496
Views
5
CrossRef citations to date
0
Altmetric
Review

Therapeutic potential of dietary flavonoid hyperoside against non-communicable diseases: targeting underlying properties of diseases

, , , , , , , , , ORCID Icon & show all

References

  • Agati, G., E. Azzarello, S. Pollastri, and M. Tattini. 2012. Flavonoids as antioxidants in plants: location and functional significance. Plant Science: An International Journal of Experimental Plant Biology 196:67–76. doi: 10.1016/j.plantsci.2012.07.014.
  • Aggarwal, V., H. S. Tuli, A. Varol, F. Thakral, M. B. Yerer, K. Sak, M. Varol, A. Jain, M. A. Khan, and G. Sethi. 2019. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules 9 (11):735. doi: 10.3390/biom9110735.
  • Aguilar-Veloz, L. M., M. Calderón-Santoyo, and J. A. Ragazzo-Sánchez. 2021. Optimization of microwave assisted extraction of Artocarpus Heterophyllus leaf polyphenols with inhibitory action against Alternaria sp. and antioxidant capacity. Food Science and Biotechnology 30 (13):1695–707. doi: 10.1007/s10068-021-00996-8.
  • Ahmed, S. M., L. Luo, A. Namani, X. J. Wang, and X. Tang. 2017. Nrf2 signaling pathway: pivotal roles in inflammation. Biochimica et Biophysica Acta. Molecular Basis of Disease 1863 (2):585–97. doi: 10.1016/j.bbadis.2016.11.005.
  • Ahn, H, and G. S. Lee. 2017. Isorhamnetin and hyperoside derived from water dropwort inhibits inflammasome activation. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 24:77–86. doi: 10.1016/j.phymed.2016.11.019.
  • Ai, G., Z. M. Huang, D. W. Wang, and H. T. Zhang. 2012a. Acute toxicity and genotoxicity evaluation of hyperoside extracted from Abelmoschus manihot (L.) medic. Journal of Chinese Pharmaceutical Sciences 21 (5):477–82. doi: 10.5246/jcps.2012.05.063.
  • Ai, G., Z. M. Huang, D. W. Wang, and H. T. Zhang. 2012b. Toxicity of hyperoside after long-term oral administration in Wistar rats. Chinese Journal of New Drugs 21 (23):2811–6 + 2828.
  • Ai, G., Z. M. Huang, D. W. Wang, and Z. P. Liu. 2012c. Study on toxicity of hyperoside in rat embryo-fetal development. China Journal of Chinese Materia Medica 37 (16):2452–5.
  • Ai, G., D. W. Wang, Z. M. Huang, and H. T. Zhang. 2015. Long-term toxicity of hyperoside in beagle dogs. Chinese Journal of New Drugs 24 (14):1641–7.
  • Alharbi, K. S., N. K. Fuloria, S. Fuloria, S. B. Rahman, W. H. Al-Malki, M. A. Javed Shaikh, L. Thangavelu, S. K. Singh, V. S. Rama Raju Allam, N. K. Jha, et al. 2021. Nuclear factor-kappa B and its role in inflammatory lung disease. Chemico-Biological Interactions 345:109568. doi: 10.1016/j.cbi.2021.109568.
  • Almajdoob, S., E. Hossain, and M. B. Anand-Srivastava. 2018. Resveratrol attenuates hyperproliferation of vascular smooth muscle cells from spontaneously hypertensive rats: role of ROS and ROS-mediated cell signaling. Vascular Pharmacology 101:48–56. doi: 10.1016/j.vph.2017.12.064.
  • Amadi, P. U., E. N. Agomuo, and C. Adumekwe. 2020. Vascular effects of Avocado seed glycosides during diabetes-induced endothelial damage. Cardiovascular & Hematological Disorders Drug Targets 20 (3):202–13. doi: 10.2174/1871529X20666200510012012.
  • An, X., L. Zhang, Y. Yuan, B. Wang, Q. Yao, L. Li, J. Zhang, M. He, and J. Zhang. 2017. Hyperoside pre-treatment prevents glomerular basement membrane damage in diabetic nephropathy by inhibiting podocyte heparanase expression. Scientific Reports 7 (1):6413. doi: 10.1038/s41598-017-06844-2.
  • Arts, I. C., A. L. Sesink, M. Faassen-Peters, and P. C. Hollman. 2004. The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. The British Journal of Nutrition 91 (6):841–7. doi: 10.1079/BJN20041123.
  • Asrani, S. K., H. Devarbhavi, J. Eaton, and P. S. Kamath. 2019. Burden of liver diseases in the world. Journal of Hepatology 70 (1):151–71. doi: 10.1016/j.jhep.2018.09.014.
  • Aubrey, B. J., G. L. Kelly, A. Janic, M. J. Herold, and A. Strasser. 2018. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death and Differentiation 25 (1):104–13. doi: 10.1038/cdd.2017.169.
  • Bahreini, E., Y. Rezaei-Chianeh, and M. Nabi-Afjadi. 2021. Molecular mechanisms involved in intrarenal renin-angiotensin and alternative pathways in diabetic nephropathy - a review. The Review of Diabetic Studies: RDS 17 (1):1–10. doi: 10.1900/RDS.2021.17.1.
  • Batra, A., L. L. Latour, C. A. Ruetzler, J. M. Hallenbeck, M. Spatz, S. Warach, and E. C. Henning. 2010. Increased plasma and tissue MMP levels are associated with BCSFB and BBB disruption evident on post-contrast FLAIR after experimental stroke. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism 30 (6):1188–99. doi: 10.1038/jcbfm.2010.1.
  • Bonta, P. I., C. M. van Tiel, M. Vos, T. W. Pols, J. V. van Thienen, V. Ferreira, E. K. Arkenbout, J. Seppen, C. A. Spek, T. van der Poll, et al. 2006. Nuclear receptors Nur77, Nurr1, and NOR-1 expressed in atherosclerotic lesion macrophages reduce lipid loading and inflammatory responses. Arteriosclerosis, Thrombosis, and Vascular Biology 26 (10):2288–94. doi: 10.1161/01.ATV.0000238346.84458.5d.
  • Boots, A. W., G. R. Haenen, and A. Bast. 2008. Health effects of quercetin: from antioxidant to nutraceutical. European Journal of Pharmacology 585 (2-3):325–37. doi: 10.1016/j.ejphar.2008.03.008.
  • Boukes, G. J, and M. van de Venter. 2016. The apoptotic and autophagic properties of two natural occurring prodrugs, hyperoside and hypoxoside, against pancreatic cancer cell lines. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 83:617–26. doi: 10.1016/j.biopha.2016.07.029.
  • Brown, G. C. 2010. Nitric oxide and neuronal death. Nitric Oxide: Biology and Chemistry 23 (3):153–65. doi: 10.1016/j.niox.2010.06.001.
  • Butkevičiūtė, A., M. Liaudanskas, D. Kviklys, D. Gelvonauskienė, and V. Janulis. 2020. The qualitative and quantitative compositions of phenolic compounds in fruits of Lithuanian heirloom apple cultivars. Molecules 25 (22):5263. doi: 10.3390/molecules25225263.
  • Butterweck, V., M. Hegger, and H. Winterhoff. 2004. Flavonoids of St. John's Wort reduce HPA axis function in the rat. Planta Medica 70 (10):1008–11. doi: 10.1055/s-2004-832631.
  • Cabré, A., I. Lázaro, J. Girona, J. M. Manzanares, F. Marimón, N. Plana, M. Heras, and L. Masana. 2007. Fatty acid binding protein 4 is increased in metabolic syndrome and with thiazolidinedione treatment in diabetic patients. Atherosclerosis 195 (1):e150–e158. doi: 10.1016/j.atherosclerosis.2007.04.045.
  • Cai, Y., B. Li, D. Peng, X. Wang, P. Li, M. Huang, H. Xing, and J. Chen. 2021. Crm1-dependent nuclear export of Bach1 is involved in the protective effect of hyperoside on oxidative damage in hepatocytes and CCl4-induced acute liver injury. Journal of Inflammation Research 14:551–65. doi: 10.2147/JIR.S279249.
  • Cao, J., C. Tang, M. Gao, Y. Rui, J. Zhang, L. Wang, Y. Wang, B. Xu, and B. C. Yan. 2020. Hyperoside alleviates epilepsy-induced neuronal damage by enhancing antioxidant levels and reducing autophagy. Journal of Ethnopharmacology 257:112884. doi: 10.1016/j.jep.2020.112884.
  • Chang, K. C., C. C. Hsu, S. H. Liu, C. C. Su, C. C. Yen, M. J. Lee, K. L. Chen, T. J. Ho, D. Z. Hung, C. C. Wu, et al. 2013. Cadmium induces apoptosis in pancreatic β-cells through a mitochondria-dependent pathway: the role of oxidative stress-mediated c-Jun N-terminal kinase activation. PloS One 8 (2):e54374. doi: 10.1371/journal.pone.0054374.
  • Chang, Q., Z. Zuo, M. S. Chow, and W. K. Ho. 2005. Difference in absorption of the two structurally similar flavonoid glycosides, hyperoside and isoquercitrin, in rats. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 59 (3):549–55. doi: 10.1016/j.ejpb.2004.10.004.
  • Chao, C. S., C. S. Tsai, Y. P. Chang, J. M. Chen, H. K. Chin, and S. C. Yang. 2016. Hyperin inhibits nuclear factor kappa B and activates nuclear factor E2-related factor-2 signaling pathways in cisplatin-induced acute kidney injury in mice. International Immunopharmacology 40:517–23. doi: 10.1016/j.intimp.2016.09.020.
  • Chappell, J., J. L. Harman, V. M. Narasimhan, H. Yu, K. Foote, B. D. Simons, M. R. Bennett, and H. F. Jørgensen. 2016. Extensive proliferation of a subset of differentiated, yet plastic, medial vascular smooth muscle cells contributes to neointimal formation in mouse injury and atherosclerosis models. Circulation Research 119 (12):1313–23. doi: 10.1161/CIRCRESAHA.116.309799.
  • Chen, D., G. Cao, C. Qiao, G. Liu, H. Zhou, and Q. Liu. 2018a. Alpha B-crystallin promotes the invasion and metastasis of gastric cancer via NF-κB-induced epithelial-mesenchymal transition. Journal of Cellular and Molecular Medicine 22 (6):3215–22. doi: 10.1111/jcmm.13602.
  • Chen, D., Y. X. Wu, Y. B. Qiu, B. B. Wan, G. Liu, J. L. Chen, M. D. Lu, and Q. F. Pang. 2020. Hyperoside suppresses hypoxia-induced A549 survival and proliferation through ferrous accumulation via AMPK/HO-1 axis. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 67:153138. doi: 10.1016/j.phymed.2019.153138.
  • Chen, L., Y. P. Zhou, H. Y. Liu, J. H. Gu, X. F. Zhou, and Z. Yue-Qin. 2021. Long-term oral administration of hyperoside ameliorates AD-related neuropathology and improves cognitive impairment in APP/PS1 transgenic mice. Neurochemistry International 151:105196. doi: 10.1016/j.neuint.2021.105196.
  • Chen, Q., M. Zheng, E. Cai, Y. Zhao, T. Zhao, S. Tu, and L. Yang. 2015a. Research on composite enzyme assisted hyperoside extraction of Acanthopanax senticosusand its process. World Science and Technology-Modernization of Traditional Chinese Medicine 17 (9):1866–71.
  • Chen, T., J. Wang, M. Liu, L. Y. Zhang, and H. Liao. 2015b. Screening of natural compounds with neuronal differentiation promoting effects in a cell-based model. Chinese Journal of Natural Medicines 13 (8):602–8. doi: 10.1016/S1875-5364(15)30056-X.
  • Chen, Y., F. Dai, Y. He, Q. Chen, Q. Xia, G. Cheng, Y. Lu, and Q. Zhang. 2018b. Beneficial effects of hyperoside on bone metabolism in ovariectomized mice. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 107:1175–82. doi: 10.1016/j.biopha.2018.08.069.
  • Chen, Y., L. Ye, W. Li, D. Li, and F. Li. 2018c. Hyperoside protects human kidney‑2 cells against oxidative damage induced by oxalic acid. Molecular Medicine Reports 18 (1):486–94. doi: 10.3892/mmr.2018.8948.
  • Chen, Z, and C. Zhong. 2014. Oxidative stress in Alzheimer's disease. Neuroscience Bulletin 30 (2):271–81. doi: 10.1007/s12264-013-1423-y.
  • Chen, Z., X. An, X. Liu, J. Qi, D. Ding, M. Zhao, S. Duan, Z. Huang, C. Zhang, L. Wu, et al. 2017. Hyperoside alleviates adriamycin-induced podocyte injury via inhibiting mitochondrial fission. Oncotarget 8 (51):88792–803. doi: 10.18632/oncotarget.21287.
  • Cheng, C., W. Zhang, C. Zhang, P. Ji, X. Wu, Z. Sha, X. Chen, Y. Wang, Y. Chen, H. Cheng, et al. 2021. Hyperoside ameliorates DSS-induced colitis through MKRN1-mediated regulation of PPARγ signaling and Th17/Treg balance. Journal of Agricultural and Food Chemistry 69 (50):15240–51. doi: 10.1021/acs.jafc.1c06292.
  • Cheon, Y. H., C. H. Lee, S. Kim, G. D. Park, S. C. Kwak, H. J. Cho, J. Y. Kim, and M. S. Lee. 2021. Pitavastatin prevents ovariectomy-induced osteoporosis by regulating osteoclastic resorption and osteoblastic formation. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 139:111697. doi: 10.1016/j.biopha.2021.111697.
  • Cheresh, P., S. J. Kim, S. Tulasiram, and D. W. Kamp. 2013. Oxidative stress and pulmonary fibrosis. Biochimica et Biophysica Acta 1832 (7):1028–40. doi: 10.1016/j.bbadis.2012.11.021.
  • Chistiakov, D. A., A. A. Melnichenko, A. V. Grechko, V. A. Myasoedova, and A. N. Orekhov. 2018. Potential of anti-inflammatory agents for treatment of atherosclerosis. Experimental and Molecular Pathology 104 (2):114–24. doi: 10.1016/j.yexmp.2018.01.008.
  • Choi, J. H., D. W. Kim, N. Yun, J. S. Choi, M. N. Islam, Y. S. Kim, and S. M. Lee. 2011. Protective effects of hyperoside against carbon tetrachloride-induced liver damage in mice. Journal of Natural Products 74 (5):1055–60. doi: 10.1021/np200001x.
  • Chunzhi, G., L. Zunfeng, Q. Chengwei, B. Xiangmei, and Y. Jingui. 2016. Hyperin protects against LPS-induced acute kidney injury by inhibiting TLR4 and NLRP3 signaling pathways. Oncotarget 7 (50):82602–8. doi: 10.18632/oncotarget.13010.
  • Cichoż-Lach, H, and A. Michalak. 2014. Oxidative stress as a crucial factor in liver diseases. World Journal of Gastroenterology 20 (25):8082–91. doi: 10.3748/wjg.v20.i25.8082.
  • Cockerham, W. C., B. W. Hamby, and G. R. Oates. 2017. The social determinants of chronic disease. American Journal of Preventive Medicine 52 (1S1):S5–S12. doi: 10.1016/j.amepre.2016.09.010.
  • Coelho, R. C., H. H. Hermsdorff, and J. Bressan. 2013. Anti-inflammatory properties of orange juice: possible favorable molecular and metabolic effects. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 68 (1):1–10. doi: 10.1007/s11130-013-0343-3.
  • Colucci-D’Amato, L., L. Speranza, and F. Volpicelli. 2020. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. International Journal of Molecular Sciences 21 (20):7777. doi: 10.3390/ijms21207777.
  • Daenen, K., A. Andries, D. Mekahli, A. Van Schepdael, F. Jouret, and B. Bammens. 2019. Oxidative stress in chronic kidney disease. Pediatric Nephrology (Berlin, Germany) 34 (6):975–91. doi: 10.1007/s00467-018-4005-4.
  • Daiber, A., J. Lelieveld, S. Steven, M. Oelze, S. Kröller-Schön, M. Sørensen, and T. Münzel. 2019. The “exposome” concept - how environmental risk factors influence cardiovascular health. Acta Biochimica Polonica 66 (3):269–83. doi: 10.18388/abp.2019_2853.
  • de Almeida, A., M. S. de Almeida Rezende, S. H. Dantas, S. de Lima Silva, J. de Oliveira, F. de Lourdes Assunção Araújo de Azevedo, R. Alves, G. de Menezes, P. F. Dos Santos, T. Gonçalves, et al. 2020. Unveiling the role of inflammation and oxidative stress on age-related cardiovascular diseases. Oxidative Medicine and Cellular Longevity 2020:1954398. doi: 10.1155/2020/1954398.
  • Del Río, L. A. 2015. ROS and RNS in plant physiology: an overview. Journal of Experimental Botany 66 (10):2827–37. doi: 10.1093/jxb/erv099.
  • Dhimal, M., T. Neupane, and M. L. Dhimal. 2021. Understanding linkages between environmental risk factors and noncommunicable diseases-A review. FASEB bioAdvances 3 (5):287–94. doi: 10.1096/fba.2020-00119.
  • Dholakia, J., B. Prabhakar, and P. Shende. 2021. Strategies for the delivery of antidiabetic drugs via intranasal route. International Journal of Pharmaceutics 608:121068. doi: 10.1016/j.ijpharm.2021.121068.
  • Diaz-Vegas, A., P. Sanchez-Aguilera, J. R. Krycer, P. E. Morales, M. Monsalves-Alvarez, M. Cifuentes, B. A. Rothermel, and S. Lavandero. 2020. Is mitochondrial dysfunction a common root of noncommunicable chronic diseases? Endocrine Reviews 41 (3):bnaa005. doi: 10.1210/endrev/bnaa005.
  • Di Leo, L., V. Bodemeyer, F. M. Bosisio, G. Claps, M. Carretta, S. Rizza, F. Faienza, A. Frias, S. Khan, M. Bordi, et al. 2021. Loss of Ambra1 promotes melanoma growth and invasion. Nature Communications 12 (1):2550. doi: 10.1038/s41467-021-22772-2.
  • Do, T. C., T. D. Nguyen, H. Tran, H. Stuppner, and M. Ganzera. 2012. Quantitative determination of phenolic compounds in lotus (Nelumbo nucifera) leaves by capillary zone electrophoresis. Planta Medica 78 (16):1796–9. doi: 10.1055/s-0032-1315258.
  • Du, K. Z., J. Li, X. Guo, Y. Li, and Y. X. Chang. 2018. Quantitative analysis of phenolic acids and flavonoids in Cuscuta chinensis Lam. by synchronous ultrasonic-assisted extraction with response surface methodology. Journal of Analytical Methods in Chemistry 2018:6796720. doi: 10.1155/2018/6796720.
  • Duni, A., V. Liakopoulos, S. Roumeliotis, D. Peschos, and E. Dounousi. 2019. Oxidative stress in the pathogenesis and evolution of chronic kidney disease: untangling Ariadne's thread. International Journal of Molecular Sciences 20 (15):3711. doi: 10.3390/ijms20153711.
  • Dugger, B. N, and D. W. Dickson. 2017. Pathology of neurodegenerative diseases. Cold Spring Harbor Perspectives in Biology 9 (7):a028035. doi: 10.1101/cshperspect.a028035.
  • Engin, A. B, and A. Engin. 2021. Protein kinases signaling in pancreatic beta-cells death and type 2 diabetes. Advances in Experimental Medicine and Biology 1275:195–227. doi: 10.1007/978-3-030-49844-3_8.
  • Evans, J. L., I. D. Goldfine, B. A. Maddux, and G. M. Grodsky. 2003. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52 (1):1–8. doi: 10.2337/diabetes.52.1.1.
  • Fan, H. H., L. B. Zhu, T. Li, H. Zhu, Y. N. Wang, X. L. Ren, B. L. Hu, C. P. Huang, J. H. Zhu, and X. Zhang. 2017. Hyperoside inhibits lipopolysaccharide-induced inflammatory responses in microglial cells via p38 and NFκB pathways. International Immunopharmacology 50:14–21. doi: 10.1016/j.intimp.2017.06.004.
  • Fan, H., Y. Li, M. Sun, W. Xiao, L. Song, Q. Wang, B. Zhang, J. Yu, X. Jin, C. Ma, et al. 2021. Hyperoside reduces rotenone-induced neuronal injury by suppressing autophagy. Neurochemical Research 46 (12):3149–58. doi: 10.1007/s11064-021-03404-z.
  • Fan, W., L. Zhang, Y. Li, and H. Wu. 2019. Recent progress of crosslinking strategies for polymeric micelles with enhanced drug delivery in cancer therapy. Current Medicinal Chemistry 26 (13):2356–76. doi: 10.2174/0929867324666171121102255.
  • Feng, Y., G. Qin, S. Chang, Z. Jing, Y. Zhang, and Y. Wang. 2021. Antitumor effect of hyperoside loaded in charge reversed and mitochondria-targeted liposomes. International Journal of Nanomedicine 16:3073–89. doi: 10.2147/IJN.S297716.
  • Fischer, V, and M. Haffner-Luntzer. 2022. Interaction between bone and immune cells: implications for postmenopausal osteoporosis. Seminars in Cell & Developmental Biology 123:14–21. doi: 10.1016/j.semcdb.2021.05.014.
  • Förstermann, U. 2008. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nature Clinical Practice. Cardiovascular Medicine 5 (6):338–49. doi: 10.1038/ncpcardio1211.
  • Fu, T., L. Wang, X. N. Jin, H. J. Sui, Z. Liu, and Y. Jin. 2016. Hyperoside induces both autophagy and apoptosis in non-small cell lung cancer cells in vitro. Acta Pharmacologica Sinica 37 (4):505–18. doi: 10.1038/aps.2015.148.
  • Fu, X., S. Xu, Z. Li, K. Chen, H. Fan, Y. Wang, Z. Xie, L. Kou, and S. Zhang. 2022. Enhanced intramuscular bioavailability of cannabidiol using nanocrystals: formulation, in vitro appraisal, and pharmacokinetics. AAPS PharmSciTech 23 (3):85. doi: 10.1208/s12249-022-02239-3.
  • G Bardallo, R., A. Panisello-Roselló, S. Sanchez-Nuno, N. Alva, J. Roselló-Catafau, and T. Carbonell. 2021. Nrf2 and oxidative stress in liver ischemia/reperfusion injury. The FEBS Journal. doi: 10.1111/febs.16336.
  • Gao, Y., L. Fang, X. Wang, R. Lan, M. Wang, G. Du, W. Guan, J. Liu, M. Brennan, H. Guo, et al. 2019. Antioxidant activity evaluation of dietary flavonoid hyperoside using saccharomyces cerevisiae as a model. Molecules 24 (4):788. doi: 10.3390/molecules24040788.
  • Gao, Y., X. Fan, W. Gu, X. Ci, and L. Peng. 2021. Hyperoside relieves particulate matter-induced lung injury by inhibiting AMPK/mTOR-mediated autophagy deregulation. Pharmacological Research 167:105561. doi: 10.1016/j.phrs.2021.105561.
  • Garin-Shkolnik, T., A. Rudich, G. S. Hotamisligil, and M. Rubinstein. 2014. FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues. Diabetes 63 (3):900–11. doi: 10.2337/db13-0436.
  • Geng, X. Q., A. Ma, J. Z. He, L. Wang, Y. L. Jia, G. Y. Shao, M. Li, H. Zhou, S. Q. Lin, J. H. Ran, et al. 2020. Ganoderic acid hinders renal fibrosis via suppressing the TGF-β/Smad and MAPK signaling pathways. Acta Pharmacologica Sinica 41 (5):670–7. doi: 10.1038/s41401-019-0324-7.
  • Girousse, A., G. Tavernier, C. Valle, C. Moro, N. Mejhert, A. L. Dinel, M. Houssier, B. Roussel, A. Besse-Patin, M. Combes, et al. 2013. Partial inhibition of adipose tissue lipolysis improves glucose metabolism and insulin sensitivity without alteration of fat mass. PLoS Biology 11 (2):e1001485. doi: 10.1371/journal.pbio.1001485.
  • Gimbrone, M. A., Jr, and G. García-Cardeña. 2016. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circulation Research 118 (4):620–36. doi: 10.1161/CIRCRESAHA.115.306301.
  • Gong, Y., Y. Yang, X. Chen, M. Yang, D. Huang, R. Yang, L. Zhou, C. Li, Q. Xiong, and Z. Xiong. 2017. Hyperoside protects against chronic mild stress-induced learning and memory deficits. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 91:831–40. doi: 10.1016/j.biopha.2017.05.019. PMID: 28501772
  • Grace, A. A. 2016. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nature Reviews. Neuroscience 17 (8):524–32. doi: 10.1038/nrn.2016.57.
  • Gradinaru, D., C. Borsa, C. Ionescu, and G. I. Prada. 2015. Oxidized LDL and NO synthesis–Biomarkers of endothelial dysfunction and ageing. Mechanisms of Ageing and Development 151:101–13. doi: 10.1016/j.mad.2015.03.003.
  • Gudžinskaitė, I., E. Stackevičienė, M. Liaudanskas, K. Zymonė, V. Žvikas, J. Viškelis, R. Urbštaitė, and V. Janulis. 2020. Variability in the qualitative and quantitative composition and content of phenolic compounds in the fruit of introduced American cranberry (vaccinium macrocarpon aiton). Plants 9 (10):1379. doi: 10.3390/plants9101379.
  • Guo, J. M., P. Lin, J. A. Duan, E. X. Shang, D. W. Qian, and Y. P. Tang. 2012. Application of microdialysis for elucidating the existing form of hyperoside in rat brain: comparison between intragastric and intraperitoneal administration. Journal of Ethnopharmacology 144 (3):664–70. doi: 10.1016/j.jep.2012.10.008.
  • Guo, W., H. Yu, L. Zhang, X. Chen, Y. Liu, Y. Wang, and Y. Zhang. 2019a. Effect of hyperoside on cervical cancer cells and transcriptome analysis of differentially expressed genes. Cancer Cell International 19:235. doi: 10.1186/s12935-019-0953-4.
  • Guo, X., C. Zhu, X. Liu, Y. Ge, X. Jiang, and W. Zhao. 2019b. Hyperoside protects against heart failure-induced liver fibrosis in rats. Acta Histochemica 121 (7):804–11. doi: 10.1016/j.acthis.2019.07.005.
  • Guo, X., Y. Zhang, C. Lu, F. Qu, and X. Jiang. 2020. Protective effect of hyperoside on heart failure rats via attenuating myocardial apoptosis and inducing autophagy. Bioscience, Biotechnology, and Biochemistry 84 (4):714–24. doi: 10.1080/09168451.2019.1685369.
  • Guon, T. E, and H. S. Chung. 2016. Hyperoside and rutin of Nelumbo nucifera induce mitochondrial apoptosis through a caspase-dependent mechanism in HT-29 human colon cancer cells. Oncology Letters 11 (4):2463–70. doi: 10.3892/ol.2016.4247.
  • Haas, J. S., E. D. Stolz, A. H. Betti, A. C. Stein, J. Schripsema, G. L. Poser, and S. M. Rates. 2011. The anti-immobility effect of hyperoside on the forced swimming test in rats is mediated by the D2-like receptors activation. Planta Medica 77 (4):334–9. doi: 10.1055/s-0030-1250386.
  • Han, J., J. Meng, S. Chen, X. Wang, S. Yin, Q. Zhang, H. Liu, R. Qin, Z. Li, W. Zhong, et al. 2019. YY1 complex promotes Quaking expression via super-enhancer binding during EMT of hepatocellular carcinoma. Cancer Research 79 (7):1451–64. doi: 10.1158/0008-5472.CAN-18-2238.
  • Han, N. R., J. H. Go, H. M. Kim, and H. J. Jeong. 2014. Hyperoside regulates the level of thymic stromal lymphopoietin through intracellular calcium signalling. Phytotherapy Research: PTR 28 (7):1077–81. doi: 10.1002/ptr.5099.
  • He, J., H. Li, G. Li, and L. Yang. 2019. Hyperoside protects against cerebral IR injury by alleviating oxidative stress, inflammation and apoptosis in rats. Biotechnology & Biotechnological Equipment 33 (1):798–806. doi: 10.1080/13102818.2019.1620633.
  • Heilig, C. W., D. K. Deb, A. Abdul, H. Riaz, L. R. James, J. Salameh, and N. S. Nahman. Jr. 2013. GLUT1 regulation of the pro-sclerotic mediators of diabetic nephropathy. American Journal of Nephrology 38 (1):39–49. doi: 10.1159/000351989.
  • Hirotani, S., K. Otsu, K. Nishida, Y. Higuchi, T. Morita, H. Nakayama, O. Yamaguchi, T. Mano, Y. Matsumura, H. Ueno, et al. 2002. Involvement of nuclear factor-kappaB and apoptosis signal-regulating kinase 1 in G-protein-coupled receptor agonist-induced cardiomyocyte hypertrophy. Circulation 105 (4):509–15. doi: 10.1161/hc0402.102863.
  • Hong, M., J. Rong, X. Tao, and Y. Xu. 2022. The emerging role of ferroptosis in cardiovascular diseases. Frontiers in Pharmacology 13:822083. doi: 10.3389/fphar.2022.822083.
  • Hou, J. Y., Y. Liu, L. Liu, and X. M. Li. 2016. Protective effect of hyperoside on cardiac ischemia reperfusion injury through inhibition of ER stress and activation of Nrf2 signaling. Asian Pacific Journal of Tropical Medicine 9 (1):76–80. doi: 10.1016/j.apjtm.2015.12.001.
  • Hsu, H. C., T. Zhou, and J. D. Mountz. 2004. Nur77 family of nuclear hormone receptors. Current Drug Targets. Inflammation and Allergy 3 (4):413–23. doi: 10.2174/1568010042634523.
  • Hu, X., H. Li, L. Fu, F. Liu, H. Wang, M. Li, C. Jiang, and B. Yin. 2019. The protective effect of hyperin on LPS-induced acute lung injury in mice. Microbial Pathogenesis 127:116–20. doi: 10.1016/j.micpath.2018.11.048.
  • Hu, Z., P. Zhao, and H. Xu. 2020. Hyperoside exhibits anticancer activity in non‑small cell lung cancer cells with T790M mutations by upregulating FoxO1 via CCAT1. Oncology Reports 43 (2):617–24. doi: 10.3892/or.2019.7440.
  • Huang, C., Y. Yang, W. X. Li, X. Q. Wu, X. F. Li, T. T. Ma, L. Zhang, X. M. Meng, and J. Li. 2015. Hyperin attenuates inflammation by activating PPAR-γ in mice with acute liver injury (ALI) and LPS-induced RAW264.7 cells. International Immunopharmacology 29 (2):440–7. doi: 10.1016/j.intimp.2015.10.017.
  • Huang, J., X. Tong, L. Zhang, Y. Zhang, L. Wang, D. Wang, S. Zhang, and H. Fan. 2020. Hyperoside attenuates bleomycin-induced pulmonary fibrosis development in mice. Frontiers in Pharmacology 11:550955. doi: 10.3389/fphar.2020.550955.
  • Huang, J., S. C. Lin, A. Nadershahi, S. W. Watts, and R. Sarkar. 2008. Role of redox signaling and poly (adenosine diphosphate-ribose) polymerase activation in vascular smooth muscle cell growth inhibition by nitric oxide and peroxynitrite. Journal of Vascular Surgery 47 (3):599–607. doi: 10.1016/j.jvs.2007.11.006.
  • Huang, J., L. Zhou, J. Chen, T. Chen, B. Lei, N. Zheng, X. Wan, J. Xu, and T. Wang. 2021. Hyperoside attenuate inflammation in HT22 cells via upregulating SIRT1 to activities Wnt/β-catenin and Sonic Hedgehog pathways. Neural Plasticity 2021:8706400. doi: 10.1155/2021/8706400.
  • Hui, Y., S. Wen, W. Lihong, W. Chuang, and W. Chaoyun. 2021. Molecular structures of nonvolatile components in the Haihong fruit wine and their free radical scavenging effect. Food Chemistry 353:129298. doi: 10.1016/j.foodchem.2021.129298.
  • Huo, Y., B. Yi, M. Chen, N. Wang, P. Chen, C. Guo, and J. Sun. 2014. Induction of Nur77 by hyperoside inhibits vascular smooth muscle cell proliferation and neointimal formation. Biochemical Pharmacology 92 (4):590–8. doi: 10.1016/j.bcp.2014.09.021.
  • Incalza, M. A., R. D'Oria, A. Natalicchio, S. Perrini, L. Laviola, and F. Giorgino. 2018. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascular Pharmacology 100:1–19. doi: 10.1016/j.vph.2017.05.005.
  • Islam, M. T. 2017. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurological Research 39 (1):73–82. doi: 10.1080/01616412.2016.1251711.
  • Jakobs, D., A. Hage-Hülsmann, L. Prenner, C. Kolb, D. Weiser, and H. Häberlein. 2013. Downregulation of β1 -adrenergic receptors in rat C6 glioblastoma cells by hyperforin and hyperoside from St John's wort. The Journal of Pharmacy and Pharmacology 65 (6):907–15. doi: 10.1111/jphp.12050.
  • Jang, S. A., D. W. Park, E. H. Sohn, S. R. Lee, and S. C. Kang. 2018. Hyperoside suppresses tumor necrosis factor α-mediated vascular inflammatory responses by downregulating mitogen-activated protein kinases and nuclear factor-κB signaling. Chemico-Biological Interactions 294:48–55. doi: 10.1016/j.cbi.2018.08.013.
  • Jazvinšćak Jembrek, M., N. Oršolić, L. Mandić, A. Sadžak, and S. Šegota. 2021. Anti-oxidative, anti-inflammatory and anti-apoptotic effects of flavonols: targeting Nrf2, NF-κB and p53 pathways in neurodegeneration. Antioxidants 10 (10):1628. doi: 10.3390/antiox10101628.
  • Ji, L., Q. Wang, F. Huang, T. An, F. Guo, Y. Zhao, Y. Liu, Y. He, Y. Song, and G. Qin. 2019. FOXO1 overexpression attenuates tubulointerstitial fibrosis and apoptosis in diabetic kidneys by ameliorating oxidative injury via TXNIP-TRX. Oxidative Medicine and Cellular Longevity 2019:3286928. doi: 10.1155/2019/3286928.
  • Jiang, Z., J. Wang, C. Liu, X. Wang, and J. Pan. 2019. Hyperoside alleviated N-acetyl-para-amino-phenol-induced acute hepatic injury via Nrf2 activation. International Journal of Clinical and Experimental Pathology 12 (1):64–76.
  • Jin, X. N., E. Z. Yan, H. M. Wang, H. J. Sui, Z. Liu, W. Gao, and Y. Jin. 2016. Hyperoside exerts anti-inflammatory and anti-arthritic effects in LPS-stimulated human fibroblast-like synoviocytes in vitro and in mice with collagen-induced arthritis. Acta Pharmacologica Sinica 37 (5):674–86. doi: 10.1038/aps.2016.7.
  • Kadam, U. T, P. R. Croft, and North Staffordshire GP Consortium Group. 2007. Clinical multimorbidity and physical function in older adults: a record and health status linkage study in general practice. Family Practice 24 (5):412–9. doi: 10.1093/fampra/cmm049.
  • Khan, H. A., M. Z. Ahmad, J. A. Khan, and M. I. Arshad. 2017. Crosstalk of liver immune cells and cell death mechanisms in different murine models of liver injury and its clinical relevance. Hepatobiliary & Pancreatic Diseases International: HBPD INT 16 (3):245–56. doi: 10.1016/S1499-3872(17)60014-6.
  • Khan, J., P. K. Deb, S. Priya, K. D. Medina, R. Devi, S. G. Walode, and M. Rudrapal. 2021. Dietary flavonoids: cardioprotective potential with antioxidant effects and their pharmacokinetic, toxicological and therapeutic concerns. Molecules 26 (13):4021. doi: 10.3390/molecules26134021.
  • Khanavi, M., G. Moghaddam, M. R. Oveisi, N. Sadeghi, B. Jannat, M. Rostami, M. A. Saadat, and M. Hajimahmoodi. 2013. Hyperoside and anthocyanin content of ten different pomegranate cultivars. Pakistan Journal of Biological Sciences: PJBS 16 (13):636–41. doi: 10.3923/pjbs.2013.636.641.
  • Kitaura, H., K. Kimura, M. Ishida, H. Kohara, M. Yoshimatsu, and T. Takano-Yamamoto. 2013. Immunological reaction in TNF-α-mediated osteoclast formation and bone resorption in vitro and in vivo. Clinical & Developmental Immunology 2013:181849. doi: 10.1155/2013/181849.
  • Kim, S. J., J. Y. Um, and J. Y. Lee. 2011. Anti-inflammatory activity of hyperoside through the suppression of nuclear factor-κB activation in mouse peritoneal macrophages. The American Journal of Chinese Medicine 39 (1):171–81. doi: 10.1142/S0192415X11008737.
  • Kim, Y. J. 2012. Hyperin and quercetin modulate oxidative stress-induced melanogenesis. Biological & Pharmaceutical Bulletin 35 (11):2023–7. doi: 10.1248/bpb.b12-00592.
  • Kjellstrom, T., A. J. Butler, R. M. Lucas, and R. Bonita. 2010. Public health impact of global heating due to climate change: potential effects on chronic non-communicable diseases. International Journal of Public Health 55 (2):97–103. doi: 10.1007/s00038-009-0090-2.
  • Ku, S. K., T. H. Kim, S. Lee, S. M. Kim, and J. S. Bae. 2013. Antithrombotic and profibrinolytic activities of isorhamnetin-3-O-galactoside and hyperoside. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 53:197–204. doi: 10.1016/j.fct.2012.11.040.
  • Ku, S. K., W. Zhou, W. Lee, M. S. Han, M. Na, and J. S. Bae. 2015. Anti-inflammatory effects of hyperoside in human endothelial cells and in mice. Inflammation 38 (2):784–99. doi: 10.1007/s10753-014-9989-8.
  • Ku, S. K., S. Kwak, O. J. Kwon, and J. S. Bae. 2014. Hyperoside inhibits high-glucose-induced vascular inflammation in vitro and in vivo. Inflammation 37 (5):1389–400. doi: 10.1007/s10753-014-9863-8.
  • Kumari, N., B. S. Dwarakanath, A. Das, and A. N. Bhatt. 2016. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine 37 (9):11553–72. doi: 10.1007/s13277-016-5098-7.
  • Kushner, R. F, and K. W. Sorensen. 2013. Lifestyle medicine: the future of chronic disease management. Current Opinion in Endocrinology, Diabetes, and Obesity 20 (5):389–95. doi: 10.1097/01.med.0000433056.76699.5d.
  • Kwon, S. H., D. R. Pimentel, A. Remondino, D. B. Sawyer, and W. S. Colucci. 2003. H2O2 regulates cardiac myocyte phenotype via concentration-dependent activation of distinct kinase pathways. Journal of Molecular and Cellular Cardiology 35 (6):615–21. doi: 10.1016/S0022-2828(03)00084-1.
  • Kwon, S. H., S. R. Lee, Y. J. Park, M. Ra, Y. Lee, C. Pang, and K. H. Kim. 2019. Suppression of 6-hydroxydopamine-induced oxidative stress by hyperoside via activation of Nrf2/HO-1 signaling in dopaminergic neurons. International Journal of Molecular Sciences 20 (23):5832. doi: 10.3390/ijms20235832.
  • Lee, S. H., J. Y. Lee, Y. I. Kwon, and H. D. Jang. 2017. Anti-osteoclastic activity of artemisia capillaris thunb. Extract depends upon attenuation of osteoclast differentiation and bone resorption-associated acidification due to chlorogenic acid, hyperoside, and scoparone. International Journal of Molecular Sciences 18 (2):322. doi: 10.3390/ijms18020322.
  • Lee, Y. J., S. B. Han, S. Y. Nam, K. W. Oh, and J. T. Hong. 2010. Inflammation and Alzheimer’s disease. Archives of Pharmacal Research 33 (10):1539–56. doi: 10.1007/s12272-010-1006-7.
  • Li, D., Z. Yang, P. Kang, and X. Xie. 2016a. Subcutaneous administration of methotrexate at high doses makes a better performance in the treatment of rheumatoid arthritis compared with oral administration of methotrexate: a systematic review and meta-analysis. Seminars in Arthritis and Rheumatism 45 (6):656–62. doi: 10.1016/j.semarthrit.2015.11.004.
  • Li, F. R., F. X. Yu, S. T. Yao, Y. H. Si, W. Zhang, and L. L. Gao. 2012. Hyperin extracted from Manchurian rhododendron leaf induces apoptosis in human endometrial cancer cells through a mitochondrial pathway. Asian Pacific Journal of Cancer Prevention: APJCP 13 (8):3653–6. doi: 10.7314/apjcp.2012.13.8.3653.
  • Li, H. B., X. Yi, J. M. Gao, X. X. Ying, H. Q. Guan, and J. C. Li. 2008. The mechanism of hyperoside protection of ECV-304 cells against tert-butyl hydroperoxide-induced injury. Pharmacology 82 (2):105–13. doi: 10.1159/000139146.
  • Li, J., X. Li, D. Liu, K. Hamamura, Q. Wan, S. Na, H. Yokota, and P. Zhang. 2019a. eIF2α signaling regulates autophagy of osteoblasts and the development of osteoclasts in OVX mice. Cell Death & Disease 10 (12):921. doi: 10.1038/s41419-019-2159-z.
  • Li, J. P., X. H. Liao, Y. Xiang, A. Yao, R. H. Song, Z. J. Zhang, F. Huang, Z. T. Dai, and T. C. Zhang. 2018. Hyperoside and let-7a-5p synergistically inhibits lung cancer cell proliferation via inducing G1/S phase arrest. Gene 679:232–40. doi: 10.1016/j.gene.2018.09.011.
  • Li, W., M. Liu, Y. F. Xu, Y. Feng, J. P. Che, G. C. Wang, and J. H. Zheng. 2014. Combination of quercetin and hyperoside has anticancer effects on renal cancer cells through inhibition of oncogenic microRNA-27a. Oncology Reports 31 (1):117–24. doi: 10.3892/or.2013.2811.
  • Li, Y., S. Guo, Y. Zhu, H. Yan, D. W. Qian, H. Q. Wang, J. Q. Yu, and J. A. Duan. 2019b. Flowers of Astragalus membranaceus var. mongholicus as a novel high potential by-product: phytochemical characterization and antioxidant activity. Molecules 24 (3):434. doi: 10.3390/molecules24030434.
  • Li, Y., Y. Wang, L. Li, R. Kong, S. Pan, L. Ji, H. Liu, H. Chen, and B. Sun. 2016b. Hyperoside induces apoptosis and inhibits growth in pancreatic cancer via Bcl-2 family and NF-κB signaling pathway both in vitro and in vivo. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine 37 (6):7345–55. doi: 10.1007/s13277-015-4552-2.
  • Li, Z., F. Meng, Y. Zhang, L. Sun, L. Yu, Z. Zhang, S. Peng, and J. Guo. 2016c. Simultaneous quantification of hyperin, reynoutrin and guaijaverin in mice plasma by LC-MS/MS: application to a pharmacokinetic study. Biomedical Chromatography: BMC 30 (7):1124–30. doi: 10.1002/bmc.3660.
  • Li, Z. L., J. Hu, Y. L. Li, F. Xue, L. Zhang, J. Q. Xie, Z. H. Liu, H. Li, D. H. Yi, J. C. Liu, et al. 2013. The effect of hyperoside on the functional recovery of the ischemic/reperfused isolated rat heart: potential involvement of the extracellular signal-regulated kinase 1/2 signaling pathway. Free Radical Biology and Medicine 57:132–40. doi: 10.1016/j.freeradbiomed.2012.12.023.
  • Liaudanskas, M., P. Viškelis, R. Raudonis, D. Kviklys, N. Uselis, and V. Janulis. 2014. Phenolic composition and antioxidant activity of Malus domestica leaves. TheScientificWorldJournal 2014:306217. doi: 10.1155/2014/306217.
  • Liu, B., L. Sun, Q. Liu, C. Gong, Y. Yao, X. Lv, L. Lin, H. Yao, F. Su, D. Li, et al. 2015. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 27 (3):370–81. doi: 10.1016/j.ccell.2015.02.004.
  • Liu, B., Y. Tu, W. He, Y. Liu, W. Wu, Q. Fang, H. Tang, R. Tang, Z. Wan, W. Sun, et al. 2018a. Hyperoside attenuates renal aging and injury induced by D-galactose via inhibiting AMPK-ULK1 signaling-mediated autophagy. Aging 10 (12):4197–212. doi: 10.18632/aging.101723.
  • Liu, C. Y., K. Bai, X. H. Liu, L. M. Zhang, and G. R. Yu. 2018b. Hyperoside protects the blood-brain barrier from neurotoxicity of amyloid beta 1-42. Neural Regeneration Research 13 (11):1974–80. doi: 10.4103/1673-5374.239445.
  • Liu, D. H., F. G. Yuan, S. Q. Hu, F. Diao, Y. P. Wu, Y. Y. Zong, T. Song, C. Li, and G. Y. Zhang. 2013. Endogenous nitric oxide induces activation of apoptosis signal-regulating kinase 1 via S-nitrosylation in rat hippocampus during cerebral ischemia-reperfusion. Neuroscience 229:36–48. doi: 10.1016/j.neuroscience.2012.10.055.
  • Liu, F., Y. Zhao, J. Lu, S. Chen, X. Zhang, and W. Mao. 2019a. Hyperoside inhibits proinflammatory cytokines in human lung epithelial cells infected with Mycoplasma pneumoniae. Molecular and Cellular Biochemistry 453 (1-2):179–86. doi: 10.1007/s11010-018-3443-4.
  • Liu, J., Z. Zhang, L. Yang, Y. Fan, and Y. Liu. 2019b. Molecular structure and spectral characteristics of hyperoside and analysis of its molecular imprinting adsorption properties based on density functional theory. Journal of Molecular Graphics & Modelling 88:228–36. doi: 10.1016/j.jmgm.2019.01.005.
  • Liu, J., Y. Zhang, H. Sheng, C. Liang, H. Liu, J. A. Moran Guerrero, Z. Lu, W. Mao, Z. Dai, X. Liu, et al. 2021. Hyperoside suppresses renal inflammation by regulating macrophage polarization in mice with type 2 diabetes mellitus. Frontiers in Immunology 12:733808. doi: 10.3389/fimmu.2021.733808.
  • Liu, M., X. Ning, R. Li, Z. Yang, X. Yang, S. Sun, and Q. Qian. 2017a. Signalling pathways involved in hypoxia-induced renal fibrosis. Journal of Cellular and Molecular Medicine 21 (7):1248–59. doi: 10.1111/jcmm.13060.
  • Liu, P., H. Kallio, D. Lü, C. Zhou, and B. Yang. 2011. Quantitative analysis of phenolic compounds in Chinese hawthorn (Crataegus spp.) fruits by high performance liquid chromatography-electrospray ionisation mass spectrometry. Food Chemistry 127 (3):1370–7. doi: 10.1016/j.foodchem.2011.01.103.
  • Liu, R. L., Q. J. Xiong, Q. Shu, W. N. Wu, J. Cheng, H. Fu, F. Wang, J. G. Chen, and Z. L. Hu. 2012. Hyperoside protects cortical neurons from oxygen-glucose deprivation-reperfusion induced injury via nitric oxide signal pathway. Brain Research 1469:164–73. doi: 10.1016/j.brainres.2012.06.044.
  • Liu, X., L. Zhu, J. Tan, X. Zhou, L. Xiao, X. Yang, and B. Wang. 2014. Glucosidase inhibitory activity and antioxidant activity of flavonoid compound and triterpenoid compound from Agrimonia Pilosa Ledeb. BMC Complementary and Alternative Medicine 14:12. doi: 10.1186/1472-6882-14-12.
  • Liu, X., D. Wang, S. Y. Wang, X. S. Meng, W. J. Zhang, X. X. Ying, and T. G. Kang. 2010. LC determination and pharmacokinetic study of hyperoside in rat plasma after intravenous administration. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan 130 (6):873–9. doi: 10.1248/yakushi.130.873.
  • Liu, X. M., Y. Liu, C. H. Shan, X. Q. Yang, Q. Zhang, N. Xu, L. Y. Xu, and W. Song. 2022a. Effects of five extraction methods on total content, composition, and stability of flavonoids in jujube. Food Chemistry: X 14:100287. doi: 10.1016/j.fochx.2022.100287.
  • Liu, Y., J. Qian, J. Li, M. Xing, D. Grierson, C. Sun, C. Xu, X. Li, and K. Chen. 2022b. Hydroxylation decoration patterns of flavonoids in horticultural crops: chemistry, bioactivity and biosynthesis. Horticulture Research 9:uhab068. doi: 10.1093/hr/uhab068.
  • Liu, Y. H., G. H. Liu, J. J. Mei, and J. Wang. 2016. The preventive effects of hyperoside on lung cancer in vitro by inducing apoptosis and inhibiting proliferation through Caspase-3 and P53 signaling pathway. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 83:381–91. doi: 10.1016/j.biopha.2016.06.035.
  • Liu, Y., L. Gao, S. Guo, Y. Liu, X. Zhao, R. Li, X. Yan, Y. Li, S. Wang, X. Niu, et al. 2017b. Kaempferol alleviates angiotensin II-induced cardiac dysfunction and interstitial fibrosis in mice. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 43 (6):2253–63. doi: 10.1159/000484304.
  • Liu, Z., G. Liu, X. Liu, and S. Li. 2017c. The effects of hyperoside on apoptosis and the expression of Fas/FasL and survivin in SW579 human thyroid squamous cell carcinoma cell line. Oncology Letters 14 (2):2310–4. doi: 10.3892/ol.2017.6453.
  • Lin, M. T, and M. F. Beal. 2006. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443 (7113):787–95. doi: 10.1038/nature05292.
  • Lü, P. 2016. Inhibitory effects of hyperoside on lung cancer by inducing apoptosis and suppressing inflammatory response via caspase-3 and NF-κB signaling pathway. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 82:216–25. doi: 10.1016/j.biopha.2016.05.006.
  • Lu, S., Z. Liao, X. Lu, D. M. Katschinski, M. Mercola, J. Chen, J. Heller Brown, J. D. Molkentin, J. Bossuyt, and D. M. Bers. 2020. Hyperglycemia acutely increases cytosolic reactive oxygen species via O-linked GlcNAcylation and CaMKII activation in mouse ventricular myocytes. Circulation Research 126 (10):e80–e96. doi: 10.1161/CIRCRESAHA.119.316288.
  • Luc, K., A. Schramm-Luc, T. J. Guzik, and T. P. Mikolajczyk. 2019. Oxidative stress and inflammatory markers in prediabetes and diabetes. Journal of Physiology and Pharmacology 70 (6):809–24. doi: 10.26402/jpp.2019.6.01.
  • Luo, L., Q. Sun, Y. Y. Mao, Y. H. Lu, and R. X. Tan. 2004. Inhibitory effects of flavonoids from Hypericum perforatum on nitric oxide synthase. Journal of Ethnopharmacology 93 (2-3):221–5. doi: 10.1016/j.jep.2004.03.042.
  • Maleš, Z., D. Sarić, and M. Bojić. 2013. Quantitative determination of flavonoids and chlorogenic acid in the leaves of Arbutus unedo L. using thin layer chromatography. Journal of Analytical Methods in Chemistry 2013:385473. doi: 10.1155/2013/385473.
  • Mantovani, A., P. Allavena, A. Sica, and F. Balkwill. 2008. Cancer-related inflammation. Nature 454 (7203):436–44. doi: 10.1038/nature07205.
  • Maresova, P., E. Javanmardi, S. Barakovic, J. Barakovic Husic, S. Tomsone, O. Krejcar, and K. Kuca. 2019. Consequences of chronic diseases and other limitations associated with old age - a scoping review. BMC Public Health 19 (1):1431. doi: 10.1186/s12889-019-7762-5.
  • Maruyama, W., M. Shaomoto-Nagai, Y. Kato, S. Hisaka, T. Osawa, and M. Naoi. 2014. Role of lipid peroxide in the neurodegenerative disorders. Sub-Cellular Biochemistry 77:127–36. doi: 10.1007/978-94-007-7920-4_11.
  • McCarron, R. M., B. Shapiro, J. Rawles, and J. Luo. 2021. Depression. Annals of Internal Medicine 174 (5):ITC65–ITC80. doi: 10.7326/AITC202105180.
  • McGarry, T., M. Biniecka, D. J. Veale, and U. Fearon. 2018. Hypoxia, oxidative stress and inflammation. Free Radical Biology & Medicine 125:15–24. doi: 10.1016/j.freeradbiomed.2018.03.042.
  • McGill, M. R, and H. Jaeschke. 2014. Mechanistic biomarkers in acetaminophen-induced hepatotoxicity and acute liver failure: from preclinical models to patients. Expert Opinion on Drug Metabolism & Toxicology 10 (7):1005–17. doi: 10.1517/17425255.2014.920823.
  • Ménard, C., G. E. Hodes, and S. J. Russo. 2016. Pathogenesis of depression: insights from human and rodent studies. Neuroscience 321:138–62. doi: 10.1016/j.neuroscience.2015.05.053.
  • Menzies, F. M., A. Fleming, A. Caricasole, C. F. Bento, S. P. Andrews, A. Ashkenazi, J. Füllgrabe, A. Jackson, M. Jimenez Sanchez, C. Karabiyik, et al. 2017. Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93 (5):1015–34. doi: 10.1016/j.neuron.2017.01.022.
  • Merelli, A., M. Repetto, A. Lazarowski, and J. Auzmendi. 2021. Hypoxia, oxidative stress, and inflammation: three faces of neurodegenerative diseases. Journal of Alzheimer's Disease: JAD 82 (s1):S109–S126. doi: 10.3233/JAD-201074.
  • Miao, J., X. Li, C. Zhao, X. Gao, Y. Wang, and W. Gao. 2018. Active compounds, antioxidant activity and α-glucosidase inhibitory activity of different varieties of Chaenomeles fruits. Food Chemistry 248:330–9. doi: 10.1016/j.foodchem.2017.12.018.
  • Miranda-Díaz, A. G., L. Pazarín-Villaseñor, F. G. Yanowsky-Escatell, and J. Andrade-Sierra. 2016. Oxidative stress in diabetic nephropathy with early chronic kidney disease. Journal of Diabetes Research 2016:1–7. doi: 10.1155/2016/7047238.
  • Moreira, M. V., S. C. Pereira, B. Guerra-Carvalho, D. F. Carrageta, S. Pinto, A. Barros, B. M. Silva, P. F. Oliveira, and M. G. Alves. 2022. Hyperoside supplementation in preservation media surpasses Vitamin C protection against oxidative stress-induced damages in human spermatozoa. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 56 (S1):1–23. doi: 10.33594/000000487.
  • Mulder, P., H. G. Korth, D. A. Pratt, G. A. DiLabio, L. Valgimigli, G. F. Pedulli, and K. U. Ingold. 2005. Critical re-evaluation of the O-H bond dissociation enthalpy in phenol. The Journal of Physical Chemistry. A 109 (11):2647–55. doi: 10.1021/jp047148f.
  • Mustapha, N., I. Mokdad-Bzéouich, A. Sassi, B. Abed, K. Ghedira, T. Hennebelle, and L. Chekir-Ghedira. 2016. Immunomodulatory potencies of isolated compounds from Crataegus azarolus through their antioxidant activities. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine 37 (6):7967–80. doi: 10.1007/s13277-015-4517-5.
  • Nash, L. A., S. J. Peters, P. J. Sullivan, and W. E. Ward. 2016. Supraphysiological levels of Quercetin glycosides are required to alter mineralization in Saos2 cells. International Journal of Environmental Research and Public Health 13 (5):460. doi: 10.3390/ijerph13050460.
  • Neuenschwander, M., J. Barbaresko, C. R. Pischke, N. Iser, J. Beckhaus, L. Schwingshackl, and S. Schlesinger. 2020. Intake of dietary fats and fatty acids and the incidence of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective observational studies. PLoS Medicine 17 (12):e1003347. doi: 10.1371/journal.pmed.1003347.
  • Niu, C., M. Ma, X. Han, Z. Wang, and H. Li. 2017. Hyperin protects against cisplatin-induced liver injury in mice. Acta Cirurgica Brasileira 32 (8):633–40. doi: 10.1590/s0102-865020170080000005.
  • Olech, M., L. Łyko, and R. Nowak. 2020. Influence of accelerated solvent extraction conditions on the LC-ESI-MS/MS polyphenolic profile, triterpenoid content, and antioxidant and anti-lipoxygenase activity of rhododendron luteum sweet leaves. Antioxidants 9 (9):822. doi: 10.3390/antiox9090822.
  • Oliveira, E., F. Pontes, L. Acho, A. S. do Rosário, B. da Silva, J. de A Bezerra, F. R. Campos, E. S. Lima, and M. B. Machado. 2021. qNMR quantification of phenolic compounds in dry extract of Myrcia multiflora leaves and its antioxidant, anti-AGE, and enzymatic inhibition activities. Journal of Pharmaceutical and Biomedical Analysis 201:114109. doi: 10.1016/j.jpba.2021.114109.
  • Oliveira, T., P. E. Marques, P. Proost, and M. Teixeira. 2018. Neutrophils: a cornerstone of liver ischemia and reperfusion injury. Laboratory Investigation; a Journal of Technical Methods and Pathology 98 (1):51–62. doi: 10.1038/labinvest.2017.90.
  • Orzelska-Górka, J., K. Szewczyk, M. Gawrońska-Grzywacz, E. Kędzierska, E. Głowacka, M. Herbet, J. Dudka, and G. Biała. 2019. Monoaminergic system is implicated in the antidepressant-like effect of hyperoside and protocatechuic acid isolated from Impatiens glandulifera Royle in mice. Neurochemistry International 128:206–14. doi: 10.1016/j.neuint.2019.05.006.
  • Palsamy, P, and S. Subramanian. 2011. Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochimica et Biophysica Acta 1812 (7):719–31. doi: 10.1016/j.bbadis.2011.03.008.
  • Papadopoulou-Marketou, N., S. A. Paschou, N. Marketos, S. Adamidi, S. Adamidis, and C. Kanaka-Gantenbein. 2018. Diabetic nephropathy in type 1 diabetes. Minerva Medica 109 (3):218–28. doi: 10.23736/S0026-4806.17.05496-9.
  • Park, J. Y., X. Han, M. J. Piao, M. C. Oh, P. M. Fernando, K. A. Kang, Y. S. Ryu, U. Jung, I. G. Kim, and J. W. Hyun. 2016. Hyperoside induces endogenous antioxidant system to alleviate oxidative stress. Journal of Cancer Prevention 21 (1):41–7. doi: 10.15430/JCP.2016.21.1.41.
  • Pei, J., A. Chen, L. Zhao, F. Cao, G. Ding, and W. Xiao. 2017. One-pot synthesis of hyperoside by a three-enzyme cascade using a UDP-galactose regeneration system. Journal of Agricultural and Food Chemistry 65 (29):6042–8. doi: 10.1021/acs.jafc.7b02320.
  • Peña-Oyarzun, D., R. Bravo-Sagua, A. Diaz-Vega, L. Aleman, M. Chiong, L. Garcia, C. Bambs, R. Troncoso, M. Cifuentes, E. Morselli, et al. 2018. Autophagy and oxidative stress in non-communicable diseases: a matter of the inflammatory state? Free Radical Biology & Medicine 124:61–78. doi: 10.1016/j.freeradbiomed.2018.05.084.
  • Pereira, G. A., H. S. Arruda, D. R. de Morais, N. M. Peixoto Araujo, and G. M. Pastore. 2020. Mutamba (Guazuma ulmifolia Lam.) fruit as a novel source of dietary fibre and phenolic compounds. Food Chemistry 310:125857. doi: 10.1016/j.foodchem.2019.125857.
  • Piao, M. J., K. A. Kang, R. Zhang, D. O. Ko, Z. H. Wang, H. J. You, H. S. Kim, J. S. Kim, S. S. Kang, and J. W. Hyun. 2008. Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect. Biochimica et Biophysica Acta 1780 (12):1448–57. doi: 10.1016/j.bbagen.2008.07.012.
  • Place, D. E., R. Malireddi, J. Kim, P. Vogel, M. Yamamoto, and T. D. Kanneganti. 2021. Osteoclast fusion and bone loss are restricted by interferon inducible guanylate binding proteins. Nature Communications 12 (1):496. doi: 10.1038/s41467-020-20807-8.
  • Prenner, L., A. Sieben, K. Zeller, D. Weiser, and H. Häberlein. 2007. Reduction of high-affinity beta2-adrenergic receptor binding by hyperforin and hyperoside on rat C6 glioblastoma cells measured by fluorescence correlation spectroscopy. Biochemistry 46 (17):5106–13. doi: 10.1021/bi6025819.
  • Pytka, K., K. Podkowa, A. Rapacz, A. Podkowa, E. Żmudzka, A. Olczyk, J. Sapa, and B. Filipek. 2016. The role of serotonergic, adrenergic and dopaminergic receptors in antidepressant-like effect. Pharmacological Reports: PR 68 (2):263–74. doi: 10.1016/j.pharep.2015.08.007.
  • Qi, X. C., B. Li, W. L. Wu, H. C. Liu, and Y. P. Jiang. 2020. Protective effect of hyperoside against hydrogen peroxide-induced dysfunction and oxidative stress in osteoblastic MC3T3-E1 cells. Artificial Cells, Nanomedicine, and Biotechnology 48 (1):377–83. doi: 10.1080/21691401.2019.1709851.
  • Qiu, J., T. Zhang, X. Zhu, C. Yang, Y. Wang, N. Zhou, B. Ju, T. Zhou, G. Deng, and C. Qiu. 2019. Hyperoside induces breast cancer cells apoptosis via ROS-mediated NF-κB signaling pathway. International Journal of Molecular Sciences 21 (1):131. doi: 10.3390/ijms21010131.
  • Rainha, N., K. Koci, A. V. Coelho, E. Lima, J. Baptista, and M. Fernandes-Ferreira. 2013. HPLC-UV-ESI-MS analysis of phenolic compounds and antioxidant properties of Hypericum undulatum shoot cultures and wild-growing plants. Phytochemistry 86:83–91. doi: 10.1016/j.phytochem.2012.10.006.
  • Ramachandran, A, and H. Jaeschke. 2019. Acetaminophen hepatotoxicity. Seminars in Liver Disease 39 (2):221–34. doi: 10.1055/s-0039-1679919.
  • Rapa, S. F., B. R. Di Iorio, P. Campiglia, A. Heidland, and S. Marzocco. 2019. Inflammation and oxidative stress in chronic kidney disease-potential therapeutic role of minerals, vitamins and plant-derived metabolites. International Journal of Molecular Sciences 21 (1):263. doi: 10.3390/ijms21010263.
  • Reddy, K. S. 2016. Global burden of disease study 2015 provides GPS for global health 2030. Lancet (London, England) 388 (10053):1448–9. doi: 10.1016/S0140-6736(16)31743-3.
  • Ren, H., R. Han, X. Liu, L. Wang, R. C. Koehler, and J. Wang. 2021. Nrf2-BDNF-TrkB pathway contributes to cortical hemorrhage-induced depression, but not sex differences. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism 41 (12):3288–301. doi: 10.1177/0271678X211029060.
  • Ribeiro, P., P. A. Andrade, H. Hermsdorff, C. A. Dos Santos, R. Cotta, J. Estanislau, A. Campos, and C. Rosa. 2019. Dietary non-nutrients in the prevention of non-communicable diseases: potentially related mechanisms. Nutrition (Burbank, Los Angeles County, Calif.) 66:22–8. doi: 10.1016/j.nut.2019.03.016.
  • Rohini, A., N. Agrawal, C. N. Koyani, and R. Singh. 2010. Molecular targets and regulators of cardiac hypertrophy. Pharmacological Research 61 (4):269–80. doi: 10.1016/j.phrs.2009.11.012.
  • Röhl, C., E. Armbrust, E. Herbst, A. Jess, M. Gülden, E. Maser, G. Rimbach, and C. Bösch-Saadatmandi. 2010. Mechanisms involved in the modulation of astroglial resistance to oxidative stress induced by activated microglia: antioxidative systems, peroxide elimination, radical generation, lipid peroxidation. Neurotoxicity Research 17 (4):317–31. doi: 10.1007/s12640-009-9108-z.
  • Ryan, K. G., E. E. Swinny, K. R. Markham, and C. Winefield. 2002. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochemistry 59 (1):23–32. doi: 10.1016/S0031-9422(01)00404-6.
  • Sabri, A., H. H. Hughie, and P. A. Lucchesi. 2003. Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxidants & Redox Signaling 5 (6):731–40. doi: 10.1089/152308603770380034.
  • Samsu, N. 2021. Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. BioMed Research International 2021:1–17. doi: 10.1155/2021/1497449.
  • Sarikurkcu, C., M. Locatelli, A. Tartaglia, V. Ferrone, A. M. Juszczak, M. S. Ozer, B. Tepe, and M. Tomczyk. 2020. Enzyme and biological activities of the water extracts from the plants Aesculus hippocastanum, Olea europaea and Hypericum perforatum that are used as folk remedies in turkey. Molecules 25 (5):1202. doi: 10.3390/molecules25051202.
  • Sarikurkcu, C., R. T. Sarikurkcu, and B. Tepe. 2021. Campanula macrostachya: biological activity and identification of phenolics using a liquid chromatography electrospray ionization tandem mass spectrometry system. Environmental Science and Pollution Research International 28 (17):21812–22. doi: 10.1007/s11356-020-11695-y.
  • Sarker, U., M. N. Hossain, M. A. Iqbal, and S. Oba. 2020. Bioactive components and radical scavenging activity in selected advance lines of salt-tolerant vegetable amaranth. Frontiers in Nutrition 7:587257. doi: 10.3389/fnut.2020.587257.
  • Seyoum, A., K. Asres, and F. K. El-Fiky. 2006. Structure-radical scavenging activity relationships of flavonoids. Phytochemistry 67 (18):2058–70. doi: 10.1016/j.phytochem.2006.07.002.
  • Shen, B., N. Wu, C. Shen, F. Zhang, Y. Wu, P. Xu, L. Zhang, W. Wu, Y. Lu, J. Han, et al. 2016. Hyperoside nanocrystals for HBV treatment: process optimization, in vitro and in vivo evaluation. Drug Development and Industrial Pharmacy 42 (11):1772–81. doi: 10.3109/03639045.2016.1173051.
  • Shen, Y., Y. Guan, X. Song, J. He, Z. Xie, Y. Zhang, H. Zhang, and D. Tang. 2019. Polyphenols extract from lotus seedpod (Nelumbo nucifera Gaertn.): phenolic compositions, antioxidant, and antiproliferative activities. Food Science & Nutrition 7 (9):3062–70. doi: 10.1002/fsn3.1165.
  • Shi, N., X. Mei, and S. Y. Chen. 2019. Smooth muscle cells in vascular remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology 39 (12):e247–e252. doi: 10.1161/ATVBAHA.119.312581.
  • Shi, Y., X. Qiu, M. Dai, X. Zhang, and G. Jin. 2019. Hyperoside attenuates hepatic ischemia-reperfusion injury by suppressing oxidative stress and inhibiting apoptosis in rats. Transplantation Proceedings 51 (6):2051–9. doi: 10.1016/j.transproceed.2019.04.066.
  • Singh, A., R. Kukreti, L. Saso, and S. Kukreti. 2019. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 24 (8):1583. doi: 10.3390/molecules24081583.
  • Singh, S. S., S. N. Rai, H. Birla, W. Zahra, A. S. Rathore, and S. P. Singh. 2020. NF-κB-mediated neuroinflammation in Parkinson's disease and potential therapeutic effect of polyphenols. Neurotoxicity Research 37 (3):491–507. doi: 10.1007/s12640-019-00147-2.
  • Siwik, D. A., P. J. Pagano, and W. S. Colucci. 2001. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. American Journal of Physiology. Cell Physiology 280 (1):C53–C60. doi: 10.1152/ajpcell.2001.280.1.C53.
  • Su, L. J., J. H. Zhang, H. Gomez, R. Murugan, X. Hong, D. Xu, F. Jiang, and Z. Y. Peng. 2019. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxidative Medicine and Cellular Longevity 2019:5080843. doi: 10.1155/2019/5080843.
  • Sun, B., R. Zhang, Z. Liang, A. Fan, and D. Kang. 2021a. Hyperoside attenuates non-alcoholic fatty liver disease through targeting Nr4A1 in macrophages. International Immunopharmacology 94:107438. doi: 10.1016/j.intimp.2021.107438.
  • Sun, K., J. Luo, X. Jing, W. Xiang, J. Guo, X. Yao, S. Liang, F. Guo, and T. Xu. 2021b. Hyperoside ameliorates the progression of osteoarthritis: an in vitro and in vivo study. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 80:153387. doi: 10.1016/j.phymed.2020.153387.
  • Sun, P., J. C. Quan, S. Wang, M. Zhuang, Z. Liu, X. Guan, G. Y. Wang, H. Y. Wang, and X. S. Wang. 2020a. lncRNA-PACER upregulates COX-2 and PGE2 through the NF-κB pathway to promote the proliferation and invasion of colorectal-cancer cells. Gastroenterology Report 9 (3):257–68. doi: 10.1093/gastro/goaa060.
  • Sun, Q., X. Yao, Y. Ning, W. Zhang, G. Zhou, and Y. Dong. 2013. Overexpression of response gene to complement 32 (RGC32) promotes cell invasion and induces epithelial-mesenchymal transition in lung cancer cells via the NF-κB signaling pathway. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine 34 (5):2995–3002. doi: 10.1007/s13277-013-0864-2.
  • Sun, T., Y. Liu, M. Li, H. Yu, and H. Piao. 2020b. Administration with hyperoside sensitizes breast cancer cells to paclitaxel by blocking the TLR4 signaling. Molecular and Cellular Probes 53:101602. doi: 10.1016/j.mcp.2020.101602.
  • Szopa, A., M. Dziurka, S. Granica, M. Klimek-Szczykutowicz, P. Kubica, A. Warzecha, K. Jafernik, and H. Ekiert. 2020. Schisandra rubriflora plant material and in vitro microshoot cultures as rich sources of natural phenolic antioxidants. Antioxidants 9 (6):488. doi: 10.3390/antiox9060488.
  • Tabas, I., G. Garcia-Cardena, and G. K. Owens. 2015. Recent insights into the cellular biology of atherosclerosis. The Journal of Cell Biology 209 (1):13–22. doi: 10.1083/jcb.201412052.
  • Tan, L., D. D. Geng, F. Z. Hu, and Q. Dong. 2016. Rapid identification and quantification of natural antioxidants in the seeds of Rhubarb from different habitats in China using accelerated solvent extraction and HPLC-DAD-ESI-MSn-DPPH assay. Journal of Chromatographic Science 54 (1):48–57. doi: 10.1093/chromsci/bmv105.
  • Tang, S, and W. H. Yiu. 2020. Innate immunity in diabetic kidney disease. Nature Reviews. Nephrology 16 (4):206–22. doi: 10.1038/s41581-019-0234-4.
  • Tian, L., X. Shi, L. Yu, J. Zhu, R. Ma, and X. Yang. 2012. Chemical composition and hepatoprotective effects of polyphenol-rich extract from Houttuynia cordata tea. Journal of Agricultural and Food Chemistry 60 (18):4641–8. doi: 10.1021/jf3008376.
  • Tripathi, Y. B, and D. Yadav. 2013. Diabetic nephropathy: causes and managements. Recent Patents on Endocrine, Metabolic & Immune Drug Discovery 7 (1):57–64. doi: 10.2174/1872214811307010057.
  • Ułamek-Kozioł, M., W. Furmaga-Jabłońska, S. Januszewski, J. Brzozowska, M. Sciślewska, M. Jabłoński, and R. Pluta. 2013. Neuronal autophagy: self-eating or self-cannibalism in Alzheimer's disease. Neurochemical Research 38 (9):1769–73. doi: 10.1007/s11064-013-1082-4.
  • Umbro, I., F. Baratta, F. Angelico, and M. D. Ben. 2021. Nonalcoholic fatty liver disease and the kidney: a review. Biomedicines 9 (10):1370. doi: 10.3390/biomedicines9101370.
  • Unwin, N, and K. G. M. M. Alberti. 2006. Chronic non-communicable diseases. Annals of Tropical Medicine & Parasitology 100 (5-6):455–64. doi: 10.1179/136485906X97453.
  • Valko, M., K. Jomova, C. J. Rhodes, K. Kuča, and K. Musílek. 2016. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Archives of Toxicology 90 (1):1–37. doi: 10.1007/s00204-015-1579-5.
  • van Oostrom, S. H., R. Gijsen, I. Stirbu, J. C. Korevaar, F. G. Schellevis, H. S. Picavet, and N. Hoeymans. 2016. Time trends in prevalence of chronic diseases and multimorbidity not only due to aging: data from general practices and health surveys. PLoS One 11 (8):e0160264. doi: 10.1371/journal.pone.0160264.
  • Vanhoutte, P. M., H. Shimokawa, M. Feletou, and E. H. Tang. 2017. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiologica (Oxford, England) 219 (1):22–96. doi: 10.1111/apha.12646.
  • Vaváková, M., Z. Ďuračková, and J. Trebatická. 2015. Markers of oxidative stress and neuroprogression in depression disorder. Oxidative Medicine and Cellular Longevity 2015:898393. doi: 10.1155/2015/898393.
  • Verma, N., G. Amresh, P. K. Sahu, N. Mishra, C. Rao, and A. P. Singh. 2013. Pharmacological evaluation of hyperin for antihyperglycemic activity and effect on lipid profile in diabetic rats. Indian Journal of Experimental Biology 51 (1):65–72.
  • Villanueva-Paz, M., L. Morán, N. López-Alcántara, C. Freixo, R. J. Andrade, M. I. Lucena, and F. J. Cubero. 2021. Oxidative stress in drug-induced liver injury (DILI): from mechanisms to biomarkers for use in clinical practice. Antioxidants 10 (3):390. doi: 10.3390/antiox10030390.
  • Wan, Y., J. Xia, J. F. Xu, L. Chen, Y. Yang, J. J. Wu, F. Tang, H. Ao, and C. Peng. 2022. Nuciferine, an active ingredient derived from lotus leaf, lights up the way for the potential treatment of obesity and obesity-related diseases. Pharmacological Research 175:106002. doi: 10.1016/j.phrs.2021.106002.
  • Wang, D., F. Chen, Z. Han, Z. Yin, X. Ge, and P. Lei. 2021a. Relationship between amyloid-β deposition and blood-brain barrier dysfunction in Alzheimer's disease. Frontiers in Cellular Neuroscience 15:695479. doi: 10.3389/fncel.2021.695479.
  • Wang, H., J. Luo, Y. Zhang, D. He, R. Jiang, X. Xie, Q. Yang, K. Li, J. Xie, and J. Zhang. 2020a. Phospholipid/hydroxypropyl-β-cyclodextrin supramolecular complexes are promising candidates for efficient oral delivery of curcuminoids. International Journal of Pharmaceutics 582:119301. doi: 10.1016/j.ijpharm.2020.119301.
  • Wang, H., O. Bloom, M. Zhang, J. M. Vishnubhakat, M. Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L. Borovikova, et al. 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science (New York, N.Y.) 285 (5425):248–51. doi: 10.1126/science.285.5425.248.
  • Wang, K., C. Lu, T. Wang, C. Qiao, L. Lu, D. Wu, M. Lu, R. Chen, L. Fan, and J. Tang. 2022. Hyperoside suppresses NLRP3 inflammasome in Parkinson's disease via pituitary adenylate cyclase-activating polypeptide. Neurochemistry International 152:105254. doi: 10.1016/j.neuint.2021.105254.
  • Wang, K. J., H. J. Li, and Y. M. Zhao. 2005. Phase-transfer-catalyzed synthesis of hirsutrin and hyperin. Pharmaceutical Journal of Chinese People's Liberation Army 21 (2):85–7.
  • Wang, L., H. L. Wang, T. T. Liu, and H. Y. Lan. 2021b. TGF-Beta as a master regulator of diabetic nephropathy. International Journal of Molecular Sciences 22 (15):7881. doi: 10.3390/ijms22157881.
  • Wang, L., Z. Yue, M. Guo, L. Fang, L. Bai, X. Li, Y. Tao, S. Wang, Q. Liu, D. Zhi, et al. 2016. Dietary flavonoid hyperoside induces apoptosis of activated human LX-2 hepatic stellate cell by suppressing canonical NF-κB signaling. BioMed Research International 2016:1068528. 2016a doi: 10.1155/2016/1068528.
  • Wang, R., Y. Ma, S. Zhan, G. Zhang, L. Cao, X. Zhang, T. Shi, and W. Chen. 2020b. B7-H3 promotes colorectal cancer angiogenesis through activating the NF-κB pathway to induce VEGFA expression. Cell Death & Disease 11 (1):55. doi: 10.1038/s41419-020-2252-3.
  • Wang, S., F. Sheng, L. Zou, J. Xiao, and P. Li. 2021c. Hyperoside attenuates non-alcoholic fatty liver disease in rats via cholesterol metabolism and bile acid metabolism. Journal of Advanced Research 34:109–22. doi: 10.1016/j.jare.2021.06.001.
  • Wang, S. S., D. M. Wang, W. J. Pu, and D. W. Li. 2013. Phytochemical profiles, antioxidant and antimicrobial activities of three Potentilla species. BMC Complementary and Alternative Medicine 13:321. doi: 10.1186/1472-6882-13-321.
  • Wang, S. Y., J. Y. Chai, W. J. Zhang, X. Liu, Y. DU, Z. Z. Cheng, X. X. Ying, and T. G. Kang. 2010. HPLC determination of five polyphenols in rat plasma after intravenous administration of hawthorn leaves extract and its application to pharmacokinetic study. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan 130 (11):1603–13. doi: 10.1248/yakushi.130.1603.
  • Wang, X., G. Fan, F. Wei, Y. Bu, and W. Huang. 2019. Hyperoside protects rat ovarian granulosa cells against hydrogen peroxide-induced injury by sonic hedgehog signaling pathway. Chemico-Biological Interactions 310:108759. doi: 10.1016/j.cbi.2019.108759.
  • Wang, X., M. Li, F. Liu, F. Peng, F. Li, X. Lou, Y. Jin, J. Wang, and H. Xu. 2021d. Fabrication and characterization of zein-tea polyphenols-pectin ternary complex nanoparticles as an effective hyperoside delivery system: formation mechanism, physicochemical stability, and in vitro release property. Food Chemistry 364:130335. doi: 10.1016/j.foodchem.2021.130335.
  • Wang, X., Y. Liu, L. Xiao, L. Li, X. Zhao, L. Yang, N. Chen, L. Gao, and J. Zhang. 2018. Hyperoside protects against pressure overload-induced cardiac remodeling via the AKT signaling pathway. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 51 (2):827–41. doi: 10.1159/000495368.
  • Wang, Y., H. Q. Lin, C. Y. Xiao, W. K. Law, J. S. Hu, T. M. Ip, and D. C. C. Wan. 2016b. Using molecular docking screening for identifying hyperoside as an inhibitor of fatty acid binding protein 4 from a natural product database. Journal of Functional Foods 20:159–70. doi: 10.1016/j.jff.2015.10.031.
  • Wei, A., H. Xiao, G. Xu, X. Yu, J. Guo, Z. Jing, S. Shi, and Y. Song. 2020a. Hyperoside protects human umbilical vein endothelial cells against anticardiolipin antibody-induced injury by activating autophagy. Frontiers in Pharmacology 11:762. doi: 10.3389/fphar.2020.00762.
  • Wei, A., Y. Song, T. Ni, H. Xiao, Y. Wan, X. Ren, H. Li, and G. Xu. 2020b. Hyperoside attenuates pregnancy loss through activating autophagy and suppressing inflammation in a rat model. Life Sciences 254:117735. doi: 10.1016/j.lfs.2020.117735.
  • Wen, K., X. Fang, J. Yang, Y. Yao, K. S. Nandakumar, M. L. Salem, and K. Cheng. 2021. Recent research on flavonoids and their biomedical applications. Current Medicinal Chemistry 28 (5):1042–66. doi: 10.2174/0929867327666200713184138.
  • White, E., C. Karp, A. M. Strohecker, Y. Guo, and R. Mathew. 2010. Role of autophagy in suppression of inflammation and cancer. Current Opinion in Cell Biology 22 (2):212–7. doi: 10.1016/j.ceb.2009.12.008.
  • Wierońska, J. M., P. Cieślik, and L. Kalinowski. 2021. Nitric oxide-dependent pathways as critical factors in the consequences and recovery after brain ischemic hypoxia. Biomolecules 11 (8):1097. doi: 10.3390/biom11081097.
  • World Health Organization. 2021. World health statistics 2021: Monitoring health for the SDGs, sustainable development goals. Geneva: World Health Organization.
  • Wu, L., Q. Li, S. Liu, X. An, Z. Huang, B. Zhang, Y. Yuan, and C. Xing. 2019. Protective effect of hyperoside against renal ischemia-reperfusion injury via modulating mitochondrial fission, oxidative stress, and apoptosis. Free Radical Research 53 (7):727–36. doi: 10.1080/10715762.2019.1623883.
  • Wu, L., X. Xiong, X. Wu, Y. Ye, Z. Jian, Z. Zhi, and L. Gu. 2020. Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Frontiers in Molecular Neuroscience 13:28. doi: 10.3389/fnmol.2020.00028.
  • Wu, M., J. Chen, Y. Wang, J. Hu, C. Liu, C. Feng, and X. Zeng. 2015. URGCP/URG4 promotes apoptotic resistance in bladder cancer cells by activating NF-κB signaling. Oncotarget 6 (31):30887–901. doi: 10.18632/oncotarget.5134.
  • Wu, Y., X. Jiang, S. Zhang, X. Dai, Y. Liu, H. Tan, L. Gao, and T. Xia. 2016. Quantification of flavonol glycosides in Camellia sinensis by MRM mode of UPLC-QQQ-MS/MS. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1017-1018:10–7. doi: 10.1016/j.jchromb.2016.01.064.
  • Xie, W., Z. Jiang, J. Wang, X. Zhang, and M. F. Melzig. 2016. Protective effect of hyperoside against acetaminophen (APAP) induced liver injury through enhancement of APAP clearance. Chemico-Biological Interactions 246:11–9. doi: 10.1016/j.cbi.2016.01.004.
  • Xin, W., X. Li, X. Lu, K. Niu, and J. Cai. 2011. Involvement of endoplasmic reticulum stress-associated apoptosis in a heart failure model induced by chronic myocardial ischemia. International Journal of Molecular Medicine 27 (4):503–9. doi: 10.3892/ijmm.2011.612.
  • Xing, H., R. Fu, C. Cheng, Y. Cai, X. Wang, D. Deng, X. Gong, and J. Chen. 2020. Hyperoside protected against oxidative stress-induced liver injury via the PHLPP2-AKT-GSK-3β signaling pathway in vivo and in vitro. Frontiers in Pharmacology 11:1065. doi: 10.3389/fphar.2020.01065.
  • Xing, H. Y., Y. Liu, J. H. Chen, F. J. Sun, H. Q. Shi, and P. Y. Xia. 2011. Hyperoside attenuates hydrogen peroxide-induced L02 cell damage via MAPK-dependent Keap1-Nrf2-ARE signaling pathway. Biochemical and Biophysical Research Communications 410 (4):759–65. doi: 10.1016/j.bbrc.2011.06.046.
  • Xing, H. Y., Y. Q. Cai, X. F. Wang, L. L. Wang, P. Li, G. Y. Wang, and J. H. Chen. 2015. The cytoprotective effect of hyperoside against oxidative stress is mediated by the Nrf2-ARE signaling pathway through GSK-3β inactivation. PloS One 10 (12):e0145183. doi: 10.1371/journal.pone.0145183.
  • Xu, T., X. Wu, Z. Zhou, Y. Ye, C. Yan, N. Zhuge, and J. Yu. 2020. Hyperoside ameliorates periodontitis in rats by promoting osteogenic differentiation of BMSCs via activation of the NF-κB pathway. FEBS Open Bio 10 (9):1843–55. doi: 10.1002/2211-5463.12937.
  • Xu, S., I. Ilyas, P. J. Little, H. Li, D. Kamato, X. Zheng, S. Luo, Z. Li, P. Liu, J. Han, et al. 2021. Endothelial dysfunction in atherosclerotic cardiovascular diseases and beyond: from mechanism to pharmacotherapies. Pharmacological Reviews 73 (3):924–67. doi: 10.1124/pharmrev.120.000096.
  • Yan, Y., K. Wang, X. Tang, J. F. Gao, and B. Y. Wen. 2019. Phytochemicals protect L02 cells against hepatotoxicity induced by emodin via the Nrf2 signaling pathway. Toxicology Research 8 (6):1028–34. doi: 10.1039/c9tx00220k.
  • Yang, B., Q. Yang, X. Yang, H. B. Yan, and Q. P. Lu. 2016. Hyperoside protects human primary melanocytes against H2O2-induced oxidative damage. Molecular Medicine Reports 13 (6):4613–9. doi: 10.3892/mmr.2016.5107.
  • Yang, J., D. Qian, J. Guo, S. Jiang, E. X. Shang, J. A. Duan, and J. Xu. 2013. Identification of the major metabolites of hyperoside produced by the human intestinal bacteria using the ultra performance liquid chromatography/quadrupole-time-of-flight mass spectrometry. Journal of Ethnopharmacology 147 (1):174–9. doi: 10.1016/j.jep.2013.02.029.
  • Yang, L., Y. Shen, Y. Li, S. Li, S. Yu, and Wang, L. 2017a. Hyperoside attenuates dextran sulfate sodium-induced colitis in mice possibly via activation of the Nrf2 signalling pathway. Journal of Inflammation (London, England) 14:25. doi: 10.1186/s12950-017-0172-5.
  • Yang, L., Q. Chen, F. Wang, and G. Zhang. 2011. Antiosteoporotic compounds from seeds of Cuscuta chinensis. Journal of Ethnopharmacology 135 (2):553–60. doi: 10.1016/j.jep.2011.03.056.
  • Yang, P. Y., P. C. Li, and B. Feng. 2019. Protective effects of gliclazide on high glucose and AGEs-induced damage of glomerular mesangial cells and renal tubular epithelial cells via inhibiting RAGE-p22phox-NF-kB pathway. European Review for Medical and Pharmacological Sciences 23 (20):9099–107. doi: 10.26355/eurrev_201910_19313.
  • Yang, Q., Z. Song, B. Dong, L. Niu, H. Cao, H. Li, T. Du, T. Liu, W. Yang, D. Meng, et al. 2021. Hyperoside regulates its own biosynthesis via MYB30 in promoting reproductive development and seed set in okra. Plant Physiology 185 (3):951–68. doi: 10.1093/plphys/kiaa068.
  • Yang, Y., J. Tantai, Y. Sun, C. Zhong, and Z. Li. 2017b. Effect of hyperoside on the apoptosis of A549 human non‑small cell lung cancer cells and the underlying mechanism. Molecular Medicine Reports 16 (5):6483–8. doi: 10.3892/mmr.2017.7453.
  • Yang, Y., Y. Sun, X. Guo, C. Zhong, and Z. Li. 2017c. Hyperoside inhibited the migration and invasion of lung cancer cells through the upregulation of PI3K/AKT and p38 MAPK pathways. International Journal of Clinical and Experimental Pathology 10 (9):9382–90.
  • Yao, L. H., Y. M. Jiang, J. Shi, F. A. Tomás-Barberán, N. Datta, R. Singanusong, and S. S. Chen. 2004. Flavonoids in food and their health benefits. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 59 (3):113–22. doi: 10.1007/s11130-004-0049-7.
  • Yaribeygi, H., T. Sathyapalan, S. L. Atkin, and A. Sahebkar. 2020. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxidative Medicine and Cellular Longevity 2020:8609213. doi: 10.1155/2020/8609213.
  • Ye, P., X. L. Yang, X. Chen, and C. Shi. 2017. Hyperoside attenuates OVA-induced allergic airway inflammation by activating Nrf2. International Immunopharmacology 44:168–73. doi: 10.1016/j.intimp.2017.01.003.
  • Yu, L. M., X. Dong, J. Zhang, Z. Li, X. D. Xue, H. J. Wu, Z. L. Yang, Y. Yang, and H. S. Wang. 2019. Naringenin attenuates myocardial ischemia-reperfusion injury via cGMP-PKGIα signaling and in vivo and in vitro studies. Oxidative Medicine and Cellular Longevity 2019:7670854. doi: 10.1155/2019/7670854.
  • Yuan, W., J. Wang, X. An, M. Dai, Z. Jiang, L. Zhang, S. Yu, and X. Huang. 2021. UPLC-MS/MS method for the determination of hyperoside and application to pharmacokinetics study in rat after different administration routes. Chromatographia 1 84 (3):249–56. Advance online publication. doi: 10.1007/s10337-020-04002-x.
  • Yurdagul, A., Jr, J. Chen, S. D. Funk, P. Albert, C. G. Kevil, and A. W. Orr. 2013. Altered nitric oxide production mediates matrix-specific PAK2 and NF-κB activation by flow. Molecular Biology of the Cell 24 (3):398–408. doi: 10.1091/mbc.E12-07-0513.
  • Zagrean-Tuza, C., A. C. Mot, T. Chmiel, A. Bende, and I. Turcu. 2020. Sugar matters: sugar moieties as reactivity-tuning factors in quercetin O-glycosides. Food & Function 11 (6):5293–307. doi: 10.1039/d0fo00319k.
  • Zeng, K. W., X. M. Wang, H. Ko, H. C. Kwon, J. W. Cha, and H. O. Yang. 2011. Hyperoside protects primary rat cortical neurons from neurotoxicity induced by amyloid β-protein via the PI3K/AKT/Bad/Bcl(XL)-regulated mitochondrial apoptotic pathway. European Journal of Pharmacology 672 (1-3):45–55. doi: 10.1016/j.ejphar.2011.09.177.
  • Zhang, F., F. B. Zhu, J. J. Li, P. P. Zhang, and J. F. Zhu. 2015. Hyperoside enhances the suppressive effects of arsenic trioxide on acute myeloid leukemia cells. International Journal of Clinical and Experimental Medicine 8 (9):15290–5.
  • Zhang, H. Y., Y. M. Sun, and X. L. Wang. 2003. Substituent effects on O–H bond dissociation enthalpies and ionization potentials of catechols: a DFT study and its implications in the rational design of phenolic antioxidants and elucidation of structure-activity relationships for flavonoid antioxidants. Chemistry (Weinheim an Der Bergstrasse, Germany) 9 (2):502–8. doi: 10.1002/chem.200390052.
  • Zhang, J., H. Fu, Y. Xu, Y. Niu, and X. An. 2016a. Hyperoside reduces albuminuria in diabetic nephropathy at the early stage through ameliorating renal damage and podocyte injury. Journal of Natural Medicines 70 (4):740–8. doi: 10.1007/s11418-016-1007-z.
  • Zhang, L., Q. Dai, L. Hu, H. Yu, J. Qiu, J. Zhou, M. Long, S. Zhou, and K. Zhang. 2020. Hyperoside alleviates high glucose-induced proliferation of mesangial cells through the inhibition of the ERK/CREB/miRNA-34a signaling pathway. International Journal of Endocrinology 2020:1361924. doi: 10.1155/2020/1361924.
  • Zhang, L., S. He, F. Yang, H. Yu, W. Xie, Q. Dai, D. Zhang, X. Liu, S. Zhou, and K. Zhang. 2016b. Hyperoside ameliorates glomerulosclerosis in diabetic nephropathy by downregulating miR-21. Canadian Journal of Physiology and Pharmacology 94 (12):1249–56. doi: 10.1139/cjpp-2016-0066.
  • Zhang, Q, and X. F. Zhang. 2019. Hyperoside decreases the apoptosis and autophagy rates of osteoblast MC3T3‑E1 cells by regulating TNF‑like weak inducer of apoptosis and the p38mitogen activated protein kinase pathway. Molecular Medicine Reports 19 (1):41–50. doi: 10.3892/mmr.2018.9622.
  • Zhang, W., W. Zhang, X. Zhang, Q. Lu, H. Cai, and W. S. Tan. 2018a. Hyperoside promotes ex vivo expansion of hematopoietic stem/progenitor cells derived from cord blood by reducing intracellular ROS level. Process Biochemistry 72:143–51. doi: 10.1016/j.procbio.2018.06.016.
  • Zhang, X. N., J. M. Li, Q. Yang, B. Feng, S. B. Liu, Z. H. Xu, Y. Y. Guo, and M. G. Zhao. 2010. Anti-apoptotic effects of hyperoside via inhibition of NR2B-containing NMDA receptors. Pharmacological Reports: PR 62 (5):949–55. doi: 10.1016/S1734-1140(10)70356-X.
  • Zhang, Y., H. Dong, J. Zhang, and L. Zhang. 2017a. Inhibitory effect of hyperoside isolated from Zanthoxylum bungeanum leaves on SW620 human colorectal cancer cells via induction of the p53 signaling pathway and apoptosis. Molecular Medicine Reports 16 (2):1125–32. doi: 10.3892/mmr.2017.6710.
  • Zhang, Y., M. Wang, H. Dong, X. Yu, and J. Zhang. 2018b. Anti-hypoglycemic and hepatocyte-protective effects of hyperoside from Zanthoxylum bungeanum leaves in mice with high-carbohydrate/high-fat diet and alloxan-induced diabetes. International Journal of Molecular Medicine 41 (1):77–86. doi: 10.3892/ijmm.2017.3211.
  • Zhang, Y., X. Yu, M. Wang, Y. Ding, H. Guo, J. Liu, and Y. Cheng. 2021. Hyperoside from Z. bungeanum leaves restores insulin secretion and mitochondrial function by regulating pancreatic cellular redox status in diabetic mice. Free Radical Biology & Medicine 162:412–22. doi: 10.1016/j.freeradbiomed.2020.10.320.
  • Zhang, Y., Z. Luo, and D. Wang. 2015. Efficient quantification of the phenolic profiles of Zanthoxylum bungeanum leaves and correlation between chromatographic fingerprint and antioxidant activity. Natural Product Research 29 (21):2024–9. doi: 10.1080/14786419.2015.1015018.
  • Zhang, Z., D. Zhang, B. Du, and Z. Chen. 2017b. Hyperoside inhibits the effects induced by oxidized low-density lipoprotein in vascular smooth muscle cells via oxLDL-LOX-1-ERK pathway. Molecular and Cellular Biochemistry 433 (1-2):169–76. doi: 10.1007/s11010-017-3025-x.
  • Zhang, Z., M. Zhang, Y. Li, S. Liu, S. Ping, J. Wang, F. Ning, F. Xie, and C. Li. 2013. Simvastatin inhibits the additive activation of ERK1/2 and proliferation of rat vascular smooth muscle cells induced by combined mechanical stress and oxLDL through LOX-1 pathway. Cellular Signalling 25 (1):332–40. doi: 10.1016/j.cellsig.2012.10.006.
  • Zhao, B. 2020. Intrinsic restriction of TNF-mediated inflammatory osteoclastogenesis and bone resorption. Frontiers in Endocrinology 11:583561. doi: 10.3389/fendo.2020.583561.
  • Zhao, B. 2018. Does TNF promote or restrain osteoclastogenesis and inflammatory bone resorption? Critical Reviews in Immunology 38 (4):253–61. doi: 10.1615/CritRevImmunol.2018025874.
  • Zhao, C., J. Cheng, C. Li, S. Li, Y. Tian, T. Wang, and Y. Fu. 2021. Quality evaluation of Acanthopanax senticosus via quantitative analysis of multiple components by single marker and multivariate data analysis. Journal of Pharmaceutical and Biomedical Analysis 201:114090. doi: 10.1016/j.jpba.2021.114090.
  • Zhao, J., Q. Cheng, P. Ye, G. Yang, S. Liu, Q. Ao, Y. Liu, and Y. Hu. 2016. Atorvastatin improves pathological changes in the aged kidney by upregulating peroxisome proliferator-activated receptor expression and reducing matrix metalloproteinase-9 and transforming growth factor-β1 levels. Experimental Gerontology 74:37–42. doi: 10.1016/j.exger.2015.12.004.
  • Zheng, M., C. Liu, F. Pan, D. Shi, and Y. Zhang. 2012. Antidepressant-like effect of hyperoside isolated from Apocynum venetum leaves: possible cellular mechanisms. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 19 (2):145–9. doi: 10.1016/j.phymed.2011.06.029.
  • Zhi, X., L. Wang, H. Chen, C. Fang, J. Cui, Y. Hu, L. Cao, W. Weng, Q. Zhou, L. Qin, et al. 2020. l-tetrahydropalmatine suppresses osteoclastogenesis in vivo and in vitro via blocking RANK-TRAF6 interactions and inhibiting NF-κB and MAPK pathways. Journal of Cellular and Molecular Medicine 24 (1):785–98. doi: 10.1111/jcmm.14790.
  • Zhou, J., J. B. Sun, X. Y. Xu, Z. H. Cheng, P. Zeng, F. Q. Wang, and Q. Zhang. 2015. Application of mixed cloud point extraction for the analysis of six flavonoids in Apocynum venetum leaf samples by high performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis 107:273–9. doi: 10.1016/j.jpba.2015.01.003.
  • Zhou, J., S. Zhang, X. Sun, Y. Lou, and J. Yu. 2021a. Hyperoside protects HK-2 cells against high glucose-induced apoptosis and inflammation via the miR-499a-5p/NRIP1 pathway. Pathology Oncology Research: POR 27:629829. doi: 10.3389/pore.2021.629829.
  • Zhou, J., S. Zhang, X. Sun, Y. Lou, J. Bao, and J. Yu. 2021b. Hyperoside ameliorates diabetic nephropathy induced by STZ via targeting the miR-499-5p/APC axis. Journal of Pharmacological Sciences 146 (1):10–20. doi: 10.1016/j.jphs.2021.02.005.
  • Zhou, J, and Y. Z. Hu. 2002. Synthesis of hirsutrin and hyperin. Zhejiang da Xue Xue Bao. Yi Xue Ban = Journal of Zhejiang University. Medical Sciences 31 (6):410–3. doi: 10.3785/j.issn.1008-9292.2002.06.003.
  • Zhou, L., X. F. An, S. C. Teng, J. S. Liu, W. B. Shang, A. H. Zhang, Y. G. Yuan, and J. Y. Yu. 2012. Pretreatment with the total flavone glycosides of Flos Abelmoschus manihot and hyperoside prevents glomerular podocyte apoptosis in streptozotocin-induced diabetic nephropathy. Journal of Medicinal Food 15 (5):461–8. doi: 10.1089/jmf.2011.1921.
  • Zhou, Y. Q., Y. T. Zhao, X. Y. Zhao, C. Liang, Y. W. Xu, L. Li, Y. Liu, and H. B. Yang. 2018. Hyperoside suppresses lipopolysaccharide-induced inflammation and apoptosis in human umbilical vein endothelial cells. Current Medical Science 38 (2):222–8. doi: 10.1007/s11596-018-1869-2.
  • Zhu, L., J. Chen, J. Tan, X. Liu, and B. Wang. 2017a. Flavonoids from Agrimonia pilosa Ledeb: free radical scavenging and DNA oxidative damage protection activities and analysis of bioactivity-structure relationship based on molecular and electronic structures. Molecules 22 (3):195. doi: 10.3390/molecules22030195.
  • Zhu, W., M. Ge, X. Li, J. Wang, P. Wang, T. Tai, Y. Wang, J. Sun, and G. Shi. 2022. Hyperoside Attenuates Zearalenone-induced spleen injury by suppressing oxidative stress and inhibiting apoptosis in mice. International Immunopharmacology 102:108408. doi: 10.1016/j.intimp.2021.108408.
  • Zhu, X., M. Ji, Y. Han, Y. Guo, W. Zhu, F. Gao, X. Yang, and C. Zhang. 2017b. PGRMC1-dependent autophagy by hyperoside induces apoptosis and sensitizes ovarian cancer cells to cisplatin treatment. International Journal of Oncology 50 (3):835–46. doi: 10.3892/ijo.2017.3873.
  • Zou, L., S. Chen, L. Li, and T. Wu. 2017. The protective effect of hyperoside on carbon tetrachloride-induced chronic liver fibrosis in mice via upregulation of Nrf2. Experimental and Toxicologic Pathology: Official Journal of the Gesellschaft Fur Toxikologische Pathologie 69 (7):451–60. doi: 10.1016/j.etp.2017.04.001.
  • Zuo, Z., L. Zhang, L. Zhou, Q. Chang, and M. Chow. 2006. Intestinal absorption of hawthorn flavonoids–in vitro, in situ and in vivo correlations. Life Sciences 79 (26):2455–62. doi: 10.1016/j.lfs.2006.08.014.
  • Zou, Z., W. Liu, L. Cao, Y. Liu, T. He, S. Peng, and C. Shuai. 2020. Advances in the occurrence and biotherapy of osteoporosis. Biochemical Society Transactions 48 (4):1623–36. doi: 10.1042/BST20200005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.