1,119
Views
26
CrossRef citations to date
0
Altmetric
Review

Freezing-induced denaturation of myofibrillar proteins in frozen meat

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Aidani, E., B. Aghamohammadi, M. Akbarian, A. Morshedi, M. Hadidi, N. Ghasemkhani, and A. Akbarian. 2014. Effect of chilling, freezing and thawing on meat quality: A review. International Journal of Biosciences (IJB) 5 (4):159–69. doi: 10.12692/ijb/5.4.159-169.
  • Akköse, A, and N. Aktaş. 2008. Determination of glass transition temperature of beef and effects of various cryoprotective agents on some chemical changes. Meat Science 80 (3):875–8. doi: 10.1016/j.meatsci.2008.04.006.
  • Ali, S., W. Zhang, N. Rajput, M. A. Khan, C. B. Li, and G. H. Zhou. 2015. Effect of multiple freeze–thaw cycles on the quality of chicken breast meat. Food Chemistry 173:808–14. doi: 10.1016/j.foodchem.2014.09.095.
  • Anfinsen, C. B. 1973. Principles that govern the folding of protein chains. Science (New York, N.Y.) 181 (4096):223–30. doi: 10.1126/science.181.4096.223.
  • Armel, T. Z, and L. A. Leinwand. 2010. Mutations at the same amino acid in myosin that cause either skeletal or cardiac myopathy have distinct molecular phenotypes. Journal of Molecular and Cellular Cardiology 48 (5):1007–13. doi: 10.1016/j.yjmcc.2009.10.011.
  • Arsiccio, A., J. McCarty, R. Pisano, and J. E. Shea. 2020. Heightened cold-denaturation of proteins at the ice–water interface. Journal of the American Chemical Society 142 (12):5722–30. doi: 10.1021/jacs.9b13454.
  • Arsiccio, A, and R. Pisano. 2020. The ice-water interface and protein stability: A review. Journal of Pharmaceutical Sciences 109 (7):2116–30. doi: 10.1016/j.xphs.2020.03.022.
  • Authelin, J. R., M. A. Rodrigues, S. Tchessalov, S. K. Singh, T. McCoy, S. Wang, and E. Shalaev. 2020. Freezing of biologicals revisited: Scale, stability, excipients, and degradation stresses. Journal of Pharmaceutical Sciences 109 (1):44–61. doi: 10.1016/j.xphs.2019.10.062.
  • Bahuaud, D., T. Mørkøre, Ø. Langsrud, K. Sinnes, E. Veiseth, R. Ofstad, and M. S. Thomassen. 2008. Effects of −1.5 °C super-chilling on quality of Atlantic salmon (Salmo salar) pre-rigor fillets: Cathepsin activity, muscle histology, texture and liquid leakage. Food Chemistry 111 (2):329–39. doi: 10.1016/j.foodchem.2008.03.075.
  • Bao, Y., P. Ertbjerg, M. Estévez, L. Yuan, and R. Gao. 2021. Freezing of meat and aquatic food: Underlying mechanisms and implications on protein oxidation. Comprehensive Reviews in Food Science and Food Safety 20 (6):5548–69. doi: 10.1111/1541-4337.12841.
  • Baron, C. P., I. V. H. Kjaersgård, F. Jessen, and C. Jacobsen. 2007. Protein and lipid oxidation during frozen storage of rainbow trout (Oncorhynchus mykiss). Journal of Agricultural and Food Chemistry 55 (20):8118–25. doi: 10.1021/jf070686f.
  • Benjakul, S., W. Visessanguan, C. Thongkaew, and M. Tanaka. 2003. Comparative study on physicochemical changes of muscle proteins from some tropical fish during frozen storage. Food Research International 36 (8):787–95. doi: 10.1016/S0963-9969(03)00073-5.
  • Benjakul, S., W. Visessanguan, and J. Tueksuban. 2003. Changes in physico-chemical properties and gel-forming ability of lizardfish (Saurida tumbil) during post-mortem storage in ice. Food Chemistry 80 (4):535–44. doi: 10.1016/S0308-8146(02)00339-4.
  • Berrill, A., J. Biddlecombe, and D. Bracewell. 2011. Product quality during manufacture and supply. In Peptide and protein delivery (pp. 313–339). USA, MA: Academic Press. doi: 10.1016/B978-0-12-384935-9.10013-6.
  • Bhagavan, N. V. 2002. Medical biochemistry. USA, MA: Academic press.
  • Bonat Celli, G., A. Ghanem, and M. Su-Ling Brooks. 2016. Influence of freezing process and frozen storage on the quality of fruits and fruit products. Food Reviews International 32 (3):280–304. doi: 10.1080/87559129.2015.1075212.
  • Brake, N. C, and O. R. Fennema. 1999. Glass transition values of muscle tissue. Journal of Food Science 64 (1):10–5. doi: 10.1111/j.1365-2621.1999.tb09851.x.
  • Calvelo, A. 1981. Recent studies on meat freezing. In Developments in meat science, vol. 2, 125–56. London: Elsevier Applied Science.
  • Castro-Giráldez, M., N. Balaguer, E. Hinarejos, and P. J. Fito. 2014. Thermodynamic approach of meat freezing process. Innovative Food Science & Emerging Technologies 23:138–45. doi: 10.1016/j.ifset.2014.03.007.
  • Cheng, W., D. W. Sun, H. Pu, and Q. Wei. 2019. Interpretation and rapid detection of secondary structure modification of actomyosin during frozen storage by near-infrared hyperspectral imaging. Journal of Food Engineering 246:200–8. doi: 10.1016/j.jfoodeng.2018.10.029.
  • Cheng, L., D. W. Sun, Z. Zhu, and Z. Zhang. 2017. Emerging techniques for assisting and accelerating food freezing processes: A review of recent research progresses. Critical Reviews in Food Science and Nutrition 57 (4):769–81. doi: 10.1080/10408398.2015.1004569.
  • Daggett, V. 2002. Molecular dynamics simulations of the protein unfolding/folding reaction. Accounts of Chemical Research 35 (6):422–9. doi: 10.1021/ar0100834.
  • Dalvi-Isfahan, M., N. Hamdami, E. Xanthakis, and A. Le-Bail. 2017. Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields. Journal of Food Engineering 195:222–34. doi: 10.1016/j.jfoodeng.2016.10.001.
  • Dalvi-Isfahan, M., P. K. Jha, J. Tavakoli, A. Daraei-Garmakhany, E. Xanthakis, and A. Le-Bail. 2019. Review on identification, underlying mechanisms and evaluation of freezing damage. Journal of Food Engineering 255:50–60. doi: 10.1016/j.jfoodeng.2019.03.011.
  • Delgado, A. E, and D. W. Sun. 2002. Desorption isotherms and glass transition temperature for chicken meat. Journal of Food Engineering 55 (1):1–8. doi: 10.1016/S0260-8774(01)00222-9.
  • Deller, M. C., L. Kong, and B. Rupp. 2016. Protein stability: A crystallographer's perspective. Acta Crystallographica. Section F, Structural Biology Communications 72 (Pt 2):72–95. doi: 10.1107/S2053230X15024619.
  • Dias, C. L., T. Ala-Nissila, J. Wong-Ekkabut, I. Vattulainen, M. Grant, and M. Karttunen. 2010. The hydrophobic effect and its role in cold denaturation. Cryobiology 60 (1):91–9. doi: 10.1016/j.cryobiol.2009.07.005.
  • Du, X., H. Li, C. Dong, Y. Ren, N. Pan, B. Kong, H. Liu, and X. Xia. 2021. Effect of ice structuring protein on the microstructure and myofibrillar protein structure of mirror carp (Cyprinus carpio L.) induced by freeze-thaw processes. LWT 139:110570. doi: 10.1016/j.lwt.2020.110570.
  • Engelking, L. R. 2015. Chapter 88—Diabetes mellitus (metabolic acidosis and potassium balance). In Textbook of veterinary physiological chemistry. ed. L. R. Engelking, 3rd ed., 568–75. Netherlands: Elsevier. doi: 10.1016/B978-0-12-391909-0.50088-8.
  • Ertbjerg, P, and E. Puolanne. 2017. Muscle structure, sarcomere length and influences on meat quality: A review. Meat Science 132:139–52. doi: 10.1016/j.meatsci.2017.04.261.
  • Estévez, M., S. Ventanas, M. Heinonen, and E. Puolanne. 2011. Protein carbonylation and water-holding capacity of pork subjected to frozen storage: Effect of muscle type, premincing, and packaging. Journal of Agricultural and Food Chemistry 59 (10):5435–43. doi: 10.1016/B978-0-12-816695-6.00010-6.[PMC].[21506554.
  • Estévez, M. 2011. Protein carbonyls in meat systems: A review. Meat Science 89 (3):259–79. doi: 10.1016/j.meatsci.2011.04.025.
  • Evans, J. A. 2009. Frozen food science and technology. USA, NJ: John Wiley and Sons. doi: 10.1002/9781444302325.
  • Feher, J. 2017. 1.4-Chemical foundations of physiology I: Chemical energy and intermolecular forces. In Quantitative human physiology. 2nd ed., 46–58. USA, BOS: Academic Press. doi: 10.1016/B978-0-12-800883-6.00005-7.
  • Feige, M. J., I. Braakman, and L. M. Hendershot. 2018. Disulfide bonds in protein folding and stability. CHAPTER 1.1:Disulfide bonds in protein folding and stability. In Oxidative folding of proteins: Basic principles. Cellular regulation and engineering, 133, pp. 46–58. doi: 10.1039/9781788013253-00001.
  • Fink, J. 2015. Chapter 14-Antifreeze agents. In Petroleum engineer's guide to oil field chemicals and fluids. 2nd ed, 445–53. Netherlands: Elsevier Science. doi: 10.1016/B978-0-12-803734-8.00014-X.
  • Glyakina, A. V, and O. V. Galzitskaya. 2020. Bioinformatics analysis of actin molecules: Why quantity does not translate into quality? Frontiers in Genetics 11:1591. doi: 10.3389/fgene.2020.617763.
  • Gokoglu, N, and P. Yerlikaya. 2015. Seafood chilling, refrigeration and freezing: Science and technology. USA, NJ: John Wiley and Sons doi: 10.1002/9781118512210.
  • Goldenzweig, A, and S. J. Fleishman. 2018. Principles of protein stability and their application in computational design. Annual Review of Biochemistry 87:105–29. doi: 10.1146/annurev-biochem-062917-012102.
  • Han, Z., J. Zhang, C. Li, D. Zhao, X. Yue, and J. H. Shao. 2019. Effect of secondary heat-induced aggregation on pork meat batter protein conformation, hydration characteristics, textural quality and in vitro digestibility. Food & Function 10 (11):7407–15. doi: 10.1039/C9FO01443H.
  • Hansen, E., L. Lauridsen, L. H. Skibsted, R. K. Moawad, and M. L. Andersen. 2004. Oxidative stability of frozen pork patties: Effect of fluctuating temperature on lipid oxidation. Meat Science 68 (2):185–91. doi: 10.1016/j.meatsci.2004.02.012.
  • Harnkarnsujarit, N., K. Kawai, and T. Suzuki. 2015. Effects of freezing temperature and water activity on microstructure, color, and protein conformation of freeze-dried bluefin tuna (Thunnus orientalis). Food and Bioprocess Technology 8 (4):916–25. doi: 10.1007/s11947-014-1460-1.
  • Hu, C, and J. Xie. 2021. The effect of multiple freeze–thaw cycles on the microstructure and quality of Trachurus murphyi. Foods 10 (6):1350. doi: 10.3390/foods10061350.
  • Hu, L., Y. Ying, H. Zhang, J. Liu, X. Chen, N. Shen, S. Li, and Y. Hu. 2021. Advantages of liquid nitrogen freezing in long‐term frozen preservation of hairtail (Trichiurus haumela): Enzyme activity, protein structure, and tissue structure. Journal of Food Process Engineering 44 (9):e13789. doi: 10.1111/jfpe.13789.
  • Hui, Y. H. 2006. Handbook of food science, technology, and engineering. vol. 149. USA, FL: CRC press. doi: 10.1201/b15995.
  • Inoue, C, and M. Ishikawa. 1997. Glass transition of tuna flesh at low temperature and effects of salt and moisture. Journal of Food Science 62 (3):496–9. doi: 10.1111/j.1365-2621.1997.tb04414.x.
  • Jia, W., R. Zhang, L. Liu, Z. Zhu, M. Xu, and L. Shi. 2021. Molecular mechanism of protein dynamic change for Hengshan goat meat during freezing storage based on high-throughput proteomics. Food Research International (Ottawa, Ont.) 143:110289. doi: 10.1016/j.foodres.2021.110289.
  • Jiang, Q., N. Nakazawa, Y. Hu, K. Osako, and E. Okazaki. 2019. Changes in quality properties and tissue histology of lightly salted tuna meat subjected to multiple freeze-thaw cycles. Food Chemistry 293:178–86. doi: 10.1016/j.foodchem.2019.04.091.
  • Gaarder, M. Ø., D. Bahuaud, E. Veiseth-Kent, T. Mørkøre, and M. S. Thomassen. 2012. Relevance of calpain and calpastatin activity for texture in super-chilled and ice-stored Atlantic salmon (Salmo salar L.) fillets. Food Chemistry 132 (1):9–17. doi: 10.1016/j.foodchem.2011.09.139.
  • Kiani, H, and D. W. Sun. 2011. Water crystallization and its importance to freezing of foods: A review. Trends in Food Science & Technology 22 (8):407–26. doi: 10.1016/j.tifs.2011.04.011.
  • Köhler, M. H., R. C. Barbosa, L. B. da Silva, and M. C. Barbosa. 2017. Role of the hydrophobic and hydrophilic sites in the dynamic crossover of the protein-hydration water. Physica A: Statistical Mechanics and Its Applications 468:733–9. doi: 10.1016/j.physa.2016.11.127.
  • Leelapongwattana, K., S. Benjakul, W. Visessanguan, and N. K. Howell. 2005. Physicochemical and biochemical changes during frozen storage of minced flesh of lizardfish (Saurida micropectoralis). Food Chemistry 90 (1-2):141–50. doi: 10.1016/j.foodchem.2004.03.038.
  • Lee, S., K. Jo, H. G. Jeong, H. I. Yong, Y. S. Choi, D. Kim, and S. Jung. 2021. Freezing-then-aging treatment improved the protein digestibility of beef in an in vitro infant digestion model. Food Chemistry 350:129224. doi: 10.1016/j.foodchem.2021.129224.
  • Lee, S., Y. S. Choi, K. Jo, H. G. Jeong, H. I. Yong, T. K. Kim, and S. Jung. 2021a. Processing characteristics of freeze-dried pork powder for meat emulsion gel. Food Science of Animal Resources 41 (6):997–1011. doi: 10.5851/kosfa.2021.e51.
  • Lee, S., Y. S. Choi, K. Jo, H. I. Yong, H. G. Jeong, and S. Jung. 2021b. Improvement of meat protein digestibility in infants and the elderly. Food Chemistry 356:129707. doi: 10.1016/j.foodchem.2021.129707.
  • Lee, S., K. Jo, H. I. Yong, Y. S. Choi, and S. Jung. 2021c. Comparison of the in vitro protein digestibility of Protaetia brevitarsis larvae and beef loin before and after defatting. Food Chemistry 338:128073. doi: 10.1016/j.foodchem.2020.128073.
  • Levine, H, and L. Slade. 1989. Response to the letter by Simatos, Blond, and Le Meste on the relation between glass transition and stability of a frozen product. Cryo-Letters 10:347–70. doi: 10.1046/j.1444-2906.2001.00226.x.
  • Leygonie, C., T. J. Britz, and L. C. Hoffman. 2012. Impact of freezing and thawing on the quality of meat. Meat Science 91 (2):93–8. doi: 10.1016/j.meatsci.2012.01.013.
  • Li, F., X. Du, Y. Ren, B. Kong, B. Wang, X. Xia, and Y. Bao. 2021. Impact of ice structuring protein on myofibrillar protein aggregation behaviour and structural property of quick-frozen patty during frozen storage. International Journal of Biological Macromolecules 178:136–42. doi: 10.1016/j.ijbiomac.2021.02.158.
  • Liu, H., Y. Xu, S. Zu, X. Wu, A. Shi, J. Zhang, Q. Wang, and N. He. 2021. Effects of high hydrostatic pressure on the conformational structure and gel properties of myofibrillar protein and meat quality: A review. Foods 10 (8):1872. doi: 10.3390/foods10081872.
  • Lopez, C. F., R. K. Darst, and P. J. Rossky. 2008. Mechanistic elements of protein cold denaturation. The Journal of Physical Chemistry. B 112 (19):5961–7. doi: 10.1021/jp075928t.
  • Lund, M. N., M. Heinonen, C. P. Baron, and M. Estévez. 2011. Protein oxidation in muscle foods: A review. Molecular Nutrition & Food Research 55 (1):83–95. doi: 10.1002/mnfr.201000453.
  • Mahato, S., Z. Zhu, and D. W. Sun. 2019. Glass transitions as affected by food compositions and by conventional and novel freezing technologies: A review. Trends in Food Science & Technology 94:1–11. doi: 10.1016/j.tifs.2019.09.010.
  • Maity, T., A. Saxena, and P. S. Raju. 2018. Use of hydrocolloids as cryoprotectant for frozen foods. Critical Reviews in Food Science and Nutrition 58 (3):420–35. doi: 10.1080/10408398.2016.1182892.
  • Mallamace, D., E. Fazio, F. Mallamace, and C. Corsaro. 2018. The role of hydrogen bonding in the folding/unfolding process of hydrated lysozyme: A review of recent NMR and FTIR results. International Journal of Molecular Sciences 19 (12):3825. doi: 10.3390/ijms19123825.
  • Meste, M. L., D. Champion, G. Roudaut, G. Blond, and D. Simatos. 2002. Glass transition and food technology: A critical appraisal. Journal of Food Science 67 (7):2444–58. doi: 10.1111/j.1365-2621.2002.tb08758.x.
  • Mulot, V., N. Fatou-Toutie, H. Benkhelifa, D. Pathier, and D. Flick. 2019. Investigating the effect of freezing operating conditions on microstructure of frozen minced beef using an innovative X-ray micro-computed tomography method. Journal of Food Engineering 262:13–21. doi: 10.1016/j.jfoodeng.2019.05.014.
  • Parui, S, and B. Jana. 2021. Cold denaturation induced helix-to-helix transition and its implication to activity of helical antifreeze protein. Journal of Molecular Liquids 338:116627. doi: 10.1016/j.molliq.2021.116627.
  • Pham, Q. T. 2006. Modelling heat and mass transfer in frozen foods: A review. International Journal of Refrigeration 29 (6):876–88. doi: 10.1016/j.ijrefrig.2006.01.013.
  • Privalov, P. L. 1990. Cold denaturation of protein. Critical Reviews in Biochemistry and Molecular Biology 25 (4):281–306. doi: 10.3109/10409239009090612.
  • Qian, S., X. Li, H. Wang, W. Mehmood, C. Zhang, and C. Blecker. 2021. Effects of frozen storage temperature and duration on changes in physicochemical properties of beef myofibrillar protein. Journal of Food Quality 2021:1–8. doi: 10.1155/2021/8836749.
  • Qian, S., X. Li, H. Wang, X. Wei, W. Mehmood, C. Zhang, and C. Blecker. 2020. Contribution of calpain to protein degradation, variation in myowater properties and the water-holding capacity of pork during postmortem ageing. Food Chemistry 324:126892. doi: 10.1016/j.foodchem.2020.126892.
  • Rahelić, S., S. Puač, and A. H. Gawwad. 1985a. Structure of beef Longissimus dorsi muscle frozen at various temperatures: Part 1—histological changes in muscle frozen at− 10,− 22,− 33,− 78,− 115 and− 196 °C. Meat Science 14 (2):63–72. doi: 10.1016/0309-1740(85)90082-8.
  • Rahelić, S., A. H. Gawwad, and S. Pua. 1985b. Structure of beef Longissimus dorsi muscle frozen at various temperatures: Part 2—ultrastructure of muscles frozen at− 10,− 22,− 33,− 78 and− 115 °C. Meat Science 14 (2):73–81. doi: 10.1016/0309-1740(85)90083-X.
  • Rahman, M. S., S. Kasapis, N. Guizani, and O. S. Al-Amri. 2003. State diagram of tuna meat: Freezing curve and glass transition. Journal of Food Engineering 57 (4):321–6. doi: 10.1016/S0260-8774(02)00346-1.
  • Rajan, R., S. Ahmed, N. Sharma, N. Kumar, A. Debas, and K. Matsumura. 2021. Review of the current state of protein aggregation inhibition from a materials chemistry perspective: Special focus on polymeric materials. Materials Advances 2 (4):1139–76. doi: 10.1039/D0MA00760A.
  • Ramiarez, J. A., M. O. Martian-Polo, and E. Bandman. 2000. Fish myosin aggregation as affected by freezing and initial physical state. Journal of Food Science 65 (4):556–60. doi: 10.1111/j.1365-2621.2000.tb16047.x.
  • Roy, I., and M. N. Gupta 2004. Freeze‐drying of proteins: some emerging concerns. Biotechnology and applied biochemistry 39 (2):165–177.
  • Royer, C. A. 2006. Probing protein folding and conformational transitions with fluorescence. Chemical Reviews 106 (5):1769–84. doi: 10.1021/cr0404390.
  • Russo Krauss, I., A. Merlino, A. Vergara, and F. Sica. 2013. An overview of biological macromolecule crystallization. International Journal of Molecular Sciences 14 (6):11643–91. doi: 10.3390/ijms140611643.
  • Schmidt, S. J, and J. W. Lee. 2009. How does the freezer burn our food? Journal of Food Science Education 8 (2):45–52. doi: 10.1111/j.1541-4329.2009.00072.x.
  • Setyabrata, D, and Y. H. B. Kim. 2019. Impacts of aging/freezing sequence on microstructure, protein degradation and physico-chemical properties of beef muscles. Meat Science 151:64–74. doi: 10.1016/j.meatsci.2019.01.007.
  • Sha, L, and Y. L. Xiong. 2020. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends in Food Science & Technology 102:51–61. doi: 10.1016/j.tifs.2020.05.022.
  • Shi, L., T. Yang, G. Xiong, X. Li, X. Wang, A. Ding, Y. Qiao, W. Wu, L. Liao, and L. Wang. 2018. Influence of frozen storage temperature on the microstructures and physicochemical properties of pre-frozen perch (Micropterus salmoides). LWT 92:471–6. doi: 10.1016/j.lwt.2018.02.063.
  • Soyer, A., B. Özalp, Ü. Dalmış, and V. Bilgin. 2010. Effects of freezing temperature and duration of frozen storage on lipid and protein oxidation in chicken meat. Food Chemistry 120 (4):1025–30. doi: 10.1016/j.foodchem.2009.11.042.
  • Sriket, P., S. Benjakul, W. Visessanguan, and K. Kijroongrojana. 2007. Comparative studies on the effect of the freeze–thawing process on the physicochemical properties and microstructures of black tiger shrimp (Penaeus monodon) and white shrimp (Penaeus vannamei) muscle. Food Chemistry 104 (1):113–21. doi: 10.1016/j.foodchem.2006.11.004.
  • Sun, Z., F. W. Yang, X. Li, C. H. Zhang, and X. L. Xie. 2016. Effects of freezing and thawing treatments on beef protein secondary structure analyzed with ATR-FTIR. Guang pu Xue yu Guang pu Fen xi = Guang pu 36 (11):3542–6. doi: 10.3964/j.issn.1000-0593(2016)11-3542-05.[PMC].[30198667.
  • Sunooj, K. V., K. Radhakrishna, J. George, and A. S. Bawa. 2009. Factors influencing the calorimetric determination of glass transition temperature in foods: A case study using chicken and mutton. Journal of Food Engineering 91 (2):347–52. doi: 10.1016/j.jfoodeng.2008.09.014.
  • Tan, M., J. Mei, and J. Xie. 2021. The formation and control of ice crystal and its impact on the quality of frozen aquatic products: A review. Crystals 11 (1):68. doi: 10.3390/cryst11010068.
  • Tan, M., J. Ye, Y. Chu, and J. Xie. 2021. The effects of ice crystal on water properties and protein stability of large yellow croaker (Pseudosciaena crocea). International Journal of Refrigeration 130 (4):242–52. doi: 10.1016/j.ijrefrig.2021.05.040.
  • Tironi, V., M. de Lamballerie-Anton, and A. Le-Bail. 2009. DSC determination of glass transition temperature on sea bass (Dicentrarchus labrax) muscle: Effect of high-pressure processing. Food and Bioprocess Technology 2 (4):374–82. doi: 10.1007/s11947-007-0041-y.
  • Tyedmers, J., A. Mogk, and B. Bukau. 2010. Cellular strategies for controlling protein aggregation. Nature Reviews. Molecular Cell Biology 11 (11):777–88. doi: 10.1038/nrm2993.
  • Ulrich, K, and U. Jakob. 2019. The role of thiols in antioxidant systems. Free Radical Biology & Medicine 140:14–27. doi: 10.1016/j.freeradbiomed.2019.05.035.
  • Utrera, M., D. Morcuende, and M, Estévez. 2014. Temperature of frozen storage affects the nature and consequences of protein oxidation in beef patties. Meat Science 96 (3):1250–7. doi: 10.1016/j.meatsci.2013.10.032.
  • Utrera, M, and M. Estévez. 2013. Oxidative damage to poultry, pork, and beef during frozen storage through the analysis of novel protein oxidation markers. Journal of Agricultural and Food Chemistry 61 (33):7987–93. doi: 10.1021/jf402220q.
  • Van Dijk, E., P. Varilly, T. P. Knowles, D. Frenkel, and S. Abeln. 2016. Consistent treatment of hydrophobicity in protein lattice models accounts for cold denaturation. Physical Review Letters 116 (7):078101. doi: 10.1103/PhysRevLett.116.07810.[PMC].[26943560.
  • Wang, Z., Z. He, D. Zhang, X. Chen, and H. Li. 2021. Effect of multiple freeze‐thaw cycles on protein and lipid oxidation in rabbit meat. International Journal of Food Science and Technology 56 (6):3004–3015. doi: 10.1111/ijfs.14943.
  • Wang, Y., H. Liang, R. Xu, B. Lu, X. Song, and B. Liu. 2020. Effects of temperature fluctuations on the meat quality and muscle microstructure of frozen beef. International Journal of Refrigeration 116:1–8. doi: 10.1016/j.ijrefrig.2019.12.025.
  • Wu, Z., W. Ma, Z. Xian, Q. Liu, A. Hui, and W. Zhang. 2021. The impact of quick-freezing methods on the quality, moisture distribution and microstructure of prepared ground pork during storage duration. Ultrasonics Sonochemistry 78:105707. doi: 10.1016/j.ultsonch.2021.105707.
  • Xia, X., B. Kong, Q. Liu, and J. Liu. 2009. Physicochemical change and protein oxidation in porcine longissimus dorsi as influenced by different freeze–thaw cycles. Meat Science 83 (2):239–45. doi: 10.1016/j.meatsci.2009.05.003.
  • Xiaofeng, X., Z. Xuelai, and W. A. N. G. Jianjun. 2018. Simulation of temperature field of cold storage refrigerated trucks under different ambient temperatures. Cryog Supercond 46 (02):65–9.
  • Xu, J. L, and D. W. Sun. 2017. Identification of freezer burn on frozen salmon surface using hyperspectral imaging and computer vision combined with machine learning algorithm. International Journal of Refrigeration 74:151–64. doi: 10.1016/j.ijrefrig.2016.10.014.
  • Xu, Y., M. Song, W. Xia, and Q. Jiang. 2019. Effects of freezing method on water distribution, microstructure, and taste active compounds of frozen channel catfish (Ictalurus punctatus). Journal of Food Process Engineering 42 (1):e12937. doi: 10.1111/jfpe.12937.
  • Yang, F., D. Jing, D. Yu, W. Xia, Q. Jiang, Y. Xu, and P. Yu. 2019. Differential roles of ice crystal, endogenous proteolytic activities and oxidation in softening of obscure pufferfish (Takifugu obscurus) fillets during frozen storage. Food Chemistry 278:452–9. doi: 10.1016/j.foodchem.2018.11.084.
  • Yoshidome, T, and M. Kinoshita. 2012. Physical origin of hydrophobicity studied in terms of cold denaturation of proteins: Comparison between water and simple fluids. Physical Chemistry Chemical Physics: PCCP 14 (42):14554–66. doi: 10.1039/c2cp41738c.
  • Yu, H., S. Yang, C. Yuan, Q. Hu, Y. Li, S. Chen, and Y. Hu. 2018. Application of biopolymers for improving the glass transition temperature of hairtail fish meat. Journal of the Science of Food and Agriculture 98 (4):1437–43. doi: 10.1002/jsfa.8611.
  • Zhan, X., D. W. Sun, Z. Zhu, and Q. J. Wang. 2018. Improving the quality and safety of frozen muscle foods by emerging freezing technologies: A review. Critical Reviews in Food Science and Nutrition 58 (17):2925–38. doi: 10.1080/10408398.2017.1345854.
  • Zhang, W., S. Xiao, and D. U. Ahn. 2013. Protein oxidation: Basic principles and implications for meat quality. Critical Reviews in Food Science and Nutrition 53 (11):1191–201. doi: 10.1080/10408398.2011.577540.
  • Zhang, M., F. Li, X. Diao, B. Kong, and X. Xia. 2017. Moisture migration, microstructure damage and protein structure changes in porcine longissimus muscle as influenced by multiple freeze-thaw cycles. Meat Science 133:10–8. doi: 10.1016/j.meatsci.2017.05.019.
  • Zhang, M., N. Haili, Q. Chen, X. Xia, and B. Kong. 2018. Influence of ultrasound-assisted immersion freezing on the freezing rate and quality of porcine longissimus muscles. Meat Science 136:1–8. doi: 10.1016/j.meatsci.2017.10.005.
  • Zhang, Z, and X. Y. Liu. 2018. Control of ice nucleation: Freezing and antifreeze strategies. Chemical Society Reviews 47 (18):7116–39. doi: 10.1039/C8CS00626A.
  • Zhang, Y, and P. Ertbjerg. 2019. On the origin of thaw loss: Relationship between freezing rate and protein denaturation. Food Chemistry 299:125104. doi: 10.1016/j.foodchem.2019.125104.
  • Zhang, Y, and P. Ertbjerg. 2018. Effects of frozen-then-chilled storage on proteolytic enzyme activity and water-holding capacity of pork loin. Meat Science 145:375–82. doi: 10.1016/j.meatsci.2018.07.017.
  • Zhang, Y., E. Puolanne, and P. Ertbjerg. 2021. Mimicking myofibrillar protein denaturation in frozen-thawed meat: Effect of pH at high ionic strength. Food Chemistry 338:128017. doi: 10.1016/j.foodchem.2020.128017.
  • Zhao, Y., X. Zhang, and X. Xu. 2020. Application and research progress of cold storage technology in cold chain transportation and distribution. Journal of Thermal Analysis and Calorimetry 139 (2):1419–34. doi: 10.1007/s10973-019-08400-8.
  • Zhu, Z., Q. Zhou, and D. W. Sun. 2019. Measuring and controlling ice crystallization in frozen foods: A review of recent developments. Trends in Food Science & Technology 90:13–25. doi: 10.1016/j.tifs.2019.05.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.