doi: 10.5812/ircmj.15832.
  • Wan, F., R. Zhong, M. Wang, Y. Zhou, Y. Chen, B. Yi, F. Hou, L. Liu, Y. Zhao, L. Chen, et al. 2021. Caffeic acid supplement alleviates colonic inflammation and oxidative stress potentially through improved gut microbiota community in mice. Frontiers in Microbiology 12:784211. doi: 10.3389/fmicb.2021.784211.
  • Wang, K., et al. 2020. Chlorogenic acid protects against indomethacin-induced inflammation and mucosa damage by decreasing bacteroides-derived LPS. Frontiers in Immunology 1:1125.
  • Wang, L., J. Jing, Q. Fu, X. Tang, L. Su, S. Wu, G. Li, and L. Zhou. 2015. Association study of genetic variants at newly identified lipid gene TRIB1 with coronary heart disease in Chinese Han population. Lipids in Health and Disease 14:46.
  • Wang, Z., K. L. Lam, J. Hu, S. Ge, A. Zhou, B. Zheng, S. Zeng, and S. Lin. 2019. Chlorogenic acid alleviates obesity and modulates gut microbiota in high-fat-fed mice. Food Science & Nutrition 7 (2):579–88. doi: 10.1002/fsn3.868.
  • Ward, N. C., J. M. Hodgson, R. J. Woodman, D. Zimmermann, L. Poquet, A. Leveques, L. Actis-Goretta, I. B. Puddey, and K. D. Croft. 2016. Acute effects of chlorogenic acids on endothelial function and blood pressure in healthy men and women. Food & Function 7 (5):2197–203. doi: 10.1039/C6FO00248J.
  • Watanabe, T., S. Kobayashi, T. Yamaguchi, M. Hibi, I. Fukuhara, and N. Osaki. 2019. Coffee abundant in chlorogenic acids reduces abdominal fat in overweight adults: A randomized, double-blind, controlled trial. Nutrients 11 (7):1617. doi: 10.3390/nu11071617.
  • Wei, T.-Y., P.-H. Hsueh, S.-H. Wen, C.-L. Chen, and C.-C. Wang. 2019. The role of tea and coffee in the development of gastroesophageal reflux disease. Ci ji yi Xue za Zhi = Tzu-Chi Medical Journal 31 (3):169–76. doi: 10.4103/tcmj.tcmj_48_18.
  • Wendl, B., A. Pfeiffer, C. Pehl, T. Schmidt, and H. Kaess. 2007. Efeito da descafeinação de café ou chá no refluxo gastroesofágico. Alimentary Pharmacology & Therapeutics 8 (3):283–7.
  • Wijarnpreecha, K., C. Thongprayoon, N. Thamcharoen, P. Panjawatanan, and W. Cheungpasitporn. 2017. Association of coffee consumption and chronic kidney disease: A meta-analysis. International Journal of Clinical Practice 71 (1):e12919. doi: 10.1111/ijcp.12919.
  • Williamson, G. 2020. Protection against developing type 2 diabetes by coffee consumption: Assessment of the role of chlorogenic acid and metabolites on glycaemic responses. Food & Function 11 (6):4826–33. doi: 10.1039/D0FO01168A.
  • Wolska, J., K. Janda, K. Jakubczyk, M. Szymkowiak, D. Chlubek, and I. Gutowska. 2017. Levels of antioxidant activity and fluoride content in coffee infusions of arabica, robusta and green coffee beans in according to their brewing methods. Biological Trace Element Research 179 (2):327–33. doi: 10.1007/s12011-017-0963-9.
  • Wu, Y., W. Liu, Q. Li, Y. Li, Y. Yan, F. Huang, X. Wu, Q. Zhou, X. Shu, and Z. Ruan. 2018. Dietary chlorogenic acid regulates gut microbiota, serum-free amino acids and colonic serotonin levels in growing pigs. International Journal of Food Sciences and Nutrition 69 (5):566–73. doi: 10.1080/09637486.2017.1394449.
  • Yao, J., S. Peng, J. Xu, and J. Fang. 2019. Reversing ROS-mediated neurotoxicity by chlorogenic acid involves its direct antioxidant activity and activation of Nrf2-ARE signaling pathway. BioFactors (Oxford, England) 45 (4):616–26.
  • Ye, H. Y., Z. Y. Li, Y. Zheng, Y. Chen, Z. H. Zhou, and J. Jin. 2016. The attenuation of chlorogenic acid on oxidative stress for renal injury in streptozotocin-induced diabetic nephropathy rats. Archives of Pharmacal Research 39 (7):989–97. doi: 10.1007/s12272-016-0771-3.
  • Ye, X., Y. Liu, J. Hu, Y. Gao, Y. Ma, and D. Wen. 2021. Chlorogenic acid-induced gut microbiota improves metabolic endotoxemia. Frontiers in Endocrinology (Lausanne) 12:762691. doi: 10.3389/fendo.
  • Yeretzian, C., E. C. Pascual, and B. A. Goodman. 2012. Effect of roasting conditions and grinding on free radical contents of coffee beans stored in air. Food Chemistry 131 (3):811–6. doi: 10.1016/j.foodchem.2011.09.048.
  • Yuan, S., and S. C. Larsson. 2022. Coffee and caffeine consumption and risk of kidney stones: A Mendelian randomization study. American Journal of Kidney Diseases 79 (1):9–14.e1. doi: 10.1053/j.ajkd.2021.04.018.
  • Yunus, J., M. Salman, G. B. R. Lintin, M. Muchtar, D. C. R. Sari, N. Arfian, and M. M. Romi. 2020. Chlorogenic acid attenuates kidney fibrosis via antifibrotic action of BMP-7 and HGF. The Medical Journal of Malaysia 75 (Suppl 1):5–9.
  • Zhang, Y., Y. Wang, D. Chen, B. Yu, P. Zheng, X. Mao, Y. Luo, Y. Li, and J. He. 2018. Dietary chlorogenic acid supplementation affects gut morphology, antioxidant capacity and intestinal selected bacterial populations in weaned piglets. Food & Function 9 (9):4968–78. doi: 10.1039/C8FO01126E.
  • Zhong, V. W., A. Kuang, R. D. Danning, P. Kraft, R. M. van Dam, D. I. Chasman, and M. C. Cornelis. 2019. A genome-wide association study of bitter and sweet beverage consumption. Human Molecular Genetics 28 (14):2449–57. doi: 10.1093/hmg/ddz061.
  • Zimmermann-Viehoff, F., J. Thayer, J. Koenig, C. Herrmann, C. S. Weber, and H. C. Deter. 2016. Short-term effects of espresso coffee on heart rate variability and blood pressure in habitual and non-habitual coffee consumers–a randomized crossover study. Nutritional Neuroscience 19 (4):169–75. doi: 10.1179/1476830515Y.0000000018.
  • Zuchinali, P., G. C. Souza, M. Pimentel, D. Chemello, A. Zimerman, V. Giaretta, J. Salamoni, B. Fracasso, L. I. Zimerman, and L. E. Rohde. 2016. Short-term effects of high-dose caffeine on cardiac arrhythmias in patients with heart failure: A randomized clinical trial. JAMA Internal Medicine 176 (12):1752–9. doi: 10.1001/jamainternmed.2016.6374.
  • Zuchinali, P., P. A. Ribeiro, M. Pimentel, P. R. da Rosa, L. I. Zimerman, and L. E. Rohde. 2016. Effect of caffeine on ventricular arrhythmia: A systematic review and meta-analysis of experimental and clinical studies. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology 18 (2):257–66. doi: 10.1093/europace/euv261.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.