1,158
Views
6
CrossRef citations to date
0
Altmetric
Review

Metabolic, proteomic and microbial changes postmortem and during beef aging

, , , , & ORCID Icon

References

  • Aalhus, J. L., W. Robertson, M. Dugan, and D. Best. 2002. Very fast chilling of beef carcasses. Canadian Journal of Animal Science 82 (1):59–67. doi: 10.4141/A01-020.
  • Aganovic, K., C. Hertel, R. F. Vogel, R. Johne, O. Schlüter, U. Schwarzenbolz, H. Jäger, T. Holzhauser, J. Bergmair, A. Roth, et al. 2021. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Comprehensive Reviews in Food Science and Food Safety 20 (4):3225–66. doi: 10.1111/1541-4337.12763.
  • Ahnström, M. L., M. Seyfert, M. C. Hunt, and D. E. Johnson. 2006. Dry aging of beef in a bag highly permeable to water vapour. Meat Science 73 (4):674–9. doi: 10.1016/j.meatsci.2006.03.006.
  • Anderson, M., S. Lonergan, and E. Huff-Lonergan. 2012. Myosin light chain 1 release from myofibrillar fraction during postmortem aging is a potential indicator of proteolysis and tenderness of beef. Meat Science 90 (2):345–51. doi: 10.1016/j.meatsci.2011.07.021.
  • Antonelo, D., J. F. M. Gómez, N. R. B. Cônsolo, M. Beline, L. A. Colnago, W. Schilling, X. Zhang, S. P. Suman, D. E. Gerrard, J. C. Balieiro, et al. 2020. Metabolites and metabolic pathways correlated with beef tenderness. Meat and Muscle Biology 4 (1):1–9. doi: 10.22175/mmb.10854.
  • Ayres, J. C. 1960. Temperature relationships and some other characteristics of the microbial flora developing on refrigerated beef. Journal of Food Science 25 (1):1–18. doi: 10.1111/j.1365-2621.1960.tb17930.x.
  • Ba, H. V., K. Park, D. Dashmaa, and I. Hwang. 2014. Effect of muscle type and vacuum chiller ageing period on the chemical compositions, meat quality, sensory attributes and volatile compounds of Korean native cattle beef. Animal Science Journal = Nihon Chikusan Gakkaiho 85 (2):164–73. doi: 10.1111/asj.12100.
  • Baldassini, W. A., C. P. Braga, L. A. L. Chardulo, J. A. I. V. Silva, J. M. Malheiros, L. G. de Albuquerque, T. T. Fernandes, and P. de Magalhães Padilha. 2015. Bioanalytical methods for the metalloproteomics study of bovine longissimus thoracis muscle tissue with different grades of meat tenderness in the Nellore breed (Bos indicus). Food Chemistry 169:65–72. doi: 10.1016/j.foodchem.2014.07.131.
  • Bate-Smith, E. C. 1948. The physiology and chemistry of rigor mortis, with special reference to the aging of beef. In Advances in food research, vol. 1, 1–38. New York: Academic Press. doi: 10.1016/S0065-2628(08)60204-9.
  • Beere, H. M. 2005. Death versus survival: Functional interaction between the apoptotic and stress-inducible heat shock protein pathways. The Journal of Clinical Investigation 115 (10):2633–9. doi: 10.1172/JCI26471.
  • Beldarrain, L. R., N. Aldai, B. Picard, E. Sentandreu, J. L. Navarro, and M. A. Sentandreu. 2018. Use of liquid isoelectric focusing (OFFGEL) on the discovery of meat tenderness biomarkers. Journal of Proteomics 183:25–33. doi: 10.1016/j.jprot.2018.05.005.
  • Bendall, J. R. 1973. Postmortem changes in muscle. In The Structure and Function of Muscle, ed. G. H. Bourne, 2: 243–309. New York: Academic Press.
  • Bendall, J. R., C. C. Ketteridge, and A. R. George. 1976. The electrical stimulation of beef carcasses. Journal of the Science of Food and Agriculture 27 (12):1123–31. doi: 10.1002/jsfa.2740271207.
  • Berchtold, M. W., H. Brinkmeier, and M. Muntener. 2000. Calcium ion in skeletal muscle: Its crucial role for muscle function, plasticity, and disease. Physiological Reviews 80 (3):1215–65. doi: 10.1152/physrev.2000.80.3.1215.
  • Berg, J. M., J. L. Tymoczko, and L. Stryer. 2002. Biochemistry. New York: WH Freeman. https://www.ncbi.nlm.nih.gov/books/NBK22593/.
  • Berge, P., P. Ertbjerg, L. M. Larsen, T. Astruc, X. Vignon, and A. J. Møller. 2001. Tenderization of beef by lactic acid injected at different times post mortem. Meat Science 57 (4):347–57. doi: 10.1016/S0309-1740(00)00110-8.
  • Bhat, Z. F., J. D. Morton, S. L. Mason, and A. E.-D A. Bekhit. 2018. Role of calpain system in meat tenderness: A review. Food Science and Human Wellness 7 (3):196–204. doi: 10.1016/j.fshw.2018.08.002.
  • Bhat, Z. F., J. D. Morton, S. L. Mason, and A. E.-D A. Bekhit. 2019a. Current and future prospects for the use of pulsed electric field in the meat industry. Critical Reviews in Food Science and Nutrition 59 (10):1660–74. doi: 10.1080/10408398.2018.1425825.
  • Bhat, Z. F., J. D. Morton, S. L. Mason, and A. E.-D A. Bekhit. 2019b. Pulsed electric field operates enzymatically by causing early activation of calpains in beef during ageing. Meat Science 153:144–51. doi: 10.1016/j.meatsci.2019.03.018.
  • Bischof, G., F. Witte, N. Terjung, E. Januschewski, V. Heinz, A. Juadjur, and M. Gibis. 2021. Analysis of aging type-and aging time-related changes in the polar fraction of metabolome of beef by 1H NMR spectroscopy. Food Chemistry 342:128353. doi: 10.1016/j.foodchem.2020.128353.
  • Bischof, G., F. Witte, N. Terjung, E. Januschewski, V. Heinz, A. Juadjur, and M. Gibis. 2022. Effect of sampling position in fresh, dry-aged and wet-aged beef from M. Longissimus dorsi of Simmental cattle analyzed by 1H NMR spectroscopy. Food Research International (Ottawa, ON) 156:111334. doi: 10.1016/j.foodres.2022.111334.
  • Biswas, A. K., S. Tandon, and P. K. Mandal. 2020. Calpain-assisted postmortem aging of meat and its detection methods. In Meat Quality Analysis, 101–14. New York: Academic Press. doi: 10.1016/B978-0-12-819233-7.00007-0.
  • Bjarnadóttir, S. G., K. Hollung, E. M. Faergestad, and E. Veiseth-Kent. 2010. Proteome changes in bovine longissimus thoracis muscle during the first 48 h postmortem: Shifts in energy status and myofibrillar stability. Journal of Agricultural and Food Chemistry 58 (12):7408–14. doi: 10.1021/jf100697h.
  • Bjarnadottir, S. G., K. Hollung, M. Høy, E. Bendixen, M. Codrea, and E. Veiseth-Kent. 2012. Changes in protein abundance between tender and tough meat from bovine Longissimus thoracis muscle assessed by isobaric Tag for Relative and Absolute Quantitation (iTRAQ) and 2-dimensional gel electrophoresis analysis. Journal of Animal Science 90 (6):2035–43. doi: 10.2527/jas.2011-4721.
  • Bodwell, C., A. Pearson, and M. E. Spooner. 1965. Post‐mortem changes in muscle. I. Chemical changes in beef. Journal of Food Science 30 (5):766–72. doi: 10.1111/j.1365-2621.1965.tb01838.x.
  • Boehm, M. L., T. L. Kendall, V. F. Thompson, and D. E. Goll. 1998. Changes in the calpains and calpastatin during postmortem storage of bovine muscle. Journal of Animal Science 76 (9):2415–34. doi: 10.2527/1998.7692415x.
  • Boudon, S., D. Ounaissi, D. Viala, V. Monteils, B. Picard, and I. Cassar-Malek. 2020. Label free shotgun proteomics for the identification of protein biomarkers for beef tenderness in muscle and plasma of heifers. Journal of Proteomics 217:103685. doi: 10.1016/j.jprot.2020.103685.
  • Bowker, B., A. Grant, D. Swartz, and D. Gerrard. 2004. Myosin heavy chain isoforms influence myofibrillar ATPase activity under simulated postmortem pH, calcium, and temperature conditions. Meat Science 67 (1):139–47. doi: 10.1016/j.meatsci.2003.09.016.
  • Bowker, B., C. Botrel, D. Swartz, A. Grant, and D. Gerrard. 2004. Influence of myosin heavy chain isoform expression and postmortem metabolism on the ATPase activity of muscle fibers. Meat Science 68 (4):587–94. doi: 10.1016/j.meatsci.2004.05.010.
  • Brandi, J., E. Robotti, M. Manfredi, E. Barberis, E. Marengo, E. Novelli, and D. Cecconi. 2021. Kohonen artificial neural network and multivariate analysis in the identification of proteome changes during early and long aging of bovine Longissimus dorsi muscle using SWATH mass spectrometry. Journal of Agricultural and Food Chemistry 69 (38):11512–22. doi: 10.1021/acs.jafc.1c03578.
  • Brooks, F. T, and C. G. Hansford. 1923. Mould growths upon cold-store meat. Transactions of the British Mycological Society 8 (3):113–42. doi: 10.1016/S0007-1536(23)80020-1.
  • Buege, D, and B. Marsh. 1975. Mitochondrial calcium and postmortem muscle shortening. Biochemical and Biophysical Research Communications 65 (2):478–82. doi: 10.1016/S0006-291X(75)80172-0.
  • Buege, J. A., and S. D. Aust. 1978. Microsomal lipid peroxidation. In Methods in Enzymology, vol. 52, 302–10. New York: Academic Press. doi: 10.1016/S0076-6879(78)52032-6.
  • Caballero, B., V. Sierra, M. Olivan, I. Vega-Naredo, C. Tomás-Zapico, Ó. Alvarez-García, D. Tolivia, R. Hardeland, M. J. Rodríguez-Colunga, and A. Coto‐Montes. 2007. Activity of cathepsins during beef aging related to mutations in the myostatin gene. Journal of the Science of Food and Agriculture 87 (2):192–9. doi: 10.1002/jsfa.2683.
  • Calkins, C. R., and J. M. Hodgen. 2007. A fresh look at meat flavor. Meat Science 77 (1):63–80. doi: 10.1016/j.meatsci.2007.04.016.
  • Calkins, C. R., and S. Seideman. 1988. Relationships among calcium-dependent protease, cathepsins B and H, meat tenderness and the response of muscle to aging. Journal of Animal Science 66 (5):1186–93. doi: 10.2527/jas1988.6651186x.
  • Camou, J., J. A. Marchello, V. Thompson, S. Mares, and D. Goll. 2007. Effect of postmortem storage on activity of μ-and m-calpain in five bovine muscles. Journal of Animal Science 85 (10):2670–81. doi: 10.2527/jas.2007-0164.
  • Campbell, R., M. Hunt, P. Levis, and E. Chambers. 2001. Dry‐aging effects on palatability of beef longissimus muscle. Journal of Food Science 66 (2):196–9. doi: 10.1111/j.1365-2621.2001.tb11315.x.
  • Capouya, R., T. Mitchell, D. I. Clark, D. L. Clark, P. Bass, R. D. Capouya, and P. D. Bass. 2020. A survey of microbial communities on dry-aged beef in commercial meat processing facilities. Meat and Muscle Biology 4 (1):1–11. doi: 10.22175/mmb.10373.
  • Carvalho, M. E., G. Gasparin, M. D. Poleti, A. F. Rosa, J. C. C. Balieiro, C. A. Labate, R. T. Nassu, R. R. Tullio, L. C. d A. Regitano, G. B. Mourão, et al. 2014. Heat shock and structural proteins associated with meat tenderness in Nellore beef cattle, a Bos indicus breed. Meat Science 96 (3):1318–24. doi: 10.1016/j.meatsci.2013.11.014.
  • Castejón, D., J. M. García-Segura, R. Escudero, A. Herrera, and M. I. Cambero. 2015. Metabolomics of meat exudate: Its potential to evaluate beef meat conservation and aging. Analytica Chimica Acta 901:1–11. doi: 10.1016/j.aca.2015.08.032.
  • Chaze, T., J.-F. Hocquette, B. Meunier, G. Renand, C. Jurie, C. Chambon, L. Journaux, S. Rousset, C. Denoyelle, and J. Lepetit. 2013. Biological markers for meat tenderness of the three main French beef breeds using 2-DE and MS approach. In Proteomics in foods, eds F. Toldrá and L. M. L. Nollet, 127–46. Boston, MA: Springer. doi: 10.1007/978-1-4614-5626-1_8.
  • Chwieralski, C., T. Welte, and F. Bühling. 2006. Cathepsin-regulated apoptosis. Apoptosis : An International Journal on Programmed Cell Death 11 (2):143–9. doi: 10.1007/s10495-006-3486-y.
  • Colle, M., and M. Doumit. 2017. Effect of extended aging on calpain-1 and-2 activity in beef longissimus lumborum and semimembranosus muscles. Meat Science 131:142–5. doi: 10.1016/j.meatsci.2017.05.014.
  • Cônsolo, N. R. B., A. F. Rosa, L. C. G. S. Barbosa, P. H. Maclean, A. Higuera-Padilla, L. A. Colnago, and E. A. L. Titto. 2021. Preliminary study on the characterization of Longissimus lumborum dark cutting meat in Angus × Nellore crossbreed cattle using NMR-based metabolomics. Meat Science 172:108350. doi: 10.1016/j.meatsci.2020.108350.
  • Cônsolo, N. R. B., J. Silva, V. L. M. Buarque, L. M. Samuelsson, P. Miller, P. H. Maclean, T. B. Moraes, L. C. G. S. Barbosa, A. Higuera-Padilla, L. A. Colnago, et al. 2021. Using TD-NMR relaxometry and 1D 1H NMR spectroscopy to evaluate aging of Nellore beef. Meat Science 181:108606. doi: 10.1016/j.meatsci.2021.108606.
  • Cooper, G. M., and R. Hausman. 2000. A molecular approach. The cell. 2nd ed. Sunderland, MA: Sinauer Associates. https://www.ncbi.nlm.nih.gov/books/NBK9961/.
  • Coux, O., K. Tanaka, and A. L. Goldberg. 1996. Structure and functions of the 20S and 26S proteasomes. Annual Review of Biochemistry 65 (1):801–47. doi: 10.1146/annurev.bi.65.070196.004101.
  • Da Silva Bernardo, A. P., F. M. S. Ferreira, A. C. M. da Silva, F. S. Prestes, V. C. Francisco, R. T. Nassu, M. d S. do Nascimento, and S. B. Pflanzer. 2021. Dry-aged and wet-aged beef: Effects of aging time and temperature on microbiological profile, physicochemical characteristics, volatile compound profile and weight loss of meat from Nellore cattle (Bos indicus). Animal Production Science 61 (14):497–1509. doi: 10.1071/AN20120.
  • D'Alessandro, A., C. Marrocco, S. Rinalducci, C. Mirasole, S. Failla, and L. Zolla. 2012. Chianina beef tenderness investigated through integrated Omics. Journal of Proteomics 75 (14):4381–98. doi: 10.1016/j.jprot.2012.03.052.
  • D'Alessandro, A., S. Rinalducci, C. Marrocco, V. Zolla, F. Napolitano, and L. Zolla. 2012. Love me tender: An Omics window on the bovine meat tenderness network. Journal of Proteomics 75 (14):4360–80. doi: 10.1016/j.jprot.2012.02.013.
  • Dang, D. S., J. F. Buhler, H. T. Davis, K. J. Thornton, T. L. Scheffler, and S. K. Matarneh. 2020. Inhibition of mitochondrial calcium uniporter enhances postmortem proteolysis and tenderness in beef cattle. Meat Science 162:108039. doi: 10.1016/j.meatsci.2019.108039.
  • Dashdorj, D., J-e Yang, H. V. Ba, K.-S. Ryu, and I.-H. Hwang. 2013. Differences in the taste-active compounds between Hanwoo Longissimus and Semitendinosus muscles and its comparision with Angus Longissimus beef muscle. Korean Journal for Food Science of Animal Resources 33 (4):508–14. doi: 10.5851/kosfa.2013.33.4.508.
  • Dashdorj, D., T. Amna, and I. Hwang. 2015. Influence of specific taste-active components on meat flavor as affected by intrinsic and extrinsic factors: An overview. European Food Research and Technology 241 (2):157–71. doi: 10.1007/s00217-015-2449-3.
  • Dashdorj, D., V. K. Tripathi, S. Cho, Y. Kim, and I. Hwang. 2016. Dry aging of beef; review. Journal of Animal Science and Technology 58 (1):20. doi: 10.1186/s40781-016-0101-9.
  • De Moura Souza, G., M. A. da Silva Coutinho, P. M. Ramos, G. M. de Oliveira, S. M. Lonergan, and E. F. Delgado. 2019. Tough aged meat presents greater expression of calpastatin, which presents postmortem protein profile and tenderization related to Nellore steer temperament. Meat Science 156:131–8. doi: 10.1016/j.meatsci.2019.05.017.
  • De Oliveira, L. G., E. F. Delgado, E. M. Steadham, E. Huff-Lonergan, and S. M. Lonergan. 2019. Association of calpain and calpastatin activity to postmortem myofibrillar protein degradation and sarcoplasmic proteome changes in bovine Longissiumus lumborum and Triceps brachii. Meat Science 155:50–60. doi: 10.1016/j.meatsci.2019.04.015.
  • DeGeer, S. L., M. C. Hunt, C. L. Bratcher, B. A. Crozier-Dodson, D. E. Johnson, and J. F. Stika. 2009. Effects of dry aging of bone-in and boneless strip loins using two aging processes for two aging times. Meat Science 83 (4):768–74. doi: 10.1016/j.meatsci.2009.08.017.
  • Dransfield, E. 1992. Modelling post-mortem tenderisation—III: Role of calpain I in conditioning. Meat Science 31 (1):85–94. doi: 10.1016/0309-1740(92)90074-E.
  • Dutaud, D., L. Aubry, M. Sentandreu, and A. Ouali. 2006. Bovine muscle 20S proteasome: I. Simple purification procedure and enzymatic characterization in relation with postmortem conditions. Meat Science 74 (2):327–36. doi: 10.1016/j.meatsci.2006.03.027.
  • Earnshaw, W. C., L. M. Martins, and S. H. Kaufmann. 1999. Mammalian caspases: Structure, activation, substrates, and functions during apoptosis. Annual Review of Biochemistry 68 (1):383–424. doi: 10.1146/annurev.biochem.68.1.383.
  • Elmore, J. S., M. M. Campo, M. Enser, and D. S. Mottram. 2002. Effect of lipid composition on meat-like model systems containing cysteine, ribose, and polyunsaturated fatty acids. Journal of Agricultural and Food Chemistry 50 (5):1126–32. doi: 10.1021/jf0108718.
  • England, E., K. Fisher, S. Wells, D. Mohrhauser, D. Gerrard and, and A. Weaver. 2012. Postmortem titin proteolysis is influenced by sarcomere length in bovine muscle. Journal of Animal Science 90 (3):989–95. doi: 10.2527/jas.2011-4278.
  • England, E., S. Matarneh, T. Scheffler, C. Wachet, and D. Gerrard. 2014. pH inactivation of phosphofructokinase arrests postmortem glycolysis. Meat Science 98 (4):850–7. doi: 10.1016/j.meatsci.2014.07.019.
  • Epley, R. J. 1992. Aging Beef. https://hdl.handle.net/11299/51510.
  • Fan, Y., Z. Han, A. A. I. Arbab, Y. Yang, and Z. Yang. 2020. Effect of aging time on meat quality of Longissimus dorsi from Yunling cattle: A new hybrid beef cattle. Animals 10 (10):1897. doi: 10.3390/ani10101897.
  • Farmer, L. J., and D. T. Farrell. 2018. Review: Beef-eating quality: A European journey. Animal: An International Journal of Animal Bioscience 12 (11):2424–33. https://www.cambridge.org/core/article/review-beefeating-quality-a-european-journey/FCEE7E31F398C29435D4A9B8A4CD5790. doi: 10.1017/S1751731118001672.
  • Feidt, C., A. Petit, F. Bruas-Reignier, and J. Brun-Bellut. 1996. Release of free amino-acids during ageing in bovine meat. Meat Science 44 (1–2):19–25. doi: 10.1016/S0309-1740(96)00088-5.
  • Frank, D., S.-T. Joo, and R. Warner. 2016. Consumer acceptability of intramuscular fat. Korean Journal for Food Science of Animal Resources 36 (6):699–708. doi: 10.5851/kosfa.2016.36.6.699.
  • Fuente-García, C., M. A. Sentandreu, N. Aldai, M. Oliván, and E. Sentandreu. 2021. Proteomic pipeline for biomarker hunting of defective bovine meat assisted by liquid chromatography-mass spectrometry analysis and chemometrics. Journal of Proteomics 238:104153. doi: 10.1016/j.jprot.2021.104153.
  • Gagaoua, M., D. Troy, and A. M. Mullen. 2021. The extent and rate of the appearance of the major 110 and 30 KDa proteolytic fragments during post-mortem aging of beef depend on the glycolysing rate of the muscle and aging time: An LC–MS/MS approach to decipher their proteome and associated pathways. Journal of Agricultural and Food Chemistry 69 (1):602–14. doi: 10.1021/acs.jafc.0c06485.
  • Gagaoua, M., E. C. Terlouw, A. Boudjellal, and B. Picard. 2015. Coherent correlation networks among protein biomarkers of beef tenderness: What they reveal. Journal of Proteomics 128:365–74. doi: 10.1016/j.jprot.2015.08.022.
  • Gagaoua, M., E. M. C. Terlouw, A. M. Mullen, D. Franco, R. D. Warner, J. M. Lorenzo, P. P. Purslow, D. Gerrard, D. L. Hopkins, D. Troy, et al. 2021. Molecular signatures of beef tenderness: Underlying mechanisms based on integromics of protein biomarkers from multi-platform proteomics studies. Meat Science 172:108311. doi: 10.1016/j.meatsci.2020.108311.
  • Gagaoua, M., J. Hughes, E. C. Terlouw, R. D. Warner, P. P. Purslow, J. M. Lorenzo, and B. Picard. 2020. Proteomic biomarkers of beef colour. Trends in Food Science & Technology 101:234–52. doi: 10.1016/j.tifs.2020.05.005.
  • Gagaoua, M., M. Bonnet, and B. Picard. 2020. Protein array-based approach to evaluate biomarkers of beef tenderness and marbling in cows: Understanding of the underlying mechanisms and prediction. Foods 9 (9):1180. doi: 10.3390/foods9091180.
  • Gagaoua, M., M. Bonnet, M.-P. Ellies-Oury, L. D. Koning, and B. Picard. 2018. Reverse phase protein arrays for the identification/validation of biomarkers of beef texture and their use for early classification of carcasses. Food Chemistry 250:245–52. doi: 10.1016/j.foodchem.2018.01.070.
  • García Díaz, B. E., S. Gauthier, and P. L. Davies. 2006. Ca2+ dependency of calpain 3 (p94) activation. Biochemistry 45 (11):3714–22. doi: 10.1021/bi051917j.
  • García-Macia, M., V. Sierra, A. Palanca, I. Vega-Naredo, D. de Gonzalo-Calvo, S. Rodríguez-González, M. Oliván, and A. Coto-Montes. 2014. Autophagy during beef aging. Autophagy 10 (1):137–43. doi: 10.4161/auto.26659.
  • Geesink, G. H., and M. Koohmaraie. 1999. Effect of calpastatin on degradation of myofibrillar proteins by µ-calpain under postmortem conditions. Journal of Animal Science 77 (10):2685–92. doi: 10.2527/1999.77102685x.
  • Ghosh, T., W. Zhang, D. Ghosh, and K. Kechris. 2020. Predictive modeling for metabolomics data. In Computational methods and data analysis for metabolomics, 313–36. New York, NY: Humana. doi: 10.1007/978-1-0716-0239-3_16.
  • Goll, D. E., V. Y. F. Thompson, H. Li, W. Wei, and J. Cong. 2003. The calpain system. Physiological Reviews 83 (3):731–801. doi: 10.1152/physrev.00029.2002.
  • Goll, D., G. Neti, S. Mares, and V. Thompson. 2008. Myofibrillar protein turnover: The proteasome and the calpains. Journal of Animal Science 86 (14 Suppl):E19–E35. doi: 10.2527/jas.2007-0395.
  • Goodno, C. C., C. M. Wall, and S. V. Perry. 1978. Kinetics and regulation of the myofibrillar adenosine triphosphatase. The Biochemical Journal 175 (3):813–21. doi: 10.1042/bj1750813.
  • Gorraiz, C., M. Beriain, J. Chasco, and K. Insausti. 2002. Effect of aging time on volatile compounds, odor, and flavor of cooked beef from Pirenaica and Friesian bulls and heifers. Journal of Food Science 67 (3):916–22. doi: 10.1111/j.1365-2621.2002.tb09428.x.
  • Graham, S. F., D. Farrell, T. Kennedy, A. Gordon, L. Farmer, C. Elliott, and B. Moss. 2012. Comparing GC–MS, HPLC and 1H NMR analysis of beef longissimus dorsi tissue extracts to determine the effect of suspension technique and ageing. Food Chemistry 134 (3):1633–9. doi: 10.1016/j.foodchem.2012.03.047.
  • Graham, S. F., T. Kennedy, O. Chevallier, A. Gordon, L. Farmer, C. Elliott, and B. Moss. 2010. The application of NMR to study changes in polar metabolite concentrations in beef longissimus dorsi stored for different periods post mortem. Metabolomics 6 (3):395–404. doi: 10.1007/s11306-010-0206-y.
  • Gray, J., and A. Pearson. 1994. Lipid-derived off-flavours in meat—formation and inhibition. In Flavor of meat and meat products, ed. F. Shahidi, 116–43. Boston, MA: Springer. doi: 10.1007/978-1-4615-2177-8_7.
  • Gruffat, D., D. Bauchart, A. Thomas, E. Parafita, and D. Durand. 2021. Fatty acid composition and oxidation in beef muscles as affected by ageing times and cooking methods. Food Chemistry 343:128476. doi: 10.1016/j.foodchem.2020.128476.
  • Guillemin, N., M. Bonnet, C. Jurie, and B. Picard. 2011. Functional analysis of beef tenderness. Journal of Proteomics 75 (2):352–65. doi: 10.1016/j.jprot.2011.07.026.
  • Ha, Y., I. Hwang, H. Van Ba, S. Ryu, Y. Kim, S. M. Kang, J. Kim, Y. Kim, and S. Cho. 2019. Effects of dry-and wet-ageing on flavor compounds and eating quality of low fat Hanwoo beef muscles. Food Science of Animal Resources 39 (4):655–67. doi: 10.5851/kosfa.2019.e58.
  • Hamm, R. 1977. Postmortem breakdown of ATP and glycogen in ground muscle: A review. Meat Science 1 (1):15–39. doi: 10.1016/0309-1740(77)90029-8.
  • Henchion, M. M., M. McCarthy, and V. C. Resconi. 2017. Beef quality attributes: A systematic review of consumer perspectives. Meat Science 128:1–7. https://www.sciencedirect.com/science/article/pii/S030917401730061X. doi: 10.1016/j.meatsci.2017.01.006.
  • Holman, B. W., E. N. Ponnampalam, A. K. Kilgannon, D. Collins, T. Plozza, and D. L. Hopkins. 2019. Moisture content, fatty acid profile and oxidative traits of aged beef subjected to different temperature-time combinations. Meat Science 157:107876. doi: 10.1016/j.meatsci.2019.107876.
  • Honikel, K., P. Roncales, and R. Hamm. 1983. The influence of temperature on shortening and rigor onset in beef muscle. Meat Science 8 (3):221–41. doi: 10.1016/0309-1740(83)90046-3.
  • Hopkins, D. L., and R. G. Taylor. 2004. Post-mortem muscle proteolysis and meat tenderness. In Muscle development of livestock animals: Physiology, genetics and meat quality, eds M. F. W. Te Pas, M. E. Everts, and H. P. Haagsman, 363–88. Wallingford, UK: CABI Publishing. doi: 10.1079/9780851998114.0363.
  • Houbak, M. B., P. Ertbjerg, and M. Therkildsen. 2008. In vitro study to evaluate the degradation of bovine muscle proteins post-mortem by proteasome and μ-calpain. Meat Science 79 (1):77–85. doi: 10.1016/j.meatsci.2007.08.003.
  • Huang, C., C. Hou, M. Ijaz, T. Yan, X. Li, Y. Li, and D. Zhang. 2020. Proteomics discovery of protein biomarkers linked to meat quality traits in post-mortem muscles: Current trends and future prospects: A review. Trends in Food Science & Technology 105:416–32. doi: 10.1016/j.tifs.2020.09.030.
  • Huang, F., M. Huang, G. Zhou, X. Xu, and M. Xue. 2011. In vitro proteolysis of myofibrillar proteins from beef skeletal muscle by caspase-3 and caspase-6. Journal of Agricultural and Food Chemistry 59 (17):9658–63. doi: 10.1021/jf202129r.
  • Huang, F., M. Huang, H. Zhang, B. Guo, D. Zhang, and G. Zhou. 2014. Cleavage of the calpain inhibitor, calpastatin, during ­postmortem ageing of beef skeletal muscle. Food Chemistry 148:1–6. doi: 10.1016/j.foodchem.2013.10.016.
  • Huang, F., M. Huang, H. Zhang, C. Zhang, D. Zhang, and G. Zhou. 2016. Changes in apoptotic factors and caspase activation pathways during the postmortem aging of beef muscle. Food Chemistry 190:110–4. doi: 10.1016/j.foodchem.2015.05.056.
  • Huff-Lonergan, E., F. C. Parrish, Jr, and R. M. Robson. 1995. Effects of postmortem aging time, animal age, and sex on degradation of titin and nebulin in bovine longissimus muscle. Journal of Animal Science 73 (4):1064–73. doi: 10.2527/1995.7341064x.
  • Huff-Lonergan, E., T. Mitsuhashi, D. D. Beekman, F. C. Parrish, Jr, D. G. Olson, and R. M. Robson. 1996. Proteolysis of specific muscle structural proteins by µ-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle. Journal of Animal Science 74 (5):993–1008. doi: 10.2527/1996.745993x.
  • Huff-Lonergan, E., W. Zhang, and S. M. Lonergan. 2010. Biochemistry of postmortem muscle - lessons on mechanisms of meat tenderization. Meat Science 86 (1):184–95. doi: 10.1016/j.meatsci.2010.05.004.
  • Hulánková, R., J. Kameník, A. Saláková, D. Závodský, and G. Borilova. 2018. The effect of dry aging on instrumental, chemical and microbiological parameters of organic beef loin muscle. LWT 89:559–65. doi: 10.1016/j.lwt.2017.11.014.
  • Iida, F., Y. Miyazaki, R. Tsuyuki, K. Kato, A. Egusa, H. Ogoshi, and T. Nishimura. 2016. Changes in taste compounds, breaking properties, and sensory attributes during dry aging of beef from Japanese black cattle. Meat Science 112:46–51. doi: 10.1016/j.meatsci.2015.10.015.
  • Ijaz, M., X. Li, D. Zhang, Y. Bai, C. Hou, Z. Hussain, X. Zheng, and C. Huang. 2022. Sarcoplasmic and myofibrillar phosphoproteins profile in beef M. longissimus thoracis with different pHu at different days postmortem. Journal of the Science of Food and Agriculture 102 (6):2464–71. doi: 10.1002/jsfa.11586.
  • Ijaz, M., X. Li, D. Zhang, Z. Hussain, C. Ren, Y. Bai, and X. Zheng. 2020. Association between meat color of DFD beef and other quality attributes. Meat Science 161:107954. doi: 10.1016/j.meatsci.2019.107954.
  • Ilian, M., A. Bekhit, and R. Bickerstaffe. 2004. The relationship between meat tenderization, myofibril fragmentation and autolysis of calpain 3 during post-mortem aging. Meat Science 66 (2):387–97. doi: 10.1016/S0309-1740(03)00125-6.
  • Ilian, M., J. Morton, M. Kent, C. L. Couteur, J. Hickford, R. Cowley, and R. Bickerstaffe. 2001. Intermuscular variation in tenderness: Association with the ubiquitous and muscle-specific calpains. Journal of Animal Science 79 (1):122–32. doi: 10.2527/2001.791122x.
  • Immonen, K., M. Ruusunen, K. Hissa, and E. Puolanne. 2000. Bovine muscle glycogen concentration in relation to finishing diet, slaughter and ultimate pH. Meat Science 55 (1):25–31. doi: 10.1016/S0309-1740(99)00121-7.
  • Jeong, J. Y., M. Kim, S.-Y. Ji, Y.-C. Baek, S. Lee, Y. K. Oh, K. E. Reddy, H.-W. Seo, S. Cho, and H.-J. Lee. 2020. Metabolomics analysis of the beef samples with different meat qualities and tastes. Food Science of Animal Resources 40 (6):924–37. doi: 10.5851/kosfa.2020.e59.
  • Jeong, J. Y., Y.-C. Baek, S. Y. Ji, Y. K. Oh, S. Cho, H.-W. Seo, M. Kim, and H.-J. Lee. 2020. Nuclear magnetic resonance-based metabolomics analysis and characteristics of beef in different fattening periods. Journal of Animal Science and Technology 62 (3):321–33. doi: 10.5187/jast.2020.62.3.321.
  • Jeong, S.-Y., and D.-W. Seol. 2008. The role of mitochondria in apoptosis. BMB Reports 41 (1):11–22. doi: 10.5483/BMBRep.2008.41.1.011.
  • Jia, X., E. Veiseth-Kent, H. Grove, P. Kuziora, L. Aass, K. Hildrum, and K. Hollung. 2009. Peroxiredoxin-6 - a potential protein marker for meat tenderness in bovine longissimus thoracis muscle. Journal of Animal Science 87 (7):2391–9. doi: 10.2527/jas.2009-1792.
  • Jia, X., M. Ekman, H. Grove, E. M. Faergestad, L. Aass, K. I. Hildrum, and K. Hollung. 2007. Proteome changes in bovine longissimus thoracis muscle during the early postmortem storage period. Journal of Proteome Research 6 (7):2720–31. doi: 10.1021/pr070173o.
  • Johansson, A.-C., H. Appelqvist, C. Nilsson, K. Kågedal, K. Roberg, and K. Öllinger. 2010. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis: An International Journal on Programmed Cell Death 15 (5):527–40. doi: 10.1007/s10495-009-0452-5.
  • Jose, C. G., R. H. Jacob, and G. E. Gardner. 2020. Alternative cutting methods and dry aging reduce the shear force of hot boned beef striploin in Bos indicus cattle. Meat Science 163:108036. doi: 10.1016/j.meatsci.2019.108036.
  • Joseph, R. 1996. Very fast chilling of beef and tenderness—a report from an EU concerted action. Meat Science 43:217–27. doi: 10.1016/0309-1740(96)00067-8.
  • Kahraman, H. A, and U. Gurbuz. 2019. Effects of three aging methods on the Longissimus lumborum muscle from Holstein-Friesian steers. Medycyna Weterynaryjna 75 (01):6182–4. doi: 10.21521/mw.6182.
  • Kastenschmidt, L., W. Hoekstra, and E. Briskey. 1968. Glycolytic intermediates and co‐factors in “fast” and “slow‐glycolyzing” muscles of the pig. Journal of Food Science 33 (2):151–8. doi: 10.1111/j.1365-2621.1968.tb01341.x.
  • Kemp, C., P. Sensky, R. Bardsley, P. Buttery, and T. Parr. 2010. Tenderness–An enzymatic view. Meat Science 84 (2):248–56. doi: 10.1016/j.meatsci.2009.06.008.
  • Kemp, C., R. Bardsley, and T. Parr. 2006. Changes in caspase activity during the postmortem conditioning period and its relationship to shear force in porcine longissimus muscle. Journal of Animal Science 84 (10):2841–6. doi: 10.2527/jas.2006-163.
  • Kilgannon, A. K., B. W. Holman, D. C. Frank, A. J. Mawson, D. Collins, and D. L. Hopkins. 2020. Temperature-time combination effects on aged beef volatile profiles and their relationship to sensory attributes. Meat Science 168:108193. doi: 10.1016/j.meatsci.2020.108193.
  • Kim, G.-D., S. Y. Lee, E.-Y. Jung, S. Song, and S. J. Hur. 2021. Quantitative changes in peptides derived from proteins in beef tenderloin (psoas major muscle) and striploin (longissimus lumborum muscle) during cold storage. Food Chemistry 338:128029. doi: 10.1016/j.foodchem.2020.128029.
  • Kim, H. C., K. H. Baek, Y.-J. Ko, H. J. Lee, D.-G. Yim, and C. Jo. 2020. Characteristic metabolic changes of the crust from dry-aged beef using 2D NMR spectroscopy. Molecules 25 (13):3087. doi: 10.3390/molecules25133087.
  • Kim, H., M. Shin, S. Ryu, B. Yun, S. Oh, D.-J. Park, and Y. Kim. 2021. Evaluation of probiotic characteristics of newly isolated lactic acid bacteria from dry-aged Hanwoo beef. Food Science of Animal Resources 41 (3):468–80. doi: 10.5851/kosfa.2021.e11.
  • Kim, J.-H., D.-H. Kim, D-s Ji, H.-J. Lee, D.-K. Yoon, and C.-H. Lee. 2017. Effect of aging process and time on physicochemical and sensory evaluation of raw beef top round and shank muscles using an electronic tongue. Korean Journal for Food Science of Animal Resources 37 (6):823. doi: 10.5851/kosfa.2017.37.6.823.
  • Kim, J.-H., M.-Y. Jeon, and C.-H. Lee. 2019. Physicochemical and sensory characteristics of commercial, frozen, dry, and wet-aged Hanwoo sirloins. Asian-Australasian Journal of Animal Sciences 32 (10):1621–9. doi: 10.5713/ajas.18.0610.
  • Kim, J.-H., T.-K. Kim, D.-M. Shin, H.-W. Kim, Y.-B. Kim, and Y.-S. Choi. 2020. Comparative effects of dry-aging and wet-aging on physicochemical properties and digestibility of Hanwoo beef. Asian-Australasian Journal of Animal Sciences 33 (3):501–5. doi: 10.5713/ajas.19.0031.
  • Kim, M., J. Choe, H. J. Lee, Y. Yoon, S. Yoon, and C. Jo. 2019. Effects of aging and aging method on physicochemical and sensory traits of different beef cuts. Food Science of Animal Resources 39 (1):54–64. doi: 10.5851/kosfa.2019.e3.
  • Kim, N. K., S. Cho, S. H. Lee, H. R. Park, C. S. Lee, Y. M. Cho, Y. H. Choy, D. Yoon, S. K. Im, and E. W. Park. 2008. Proteins in longissimus muscle of Korean native cattle and their relationship to meat quality. Meat Science 80 (4):1068–73. doi: 10.1016/j.meatsci.2008.04.027.
  • Kim, S., H. J. Lee, M. Kim, J. W. Yoon, D. J. Shin, and C. Jo. 2019. Storage stability of vacuum-packaged dry-aged beef during refrigeration at 4 C. Food Science of Animal Resources 39 (2):266–75. doi: 10.5851/kosfa.2019.e21.
  • Kim, S., J.-C. Kim, S. Park, J. Kim, Y. Yoon, and H. Lee. 2021. Identification of microbial flora in dry aged beef to evaluate the rancidity during dry aging. Processes 9 (11):2049. doi: 10.3390/pr9112049.
  • Kim, Y. H. B., B. Meyers, H.-W. Kim, A. M. Liceaga, and R. P. Lemenager. 2017. Effects of stepwise dry/wet-aging and freezing on meat quality of beef loins. Meat Science 123:57–63. doi: 10.1016/j.meatsci.2016.09.002.
  • Kim, Y. H. B., D. Ma, D. Setyabrata, M. M. Farouk, S. M. Lonergan, E. Huff-Lonergan, and M. C. Hunt. 2018. Understanding postmortem biochemical processes and post-harvest aging factors to develop novel smart-aging strategies. Meat Science 144:74–90. doi: 10.1016/j.meatsci.2018.04.031.
  • Kim, Y. H. B., R. D. Warner, and K. Rosenvold. 2014. Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: A review. Animal Production Science 54 (4):375–95. doi: 10.1071/AN13329.
  • Kim, Y. H. B., R. Kemp, and L. M. Samuelsson. 2016. Effects of dry-aging on meat quality attributes and metabolite profiles of beef loins. Meat Science 111:168–76. doi: 10.1016/j.meatsci.2015.09.008.
  • King, D. A., S. D. Shackelford, C. D. Broeckling, J. E. Prenni, K. E. Belk, and T. L. Wheeler. 2019. Metabolomic investigation of tenderness and aging response in beef longissimus steaks. Meat and Muscle Biology 3 (1):76–89. doi: 10.22175/mmb2018.09.0027.
  • King, M.-F., M. A. Matthews, D. C. Rule, and R. A. Field. 1995. Effect of beef packaging method on volatile compounds developed by oven roasting or microwave cooking. Journal of Agricultural and Food Chemistry 43 (3):773–8. doi: http://dx.doi.org/10.1021/jf00051a039.
  • Kodani, Y., T. Miyakawa, T. Komatsu, and M. Tanokura. 2017. NMR-based metabolomics for simultaneously evaluating multiple determinants of primary beef quality in Japanese Black cattle. Scientific Reports 7 (1):1297. doi: 10.1038/s41598-017-01272-8.
  • Koohmaraie, M. 1992. The role of Ca2+-dependent proteases (calpains) in post mortem proteolysis and meat tenderness. Biochimie 74 (3):239–45. doi: 10.1016/0300-9084(92)90122-U.
  • Koohmaraie, M., and G. Geesink. 2006. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Science 74 (1):34–43. doi: 10.1016/j.meatsci.2006.04.025.
  • Koohmaraie, M., G. Whipple, D. Kretchmar, J. Crousean, and d H. Mersmann. 1991. Postmortem proteolysis in longissimus muscle from beef, lamb and pork carcasses. Journal of Animal Science 69 (2):617–24. doi: 10.2527/1991.692617x.
  • Koohmaraie, M., S. Seidemann, J. Schollmeyer, T. Dutson, and J. Crouse. 1987. Effect of post-mortem storage on Ca++-dependent proteases, their inhibitor and myofibril fragmentation. Meat Science 19 (3):187–96. doi: 10.1016/0309-1740(87)90056-8.
  • Koutsidis, G., J. Elmore, M. J. Oruna-Concha, M. M. Campo, J. D. Wood, and D. Mottram. 2008a. Water-soluble precursors of beef flavour. Part II: Effect of post-mortem conditioning. Meat Science 79 (2):270–7. doi: 10.1016/j.meatsci.2007.09.010.
  • Koutsidis, G., J. Elmore, M. J. Oruna-Concha, M. M. Campo, J. D. Wood, and D. Mottram. 2008b. Water-soluble precursors of beef flavour: I. Effect of diet and breed. Meat Science 79 (1):124–30. doi: 10.1016/j.meatsci.2007.08.008.
  • Kültz, D. 2003. Evolution of the cellular stress proteome: From monophyletic origin to ubiquitous function. The Journal of Experimental Biology 206 (Pt 18):3119–24. doi: 10.1242/jeb.00549.
  • Lamare, M., R. G. Taylor, L. Farout, Y. Briand, and M. Briand. 2002. Changes in proteasome activity during postmortem aging of bovine muscle. Meat Science 61 (2):199–204. doi: 10.1016/S0309-1740(01)00187-5.
  • Laville, E., T. Sayd, M. Morzel, S. Blinet, C. Chambon, J. Lepetit, G. Renand, and J. F. Hocquette. 2009. Proteome changes during meat aging in tough and tender beef suggest the importance of apoptosis and protein solubility for beef aging and tenderization. Journal of Agricultural and Food Chemistry 57 (22):10755–64. doi: 10.1021/jf901949r.
  • Lee, D., H. J. Lee, J. W. Yoon, M. Kim, and C. Jo. 2021. Effect of different aging methods on the formation of aroma volatiles in beef strip loins. Foods 10 (1):146. doi: 10.3390/foods10010146.
  • Lee, D., H. J. Lee, J. W. Yoon, M. Ryu, and C. Jo. 2021. Effects of cooking conditions on the physicochemical and sensory characteristics of dry-and wet-aged beef. Animal Bioscience 34 (10):1705–16. doi: 10.5713/ab.20.0852.
  • Lee, H. J., J. Choe, J. W. Yoon, S. Kim, H. Oh, Y. Yoon, and C. Jo. 2018. Determination of salable shelf-life for wrap-packaged dry-aged beef during cold storage. Korean Journal for Food Science of Animal Resources 38 (2):251–8. doi: 10.5851/kosfa.2018.38.2.251.[PMC].[29805275.
  • Lee, H. J., J. Choe, M. Kim, H. C. Kim, J. W. Yoon, S. W. Oh, and C. Jo. 2019. Role of moisture evaporation in the taste attributes of dry-and wet-aged beef determined by chemical and electronic tongue analyses. Meat Science 151:82–8. doi: 10.1016/j.meatsci.2019.02.001.
  • Lee, H. J., J. Oh, H. I. Yong, H. Oh, Y. Yoon, J. H. Choe, and C. Jo. 2017. Different air flow changes microbial composition of dry-aged beef and its sensory properties. In 63rd International Congress of Meat Science and Technology: Nurturing locally, growing globally, eds D. Troy, C. McDonnell, L. Hinds, and J. Kerry. Wageningen: Wageningen Academic Publishers.
  • Lee, H. J., J. W. Yoon, M. Kim, H. Oh, Y. Yoon, and C. Jo. 2019. Changes in microbial composition on the crust by different air flow velocities and their effect on sensory properties of dry-aged beef. Meat Science 153:152–8. doi: 10.1016/j.meatsci.2019.03.019.
  • Lee, S., K. Jo, H. J. Lee, C. Jo, H. I. Yong, Y.-S. Choi, and S. Jung. 2020. Increased protein digestibility of beef with aging in an infant in vitro digestion model. Meat Science 169:108210. doi: 10.1016/j.meatsci.2020.108210.
  • Leist, M., and M. Jäättelä. 2001. Four deaths and a funeral: From caspases to alternative mechanisms. Nature Reviews. Molecular Cell Biology 2 (8):589–98. doi: 10.1038/35085008.
  • Lepetit, J. 2008. Collagen contribution to meat toughness: Theoretical aspects. Meat Science 80 (4):960–7. https://www.sciencedirect.com/science/article/pii/S0309174008002088. doi: 10.1016/j.meatsci.2008.06.016.
  • Li, K., Y. Zhang, Y. Mao, D. Cornforth, P. Dong, R. Wang, H. Zhu, and X. Luo. 2012. Effect of very fast chilling and aging time on ultra-structure and meat quality characteristics of Chinese Yellow cattle M. Longissimus lumborum. Meat Science 92 (4):795–804. doi: 10.1016/j.meatsci.2012.07.003.
  • Li, S., Y. Tian, P. Jiang, Y. Lin, X. Liu, and H. Yang. 2021. Recent advances in the application of metabolomics for food safety control and food quality analyses. Critical Reviews in Food Science and Nutrition 61 (9):1448–69. doi: 10.1080/10408398.2020.1761287.
  • Li, X., J. Babol, A. Wallby, and K. Lundström. 2013. Meat quality, microbiological status and consumer preference of beef gluteus medius aged in a dry ageing bag or vacuum. Meat Science 95 (2):229–34. doi: 10.1016/j.meatsci.2013.05.009.
  • Li, X., J. Babol, W. L. Bredie, B. Nielsen, J. Tománková, and K. Lundström. 2014. A comparative study of beef quality after ageing longissimus muscle using a dry ageing bag, traditional dry ageing or vacuum package ageing. Meat Science 97 (4):433–42. doi: 10.1016/j.meatsci.2014.03.014.
  • Li, Z., M. Ha, D. Frank, P. McGilchrist, and R. D. Warner. 2021. Volatile profile of dry and wet aged beef loin and its relationship with consumer flavour liking. Foods 10 (12):3113. ( doi: 10.3390/foods10123113.
  • Liu, X. D., N. R. Moffitt-Hemmer, J. M. Deavila, A. N. Li, Q. T. Tian, A. Bravo-Iniguez, Y. T. Chen, L. Zhao, M. J. Zhu, J. S. Neibergs, et al. 2021. Wagyu–Angus cross improves meat tenderness compared to Angus cattle but unaffected by mild protein restriction during late gestation. Animal 15 (2):100144. https://www.sciencedirect.com/science/article/pii/S1751731120301464. doi: 10.1016/j.animal.2020.100144.
  • Locker, R. 1960. Degree of muscular contraction as a factor in tenderness of beef. Journal of Food Science 25 (2):304–7. doi: 10.1111/j.1365-2621.1960.tb00335.x.
  • López-Pedrouso, M., J. M. Lorenzo, L. D. Stasio, A. Brugiapaglia, and D. Franco. 2021. Quantitative proteomic analysis of beef tenderness of Piemontese young bulls by SWATH-MS. Food Chemistry 356:129711. doi: 10.1016/j.foodchem.2021.129711.
  • Lundberg, P., H. J. Vogel, and H. Rudérus. 1986. Carbon-13 and proton NMR studies of post-mortem metabolism in bovine muscles. Meat Science 18 (2):133–6. doi: 10.1016/0309-1740(86)90089-6.
  • Ma, D., and Y. H. B. Kim. 2020. Proteolytic changes of myofibrillar and small heat shock proteins in different bovine muscles during aging: Their relevance to tenderness and water-holding capacity. Meat Science 163:108090. doi: 10.1016/j.meatsci.2020.108090.
  • Ma, D., Y. H. B. Kim, B. Cooper, J.-H. Oh, H. Chun, J.-H. Choe, J. P. Schoonmaker, K. Ajuwon, and B. Min. 2017. Metabolomics profiling to determine the effect of postmortem aging on color and lipid oxidative stabilities of different bovine muscles. Journal of Agricultural and Food Chemistry 65 (31):6708–16. doi: 10.1021/acs.jafc.7b02175.
  • Maggiolino, A., J. M. Lorenzo, A. Salzano, M. Faccia, F. Blando, M. P. Serrano, M. Latorre, J. Quiñones, and P. De Palo. 2020. Effects of aging and dietary supplementation with polyphenols from Pinus taeda hydrolysed lignin on quality parameters, fatty acid profile and oxidative stability of beef. Animal Production Science 60 (5):713–24. doi: 10.1071/AN19215.
  • Maillard, L. C. 1912. Action des acides aminés sur les sucres. Formation des melanoidins par voie methodique. Comptes Rendus Chimie 154:66–8.
  • Malheiros, J. M., C. E. Enríquez-Valencia, C. P. Braga, J. C. S. Vieira, D. S. Vieira, G. L. Pereira, R. A. Curi, O. M. Neto, H. N. Oliveira, P. M. Padilha, et al. 2021. Application of proteomic to investigate the different degrees of meat tenderness in Nellore breed. Journal of Proteomics 248:104331. doi: 10.1016/j.jprot.2021.104331.
  • Malheiros, J. M., C. P. Braga, R. A. Grove, F. A. Ribeiro, C. R. Calkins, J. Adamec, and L. A. L. Chardulo. 2019. Influence of oxidative damage to proteins on meat tenderness using a proteomics approach. Meat Science 148:64–71. doi: 10.1016/j.meatsci.2018.08.016.
  • Marino, R., M. Albenzio, A. D. Malva, M. Caroprese, A. Santillo, and A. Sevi. 2014. Changes in meat quality traits and sarcoplasmic proteins during aging in three different cattle breeds. Meat Science 98 (2):178–86. doi: 10.1016/j.meatsci.2014.05.024.
  • Marsh, B. 1954. Rigor mortis in beef. Journal of the Science of Food and Agriculture 5 (2):70–5. doi: 10.1002/jsfa.2740050202.
  • Martins, S. I., W. M. Jongen, and M. A. Van Boekel. 2000. A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology 11 (9-10):364–73. doi: 10.1016/S0924-2244(01)00022-X.
  • Matarneh, S. K., E. M. England, T. L. Scheffler, and D. E. Gerrard. 2017. The conversion of muscle to meat. In Lawrié s meat science, ed. T. Toldrá, 159–85. Amsterdam, Netherlands: Elsevier. doi: 10.1016/B978-0-08-100694-8.00005-4.
  • Mickelson, J. 1983. Calcium transport by bovine skeletal-muscle mitochondria and its relationship to post-mortem muscle. Meat Science 9 (3):205–29. doi: 10.1016/0309-1740(83)90004-9.
  • Mignotte, B., and J. L. Vayssiere. 1998. Mitochondria and apoptosis. European Journal of Biochemistry 252 (1):1–15. doi: 10.1046/j.1432-1327.1998.2520001.x.
  • Mikami, N., T. Toyotome, Y. Yamashiro, K. Sugo, K. Yoshitomi, M. Takaya, K.-H. Han, M. Fukushima, and K. Shimada. 2021. Dry-aged beef manufactured in Japan: Microbiota identification and their effects on product characteristics. Food Research International (Ottawa, ON) 140:110020. doi: 10.1016/j.foodres.2020.110020.
  • Mohrhauser, D., S. Kern, K. Underwood, and A. Weaver. 2013. Caspase-3 does not enhance in vitro bovine myofibril degradation by µ-calpain. Journal of Animal Science 91 (11):5518–24. doi: 10.2527/jas.2013-6572.
  • Morton, J. D., R. G. Pearson, H. Y.-Y. Lee, S. Smithson, S. L. Mason, and R. Bickerstaffe. 2017. High pressure processing improves the tenderness and quality of hot-boned beef. Meat Science 133:69–74. doi: 10.1016/j.meatsci.2017.06.005.
  • Morzel, M., C. Terlouw, C. Chambon, D. Micol, and B. Picard. 2008. Muscle proteome and meat eating qualities of Longissimus thoracis of “Blonde d’Aquitaine” young bulls: A central role of HSP27 isoforms. Meat Science 78 (3):297–304. doi: 10.1016/j.meatsci.2007.06.016.
  • Motoyama, M., K. Sasaki, and A. Watanabe. 2016. Wagyu and the factors contributing to its beef quality: A Japanese industry overview. Meat Science 120:10–8. doi: 10.1016/j.meatsci.2016.04.026.
  • Mottram, D. S. 1994. Some aspects of the chemistry of meat flavour. In Flavor of meat and meat products, ed. F. Shahidi, 210–30. Boston, MA: Springer. doi: 10.1007/978-1-4615-2177-8_12.
  • Mottram, D. S. 1998. Flavour formation in meat and meat products: A review. Food Chemistry 62 (4):415–24. doi: 10.1016/S0308-8146(98)00076-4.
  • Mullen, A., S. Stoeva, K. Laib, G. Gruebler, W. Voelter, and D. Troy. 2000. Preliminary analysis of amino acids at various locations along the M. longissimus dorsi in aged beef. Food Chemistry 69 (4):461–5. doi: 10.1016/S0308-8146(00)00066-2.
  • Muroya, S., M. Oe, K. Ojima, and A. Watanabe. 2019. Metabolomic approach to key metabolites characterizing postmortem aged loin muscle of Japanese Black (Wagyu) cattle. Asian-Australasian Journal of Animal Sciences 32 (8):1172–85. doi: 10.5713/ajas.18.0648.
  • Nair, M. N., S. Li, C. M. Beach, G. Rentfrow, and S. P. Suman. 2018. Changes in the sarcoplasmic proteome of beef muscles with differential color stability during postmortem aging. Meat and Muscle Biology 2 (1):1–12. doi: 10.22175/mmb2017.07.0037.
  • Navajas, E. A. 2014. Animal breeding and genetics | DNA markers and marker-assisted selection in the genomic era. In Enzyclopedia of Meat Science, 1:19–27. New York: Academic Press. doi: 10.1016/B978-0-12-384731-7.00002-7.
  • Neath, K., A. Del Barrio, R. Lapitan, J. Herrera, L. Cruz, T. Fujihara, S. Muroya, K. Chikuni, M. Hirabayashi, and Y. Kanai. 2007. Difference in tenderness and pH decline between water buffalo meat and beef during postmortem aging. Meat Science 75 (3):499–505. doi: 10.1016/j.meatsci.2006.08.016.
  • Neumar, R. W., Y. A. Xu, H. Gada, R. P. Guttmann, and R. Siman. 2003. Cross-talk between calpain and caspase proteolytic systems during neuronal apoptosis. The Journal of Biological Chemistry 278 (16):14162–7. doi: 10.1074/jbc.M212255200.
  • Nishimura, T., M. Ra Rhue, A. Okitani, and H. Kato. 1988. Components contributing to the improvement of meat taste during storage. Agricultural and Biological Chemistry 52 (9):2323–30. doi: 10.1080/00021369.1988.10869028.
  • Oh, H., H. J. Lee, J. Lee, C. Jo, and Y. Yoon. 2019. Identification of microorganisms associated with the quality improvement of dry‐aged beef through microbiome analysis and DNA sequencing, and evaluation of their effects on beef quality. Journal of Food Science 84 (10):2944–54. doi: 10.1111/1750-3841.14813.
  • Oh, J., H. J. Lee, H. C. Kim, H. J. Kim, Y. G. Yun, K. T. Kim, Y. I. Choi, and C. Jo. 2018. The effects of dry or wet aging on the quality of the longissimus muscle from 4-year-old Hanwoo cows and 28-month-old Hanwoo steers. Animal Production Science 58 (12):2344–51. doi: 10.1071/AN17104.
  • Oh, J., H. J. Lee, J. W. Yoon, J. Choe, and C. Jo. 2019. Electrical resistance and mold distribution on beef surface as indicators of dry aging. Journal of Food Process Engineering 42 (5):e13122. doi: 10.1111/jfpe.13122.
  • O'Halloran, G., D. Troy, D. Buckley, and W. Reville. 1997. The role of endogenous proteases in the tenderisation of fast glycolysing muscle. Meat Science 47 (3–4):187–210. doi: 10.1016/S0309-1740(97)00046-6.
  • Ono, Y., K. Kakinuma, F. Torii, A. Irie, K. Nakagawa, S. Labeit, K. Abe, K. Suzuki, and H. Sorimachi. 2004. Possible regulation of the conventional calpain system by skeletal muscle-specific calpain, p94/calpain 3. The Journal of Biological Chemistry 279 (4):2761–71. doi: 10.1074/jbc.M308789200.
  • Onopiuk, A., A. Półtorak, and A. Wierzbicka. 2016. Influence of post-mortem muscle glycogen content on the quality of beef during aging. Journal of Veterinary Research 60 (3):301–7. doi: 10.1515/jvetres-2016-0046.
  • Ouali, A., C. H. Herrera-Mendez, G. Coulis, S. Becila, A. Boudjellal, L. Aubry, and M. A. Sentandreu. 2006. Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Science 74 (1):44–58. doi: 10.1016/j.meatsci.2006.05.010.
  • Ouali, A., M. Gagaoua, Y. Boudida, S. Becila, A. Boudjellal, C. H. Herrera-Mendez, and M. A. Sentandreu. 2013. Biomarkers of meat tenderness: Present knowledge and perspectives in regards to our current understanding of the mechanisms involved. Meat Science 95 (4):854–70. doi: 10.1016/j.meatsci.2013.05.010.
  • Pablo, B. D., M. Asensio, B. Sanz, and J. Ordonez. 1989. The D (‐) lactic acid and acetoin/diacetyl as potential indicators of the microbial quality of vacuum‐packed pork and meat products. Journal of Applied Bacteriology 66 (3):185–90. doi: 10.1111/j.1365-2672.1989.tb02468.x.
  • Parrish, F., C. Selvig, R. Culler, and M. Zeece. 1981. CAF activity, calcium concentration, Andy the 30,000‐Dalton component of tough and tender bovine longissimus muscle. Journal of Food Science 46 (1):308–11. doi: 10.1111/j.1365-2621.1981.tb14593.x.
  • Parrish, F., J. Boles, R. Rust, and D. Olson. 1991. Dry and wet aging effects on palatability attributes of beef loin and rib steaks from three quality grades. Journal of Food Science 56 (3):601–3. doi: 10.1111/j.1365-2621.1991.tb05338.x.
  • Pen, S., Y. H. B. Kim, G. Luc, and O. A. Young. 2012. Effect of pre rigor stretching on beef tenderness development. Meat Science 92 (4):681–6. doi: 10.1016/j.meatsci.2012.06.023.
  • Phelps, K., J. S. Drouillard, M. Silva, L. Miranda, S. Ebarb, C. Van Bibber-Krueger, T. G. O'Quinn, and J. M. Gonzalez. 2016. Effect of extended postmortem aging and steak location on myofibrillar protein degradation and Warner-Bratzler shear force of beef M. semitendinosus steaks. Journal of Animal Science 94 (1):412–23. doi: 10.2527/jas.2015-9862.
  • Picard, B, and M. Gagaoua. 2020. Meta-proteomics for the discovery of protein biomarkers of beef tenderness: An overview of integrated studies. Food Research International 127:108739. doi: 10.1016/j.foodres.2019.108739.
  • Picard, B., M. Gagaoua, D. Micol, I. Cassar-Malek, J.-F o Hocquette, and C. E. Terlouw. 2014. Inverse relationships between biomarkers and beef tenderness according to contractile and metabolic properties of the muscle. Journal of Agricultural and Food Chemistry 62 (40):9808–18. doi: 10.1021/jf501528s.
  • Picard, B., M. Gagaoua, M. Al Jammas, and M. Bonnet. 2019. Beef tenderness and intramuscular fat proteomic biomarkers: Effect of gender and rearing practices. Journal of Proteomics 200:1–10. doi: 10.1016/j.jprot.2019.03.010.
  • Polak, T., L. Gašperlin, and B. Žlender. 2007. Various instrumental and biochemical parameters as ageing indicators of beef Longissimus dorsi muscle and their relation to creatine and creatinine content. European Food Research and Technology 225 (5-6):849–55. doi: 10.1007/s00217-006-0491-x.
  • Polati, R., M. Menini, E. Robotti, R. Millioni, E. Marengo, E. Novelli, S. Balzan, and D. Cecconi. 2012. Proteomic changes involved in tenderization of bovine Longissimus dorsi muscle during prolonged ageing. Food Chemistry 135 (3):2052–69. doi: 10.1016/j.foodchem.2012.06.093.
  • Polkinghorne, R. J., T. Nishimura, K. E. Neath, and R. Watson. 2014. A comparison of Japanese and Australian consumers’ sensory perceptions of beef. Animal Science Journal = Nihon Chikusan Gakkaiho 85 (1):69–74. doi: 10.1111/asj.12081.
  • Robert, N., M. Briand, R. Taylor, and Y. Briand. 1999. The effect of proteasome on myofibrillar structures in bovine skeletal muscle. Meat Science 51 (2):149–53. doi: 10.1016/S0309-1740(98)00113-2.
  • Ryu, S., M. R. Park, B. E. Maburutse, W. J. Lee, D.-J. Park, S. Cho, I. Hwang, S. Oh, and Y. Kim. 2018. Diversity and characteristics of the meat microbiological community on dry aged beef. Journal of Microbiology and Biotechnology 28 (1):105–8. doi: 10.4014/jmb.1708.08065.
  • Ryu, S., M. Shin, S. Cho, I. Hwang, Y. Kim, and S. Oh. 2020. Molecular characterization of microbial and fungal communities on dry-aged beef of Hanwoo using metagenomic analysis. Foods 9 (11):1571. doi: 10.3390/foods9111571.
  • Savell, J. 2008. Dry-aging of beef. Executive summary, National Cattlemen's Beef Association, Centennial, CO. [online] sa [cit. 2017-01-28]. http://www.beefresearch.org/CMDocs/BeefResearch/Dry%20Aging%20of%20Beef.pdf.
  • Scheffler, T. L., S. K. Matarneh, E. M. England, and D. E. Gerrard. 2015. Mitochondria influence postmortem metabolism and pH in an in vitro model. Meat Science 110:118–25. doi: 10.1016/j.meatsci.2015.07.007.
  • Scopes, R. K. 1973. Studies with a reconstituted muscle glycolytic system. The rate and extent of creatine phosphorylation by anaerobic glycolysis. The Biochemical Journal 134 (1):197–208. doi: 10.1042/bj1340197.
  • Scopes, R. K. 1974a. Studies with a reconstituted muscle glycolytic system. The anaerobic glycolytic response to simulated tetanic contraction. The Biochemical Journal 138 (1):119–23. doi: 10.1042/bj1380119.
  • Scopes, R. K. 1974b. Studies with a reconstituted muscle glycolytic system. The rate and extent of glycolysis in simulated post-mortem conditions. The Biochemical Journal 142 (1):79–86. doi: 10.1042/bj1420079.
  • Sentandreu, M. A., G. Coulis, and A. Ouali. 2002. Role of muscle endopeptidases and their inhibitors in meat tenderness. Trends in Food Science & Technology 13 (12):400–21. doi: 10.1016/S0924-2244(02)00188-7.
  • Setyabrata, D., B. R. Cooper, T. J. Sobreira, J. F. Legako, S. Martini, and Y. H. B. Kim. 2021. Elucidating mechanisms involved in flavor generation of dry-aged beef loins using metabolomics approach. Food Research International 139:109969. doi: 10.1016/j.foodres.2020.109969.
  • Setyabrata, D., K. Vierck, T. R. Sheets, J. F. Legako, B. R. Cooper, T. A. Johnson, and Y. H. B. Kim. 2022. Characterizing the flavor precursors and liberation mechanisms of various dry-aging methods in cull beef loins using metabolomics and microbiome approaches. Metabolites 12 (6):472. doi: 10.3390/metabo12060472.
  • Setyabrata, D., S. Xue, K. Vierck, J. Legako, P. Ebner, S. Zuelly, and Y. H. B. Kim. 2022. Impact of various dry-aging methods on meat quality and palatability attributes of beef loins (M. longissimus lumborum) from cull cow. Meat and Muscle Biology 6 (1):13025. doi: 10.22175/mmb.13025.
  • Shi, Y., W. Zhang, and G. Zhou. 2020. Effects of different moisture-permeable packaging on the quality of aging beef compared with wet aging and dry aging. Foods 9 (5):649. doi: 10.3390/foods9050649.
  • Shimada, A., M. Watanuki, Y. Tanisawa, and K. Hatae. 1992. Changes in the taste of beef with aging. Journal of Home Economics of Japan 43 (3):199–206. doi: 10.11428/jhej1987.43.199.
  • Sierra, V, and M. Oliván. 2013. Role of mitochondria on muscle cell death and meat tenderization. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery 7 (2):120–9. doi: 10.2174/1872214811307020005.
  • Sierra, V., V. Fernández-Suárez, P. Castro, K. Osoro, I. Vega-Naredo, M. García-Macía, P. Rodríguez-Colunga, A. Coto-Montes, M. Oliván, and M. Oliván. 2012. Identification of biomarkers of meat tenderisation and its use for early classification of Asturian beef into fast and late tenderising meat. Journal of the Science of Food and Agriculture 92 (13):2727–40. doi: 10.1002/jsfa.5701.
  • Sikes, A. L., R. Jacob, B. D'Arcy, and R. Warner. 2017. Very fast chilling modifies the structure of muscle fibres in hot-boned beef loin. Food Research International (Ottawa, ON) 93:75–86. doi: 10.1016/j.foodres.2016.12.027.
  • Silva, L. H., R. T. Rodrigues, D. E. Assis, P. D. Benedeti, M. S. Duarte, and M. L. Chizzotti. 2019. Explaining meat quality of bulls and steers by differential proteome and phosphoproteome analysis of skeletal muscle. Journal of Proteomics 199:51–66. doi: 10.1016/j.jprot.2019.03.004.
  • Smith, R., K. Nicholson, J. Nicholson, K. Harris, R. Miller, D. Griffin, and J. Savell. 2008. Dry versus wet aging of beef: Retail cutting yields and consumer palatability evaluations of steaks from US Choice and US Select short loins. Meat Science 79 (4):631–9. doi: 10.1016/j.meatsci.2007.10.028.
  • Snoeckx, L. H., R. N. Cornelussen, F. A. Van Nieuwenhoven, R. S. Reneman, and G. J. Van der Vusse. 2001. Heat shock proteins and cardiovascular pathophysiology. Physiological Reviews 81 (4):1461–97. doi: 10.1152/physrev.2001.81.4.1461.
  • Sorimachi, H., K. Kinbara, S. Kimura, M. Takahashi, S. Ishiura, N. Sasagawa, N. Sorimachi, H. Shimada, K. Tagawa, and K. Maruyama. 1995. Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. The Journal of Biological Chemistry 270 (52):31158–62. doi: 10.1074/jbc.270.52.31158.
  • Sorimachi, H., S. Imajoh-Ohmi, Y. Emori, H. Kawasaki, S. Ohno, Y. Minami, and K. Suzuki. 1989. Molecular cloning of a novel ­mammalian calcium-dependent protease distinct from both m-and μ-types: Specific expression of the mRNA in skeletal muscle. The Journal of Biological Chemistry 264 (33):20106–11. doi: 10.1016/S0021-9258(19)47225-6.
  • Specht, K, and W. Baltes. 1994. Identification of volatile flavor compounds with high aroma values from shallow-fried beef. Journal of Agricultural and Food Chemistry 42 (10):2246–53. doi: 10.1021/jf00046a031.
  • Stetzer, A. J., K. Cadwallader, T. K. Singh, F. K. Mckeith, and M. S. Brewer. 2008. Effect of enhancement and ageing on flavor and volatile compounds in various beef muscles. Meat Science 79 (1):13–9. doi: 10.1016/j.meatsci.2007.07.025.
  • St-Pierre, J., M. D. Brand, and R. G. Boutilier. 2000. Mitochondria as ATP consumers: Cellular treason in anoxia. Proceedings of the National Academy of Sciences of the United States of America 97 (15):8670–4. doi: 10.1073/pnas.140093597.
  • Sugiyama, Y., A. Suzuki, M. Kishikawa, R. Akutsu, T. Hirose, M. M. Waye, S. K. Tsui, S. Yoshida, and S. Ohno. 2000. Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. The Journal of Biological Chemistry 275 (2):1095–104. doi: 10.1074/jbc.275.2.1095.
  • Taylor, J. M., and D. L. Hopkins. 2011. Patents for stretching and shaping meats. Recent Patents on Food, Nutrition & Agriculture 3 (2):91–101. doi: 10.2174/2212798411103020091.
  • Taylor, J. M., E. S. Toohey, R. van de Ven, and D. L. Hopkins. 2013. SmartStretch™ technology VI. The impact of SmartStretch™ technology on the meat quality of hot-boned beef striploin (M. longissimus lumborum). Meat Science 93 (3):413–9. doi: 10.1016/j.meatsci.2012.09.022.
  • Taylor, R. G., C. Tassy, M. Briand, N. Robert, Y. Briand, and A. Ouali. 1995. Proteolytic activity of proteasome on myofibrillar structures. Molecular Biology Reports 21 (1):71–3. doi: 10.1007/BF00990974.
  • Taylor, R. G., G. H. Geesink, V. F. Thompson, M. Koohmaraie, and D. E. Goll. 1995. Is Z-disk degradation responsible for postmortem tenderization? Journal of Animal Science 73 (5):1351–67. doi: 10.2527/1995.7351351x.
  • Terasaki, M., M. Kajikawa, E. Fujita, and K. Ishii. 1965. Studies on the flavor of meats: Part I. Formation and degradation of inosinic acids in meats. Agricultural and Biological Chemistry 29 (3):208–15. doi: 10.1080/00021369.1965.10858377.
  • Terjung, N., F. Witte, and V. Heinz. 2021. The dry aged beef paradox: Why dry aging is sometimes not better than wet aging. Meat Science 172:108355. doi: 10.1016/j.meatsci.2020.108355.
  • Tian, J.-C., L. Han, Q.-L. Yu, X.-X. Shi, and W.-T. Wang. 2013. Changes in tenderness and cathepsins activity during post mortem ageing of yak meat. Canadian Journal of Animal Science 93 (3):321–8. doi: 10.4141/cjas2012-102.
  • Tikk, M., K. Tikk, M. A. Tørngren, L. Meinert, M. D. Aaslyng, A. H. Karlsson, and H. J. Andersen. 2006. Development of inosine monophosphate and its degradation products during aging of pork of different qualities in relation to basic taste and retronasal flavor perception of the meat. Journal of Agricultural and Food Chemistry 54 (20):7769–77. doi: 10.1021/jf060145a.
  • Toepfl, S., C. Siemer, G. Saldaña-Navarro, and V. Heinz. 2014. Overview of pulsed electric fields processing for food. In Emerging technologies for food processing, ed. D.-W. Sun, 93–114. London: Academic Press. doi: 10.1016/B978-0-12-411479-1.00006-1.
  • Tornberg, E. 1996. Biophysical aspects of meat tenderness. Meat Science 43:175–91. doi: 10.1016/0309-1740(96)00064-2.
  • Tsakiridis, A., M. Wallace, J. Breen, C. O'Donoghue, and K. Hanrahan. 2021. Beef quality assurance schemes: Can they improve farm economic performance? Agribusiness 37 (3):451–71. doi: 10.1002/agr.21689.
  • Utama, D. T., Y. J. Kim, H. S. Jeong, J. Kim, F. H. Barido, and S. K. Lee. 2020. Comparison of meat quality, fatty acid composition and aroma volatiles of dry-aged beef from Hanwoo cows slaughtered at 60 or 80 months old. Asian-Australasian Journal of Animal Sciences 33 (1):157–65. doi: 10.5713/ajas.19.0205.
  • Uytterhaegen, L., E. Claeys, and D. Demeyer. 1994. Effects of exogenous protease effectors on beef tenderness development and myofibrillar degradation and solubility. Journal of Animal Science 72 (5):1209–23. doi: 10.2527/1994.7251209x.
  • Uytterhaegen, L., E. Claeys, D. Demeyer, M. Lippens, L. Fiems, C. Y. Boucqué, G. Van de Voorde, and A. Bastiaens. 1994. Effects of double-muscling on carcass quality, beef tenderness and myofibrillar protein degradation in Belgian Blue White bulls. Meat Science 38 (2):255–67. doi: 10.1016/0309-1740(94)90115-5.
  • Van Ba, H., T. Amna, and I. Hwang. 2013. Significant influence of particular unsaturated fatty acids and pH on the volatile compounds in meat-like model systems. Meat Science 94 (4):480–8. doi: 10.1016/j.meatsci.2013.04.029.
  • Van Moeseke, W., S. De Smet, E. Claeys, and D. Demeyer. 2001. Very fast chilling of beef: Effects on meat quality. Meat Science 59 (1):31–7. doi: 10.1016/S0309-1740(01)00049-3.
  • Veiseth, E., S. Shackelford, T. Wheeler, and M. Koohmaraie. 2001. Effect of postmortem storage on µ-calpain and m-calpain in ovine skeletal muscle. Journal of Animal Science 79 (6):1502–8. doi: 10.2527/2001.7961502x.
  • Verbeke, W., F. J. A. Pérez-Cueto, M. D. d Barcellos, A. Krystallis, and K. G. Grunert. 2010. European citizen and consumer attitudes and preferences regarding beef and pork. Meat Science 84 (2):284–92.
  • Vilella, G. d. F., C. L. Gomes, C. T. Battaglia, M. T. Bertoldo Pacheco, V. S. Nunes da Silva, A. Rodas-Gonzalez, and S. B. Pflanzer. 2019. Effects of combined wet-and dry-aging techniques on the physicochemical and sensory attributes of beef ribeye steaks from grain-fed crossbred zebu steers. Canadian Journal of Animal Science 99 (3):497–504. doi: 10.1139/cjas-2018-0127.
  • Vitale, M., M. Pérez-Juan, E. Lloret, J. Arnau, and C. Realini. 2014. Effect of aging time in vacuum on tenderness, and color and lipid stability of beef from mature cows during display in high oxygen atmosphere package. Meat Science 96 (1):270–7. doi: 10.1016/j.meatsci.2013.07.027.
  • Vossen, E., L. Dewulf, G. Van Royen, I. Van Damme, L. De Zutter, I. Fraeye, and S. De Smet. 2022. Influence of aging time, temperature and relative humidity on the sensory quality of dry-aged Belgian Blue beef. Meat Science 183:108659. doi: 10.1016/j.meatsci.2021.108659.
  • Wahlgren, N. M., C. E. Devine, and E. Tornberg. 1997. The influence of different pH-courses during rigor development on beef tenderness. In Annual International Congress of Meat Science and Technology, 43:622–3. Auckland: New Zealand.
  • Wahlgren, N. M., O. Urban, and E. Tornberg. 1997. The Influence of different temperature courses on real and simulated muscle shortening and beef tenderness. In Annual International Congress of Meat Science and Technology, 43:624–5. Auckland: New Zealand.
  • Wang, K. K., R. Posmantur, R. Nadimpalli, R. Nath, P. Mohan, R. A. Nixon, R. V. Talanian, M. Keegan, L. Herzog, and H. Allen. 1998. Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Archives of Biochemistry and Biophysics 356 (2):187–96. doi: 10.1006/abbi.1998.0748.
  • Wang, L.-L., L. Han, X.-L. Ma, Q.-L. Yu, and S.-N. Zhao. 2017. Effect of mitochondrial apoptotic activation through the mitochondrial membrane permeability transition pore on yak meat tenderness during postmortem aging. Food Chemistry 234:323–31. doi: 10.1016/j.foodchem.2017.04.185.
  • Warner, R. D., T. L. Wheeler, M. Ha, X. Li, A. E.-D. Bekhit, J. Morton, R. Vaskoska, F. R. Dunshea, R. Liu, P. Purslow, et al. 2022. Meat tenderness: Advances in biology, biochemistry, molecular mechanisms and new technologies. Meat Science 185:108657. doi: 10.1016/j.meatsci.2021.108657.
  • Warren, K., and C. Kastner. 1992. A comparison of dry-aged and vacuum-aged beef strip loins. Journal of Muscle Foods 3 (2):151–7. doi: 10.1111/j.1745-4573.1992.tb00471.x.
  • Watanabe, A., G. Kamada, M. Imanari, N. Shiba, M. Yonai, and T. Muramoto. 2015. Effect of aging on volatile compounds in cooked beef. Meat Science 107:12–9. doi: 10.1016/j.meatsci.2015.04.004.
  • Wendt, A., V. F. Thompson, and D. E. Goll. 2004. Interaction of calpastatin with calpain: A review. Biological Chemistry 385 (6):465–72. doi: 10.1515/BC.2004.054.
  • Whipple, G., M. Koohmaraie, M. Dikeman, J. Crouse, M. Hunt, and R. Klemm. 1990. Evaluation of attributes that affect longissimus muscle tenderness in Bos taurus and Bos indicus cattle. Journal of Animal Science 68 (9):2716–28. doi: 10.2527/1990.6892716x.
  • Witte, F., S. Smetana, V. Heinz, and N. Terjung. 2020. High-pressure processing of usually discarded dry aged beef trimmings for subsequent processing. Meat Science 170:108241. doi: 10.1016/j.meatsci.2020.108241.
  • Wright, S. A., P. Ramos, D. D. Johnson, J. M. Scheffler, M. A. Elzo, R. G. Mateescu, A. L. Bass, C. C. Carr, and T. L. Scheffler. 2018. Brahman genetics influence muscle fiber properties, protein degradation, and tenderness in an Angus-Brahman multibreed herd. Meat Science 135:84–93. doi: 10.1016/j.meatsci.2017.09.006.
  • Wu, G., M. Farouk, S. Clerens, and K. Rosenvold. 2014. Effect of beef ultimate pH and large structural protein changes with aging on meat tenderness. Meat Science 98 (4):637–45. doi: 10.1016/j.meatsci.2014.06.010.
  • Wu, H.-C., C.-Y. Shiau, H.-M. Chen, and T.-K. Chiou. 2020. Antioxidant activities of carnosine, anserine, some free amino acids and their combination. Journal of Food and Drug Analysis 11 (2):148–53. doi: 10.38212/2224-6614.2720.
  • Wu, W., Q.-Q. Yu, Y. Fu, X.-J. Tian, F. Jia, X.-M. Li, and R.-T. Dai. 2016. Towards muscle-specific meat color stability of Chinese Luxi yellow cattle: A proteomic insight into post-mortem storage. Journal of Proteomics 147:108–18. doi: 10.1016/j.jprot.2015.10.027.
  • Wyss, M., and R. Kaddurah-Daouk. 2000. Creatine and creatinine metabolism. Physiological Reviews 80 (3):1107–213. doi: 10.1152/physrev.2000.80.3.1107.
  • Xu, L., S. Liu, Y. Cheng, and H. Qian. 2021. The effect of aging on beef taste, aroma and texture, and the role of microorganisms: A review. Critical Reviews in Food Science and Nutrition:1–12. doi: 10.1080/10408398.2021.1971156.
  • Yano, Y., N. Kataho, M. Watanabe, T. Nakamura, and Y. Asano. 1995. Evaluation of beef aging by determination of hypoxanthine and xanthine contents: Application of a xanthine sensor. Food Chemistry 52 (4):439–45. doi: 10.1016/0308-8146(95)93297-5.
  • Yu, Q., X. Tian, L. Shao, X. Li, and R. Dai. 2020. Mitochondria changes and metabolome differences of bovine longissimus lumborum and psoas major during 24 h postmortem. Meat Science 166:108112. doi: 10.1016/j.meatsci.2020.108112.
  • Zapata, I., H. N. Zerby, and M. Wick. 2009. Functional proteomic analysis predicts beef tenderness and the tenderness differential. Journal of Agricultural and Food Chemistry 57 (11):4956–63. doi: 10.1021/jf900041j.
  • Zhai, C., B. A. Djimsa, J. E. Prenni, D. R. Woerner, K. E. Belk, and M. N. Nair. 2020. Tandem mass tag labeling to characterize muscle-specific proteome changes in beef during early postmortem period. Journal of Proteomics 222:103794. doi: 10.1016/j.jprot.2020.103794.
  • Zhang, J., M. Li, Q. Yu, L. Han, and Z. Ma. 2019. Effects of lysosomal–mitochondrial apoptotic pathway on tenderness in post-mortem bovine longissimus muscle. Journal of Agricultural and Food Chemistry 67 (16):4578–87. doi: 10.1021/acs.jafc.9b00894.
  • Zhang, R., M. J. Yoo, and M. M. Farouk. 2021. Oxidative stability, proteolysis, and in vitro digestibility of fresh and long-term frozen stored in-bag dry-aged lean beef. Food Chemistry 344:128601. doi: 10.1016/j.foodchem.2020.128601.
  • Zhao, C., L. Zan, Y. Wang, M. Scott Updike, G. Liu, B. J. Bequette, R. L. Baldwin Vi, and J. Song. 2014. Functional proteomic and interactome analysis of proteins associated with beef tenderness in Angus cattle. Livestock Science 161:201–9. doi: 10.1016/j.livsci.2013.11.030.
  • Zhu, C., M. Petracci, C. Li, E. Fiore, and L. Laghi. 2020. An untargeted metabolomics investigation of Jiulong yak (Bos grunniens) meat by 1H-NMR. Foods 9 (4):481. doi: 10.3390/foods9040481.
  • Zhu, Y., M. Gagaoua, A. M. Mullen, A. L. Kelly, T. Sweeney, J. Cafferky, D. Viala, and R. M. Hamill. 2021. A proteomic study for the discovery of beef tenderness biomarkers and prediction of Warner–Bratzler shear force measured on Longissimus thoracis muscles of young Limousin-sired bulls. Foods 10 (5):952. doi: 10.3390/foods10050952.
  • Zuo, H., L. Han, Q. Yu, K. Niu, S. Zhao, and H. Shi. 2016. Proteome changes on water-holding capacity of yak longissimus lumborum during postmortem aging. Meat Science 121:409–19. doi: 10.1016/j.meatsci.2016.07.010.
  • Zuo, H., P. Wang, Z. Guo, X. Luo, Y. Zhang, and Y. Mao. 2022. Metabolites analysis on water-holding capacity in beef Longissimus lumborum muscle during postmortem aging. Metabolites 12 (3):242. doi: 10.3390/metabo12030242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.