397
Views
3
CrossRef citations to date
0
Altmetric
Review

A biochemical perspective on the fate of virgin olive oil phenolic compounds in vivo

, , &

References

  • Abbattista, R., I. Losito, C. De Ceglie, G. Basile, C. D. Calvano, F. Palmisano, and T. R. I. Cataldi. 2019. Structural characterization of the ligstroside aglycone isoforms in virgin olive oils by liquid chromatography–high-resolution Fourier-transform mass spectrometry and H/Dexchange. Journal of Mass Spectrometry: JMS 54 (10):843–55. doi: 10.1002/jms.4438.
  • Abbattista, R., I. Losito, C. De Ceglie, A. Castellaneta, C. D. Calvano, F. Palmisano, and T. R. I. Cataldi. 2019. A comprehensive study of oleuropein aglycone isomers in olive oil by enzymatic/chemical processes and liquid chromatography-Fourier transform mass spectrometry integrated by H/D exchange. Talanta 205:120107. doi: 10.1016/j.talanta.2019.07.002.
  • Adlercreutz, H., J. van der Wildt, J. Kinzel, H. Attalla, K. Wähäla, T. Mäkelä, T. Hase, and T. Fotsis. 1995. Lignan and isoflavonoid conjugates in human urine. The Journal of Steroid Biochemistry and Molecular Biology 52 (1):97–103. doi: 10.1016/0960-0760(94)00146-D.
  • Agrawal, K., E. Melliou, X. Li, T. L. Pedersen, S. C. Wang, P. Magiatis, J. W. Newman, and R. R. Holt. 2017. Oleocanthal-rich extra virgin olive oil demonstrates acute anti-platelet effects in healthy men in a randomized trial. Journal of Functional Foods 36:84–93. doi: 10.1016/j.jff.2017.06.046.
  • Al-Azzawie, H. F, and M.-S S. Alhamdani. 2006. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sciences 78 (12):1371–7. doi: 10.1016/j.lfs.2005.07.029.
  • Amiot, M.-J., A. Fleuriet, and J.-J. Macheix. 1989. Accumulation of oleuropein derivatives during olive maturation. Phytochemistry 28 (1):67–9. doi: 10.1016/0031-9422(89)85009-5.
  • Angelis, A., D. Michailidis, L. Antoniadi, P. Stathopoulos, V. Tsantila, J.-M. Nuzillard, J.-H. Renault, and L. A. Skaltsounis. 2021. Pilot continuous centrifugal liquid-liquid extraction of extra virgin olive oil biophenols and gram-scale recovery of pure oleocanthal, oleacein, MFOA, MFLA and hydroxytyrosol. Separation and Purification Technology 255:117692. doi: 10.1016/j.seppur.2020.117692.
  • Aparicio-Soto, M., M. Sánchéz-Hidalgo, A. Cárdeno, J. M. Lucena, F. Gonzáléz-Escribano, M. J. Castillo, and C. Alarcón-de-la-Lastra. 2017. The phenolic fraction of extra virgin olive oil modulates the activation and the inflammatory response of T cells from patients with systemic lupus erythematosus and healthy donors. Molecular Nutrition & Food Research 61 (8):1601080. doi: 10.1002/mnfr.201601080.
  • Ayoub, N. M., A. B. Siddique, H. Y. Ebrahim, M. M. Mohyeldin, and K. A. El Sayed. 2017. The olive oil phenolic (-)-oleocanthal modulates estrogen receptor expression in luminal breast cancer in vitro and in vivo and synergizes with tamoxifen treatment. European Journal of Pharmacology 810:100–11. doi: 10.1016/j.ejphar.2017.06.019.
  • Bartholomé, R., G. Haenen, P. C. H. Hollman, A. Bast, P. C. Dagnelie, D. Roos, J. Keijer, P. A. Kroon, P. W. Needs, and I. C. W. Arts. 2010. Deconjugation Kinetics of Glucuronidated Phase II Flavonoid Metabolites by β-glucuronidase from Neutrophils. Drug Metabolism and Pharmacokinetics 25 (4):379–87. doi: 10.2133/dmpk.DMPK-10-RG-002.
  • Beauchamp, G. K., R. S. J. Keast, D. Morel, J. Lin, J. Pika, Q. Han, C.-H. Lee, A. B. Smith, and P. A. S. Breslin. 2005. Ibuprofen-like activity in extra-virgin olive oil. Nature 437 (7055):45–6. doi: 10.1038/437045a.
  • Brenes, M., A. García, P. García, and A. Garrido. 2001. Acid Hydrolysis of Secoiridoid Aglycons during Storage of Virgin Olive Oil. Journal of Agricultural and Food Chemistry 49 (11):5609–14. doi: 10.1021/jf0107860.
  • Bu, Y., S. Rho, J. Kim, M. Y. Kim, D. H. Lee, S. Y. Kim, H. Choi, and H. Kim. 2007. Neuroprotective effect of tyrosol on transient focal cerebral ischemia in rats. Neuroscience Letters 414 (3):218–21. doi: 10.1016/j.neulet.2006.08.094.
  • Buchholz, T, and M. F. Melzig. 2015. Polyphenolic compounds as pancreatic lipase inhibitors. Planta Medica 81 (10):771–83. doi: 10.1055/s-0035-1546173.
  • Cárdeno, A., M. Sánchez-Hidalgo, and C. Alarcón-de-la-Lastra. 2013. An up-date of olive oil phenols in inflammation and cancer: Molecular mechanisms and clinical implications. Current Medicinal Chemistry 20 (37):4758–76. doi: 10.2174/09298673113209990159.
  • Carreau, C., G. Flouriot, C. Bennetau-Pelissero, and M. Potier. 2008. Enterodiol and enterolactone, two major diet-derived polyphenol metabolites have different impact on ERα transcriptional activation in human breast cancer cells. The Journal of Steroid Biochemistry and Molecular Biology 110 (1-2):176–85. doi: 10.1016/j.jsbmb.2008.03.032.
  • Carregosa, D., R. Carecho, I. Figueira, and C. N Santos. 2020. Low-molecular weight metabolites from polyphenols as effectors for attenuating neuroinflammation. Journal of Agricultural and Food Chemistry 68 (7):1790–807. doi: 10.1021/acs.jafc.9b02155.
  • Caruso, D., F. Visioli, R. Patelli, C. Galli, and G. Galli. 2001. Urinary excretion of olive oil phenols and their metabolites in humans. Metabolism: clinical and Experimental 50 (12):1426–8. doi: 10.1053/meta.2001.28073.
  • Casaburi, I., F. Puoci, A. Chimento, R. Sirianni, C. Ruggiero, P. Avena, and V. Pezzi. 2013. Potential of olive oil phenols as chemopreventive and therapeutic agents against cancer: A review of in vitro studies. Molecular Nutrition & Food Research 57 (1):71–83. doi: 10.1002/mnfr.201200503.
  • Chen, G.-L., S.-G. Chen, Y.-Y. Zhao, C.-X. Luo, J. Li, and Y.-Q. Gao. 2014. Total phenolic contents of 33 fruits and their antioxidant capacities before and after in vitro digestion. Industrial Crops and Products 57:150–7. doi: 10.1016/j.indcrop.2014.03.018.
  • Chen, S.-S., J. Gong, F.-T. Liu, and U. Mohammed. 2000. Naturally occurring polyphenolic antioxidants modulate IgE-mediated mast cell activation. Immunology 100 (4):471–80. doi: 10.1046/j.1365-2567.2000.00045.x.
  • Clavel, T., D. Borrmann, A. Braune, J. Doré, and M. Blaut. 2006. Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaerobe 12 (3):140–7. doi: 10.1016/j.anaerobe.2005.11.002.
  • Clavel, T., J. Doré, and M. Blaut. 2006. Bioavailability of lignans in human subjects. Nutrition Research Reviews 19 (2):187–96. doi: 10.1017/S0954422407249704.
  • Corominas-Faja, B., E. Cuyàs, J. Lozano-Sánchez, S. Cufí, S. Verdura, S. Fernández-Arroyo, I. Borrás-Linares, B. Martin-Castillo, Á. G. Martin, R. Lupu, et al. 2018. Extra-virgin olive oil contains a metabolo-epigenetic inhibitor of cancer stem cells. Carcinogenesis 39 (4):601–13. doi: 10.1093/carcin/bgy023.
  • Corona, G., J. P. E. Spencer, and M. A. Dessì. 2009. Extra virgin olive oil phenolics: Absorption, metabolism, and biological activities in the GI tract. Toxicology and Industrial Health 25 (4-5):285–93. doi: 10.1177/0748233709102951.
  • Corona, G., X. Tzounis, M. Assunta Dessi, M. Deiana, E. S. Debnam, F. Visioli, and J. P. E. Spencer. 2006. The fate of olive oil polyphenols in the gastrointestinal tract: Implications of gastric and colonic microflora-dependent biotransformation. Free Radical Research 40 (6):647–58. doi: 10.1080/107157605.
  • Costa, M, and F. Paiva-Martins. 2022. Olive oil phenolic compounds as antioxidants in functional foods: Description, sources and stability. In Lipid oxidation in food and biological systems: A physical Chemistry Perpective, ed. C. Bravo-Diaz, 427–53. Switzerland AG: Springer International Publishing. doi: 10.1007/978-3-030-87222-9_19.
  • Covas, M.-I., K. de la Torre, M. Farré-Albaladejo, J. Kaikkonen, M. Fitó, C. López-Sabater, M. A. Pujadas-Bastardes, J. Joglar, T. Weinbrenner, R. M. Lamuela-Raventós, et al. 2006. Postprandial LDL phenolic content and LDL oxidation are modulated by olive oil phenolic compounds in humans. Free Radical Biology and Medicine 40 (4):608–16. doi: 10.1016/j.freeradbiomed.2005.09.027.
  • Covas, M.-I., R. de la Torre, and M. Fitó. 2015. Virgin olive oil: A key food for cardiovascular risk protection. British Journal of Nutrition 113 (S2):S19–S28. doi: 10.1017/S0007114515000136.
  • Covas, M.-I., K. Nyyssönen, H. E. Poulsen, J. Kaikkonen, H.-J F. Zunft, H. Kiesewetter, A. Gaddi, R. de la Torre, J. Mursu, H. Bäumler, et al. 2006. The effect of polyphenols in olive oil on heart disease risk factors. Annals of Internal Medicine 145 (5):333–41. doi: 10.7326/0003-4819-145-5-200609050-00006.
  • Crosas, B., D. J. Hyndman, O. Gallego, S. Martras, X. Parés, T. G. Flynn, and J. Farrés. 2003. Human aldose reductase and human small intestine aldose reductase are efficient retinal reductases: Consequences for retinoid metabolism. The Biochemical Journal 373 (Pt 3):973–9. doi: 10.1042/bj20021818.
  • Cusimano, A., D. Balasus, A. Azzolina, G. Augello, R. M. Emma, C. Di Sano, R. Gramignoli, C. S. Strom, A. J. McCubrey, G. Montalto, et al. 2017. Oleocanthal exerts antitumor effects on human liver and colon cancer cells through ROS generation. International Journal of Oncology 51 (2):533–44. doi: 10.3892/ijo.2017.4049.
  • Czerwińska, M. E., A. K. Kiss, and M. Naruszewicz. 2014. Inhibition of human neutrophils NEP activity, CD11b/CD18 expression and elastase release by 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde, oleacein. Food Chemistry 153:1–8. doi: 10.1016/j.foodchem.2013.12.019.
  • Czerwińska, M., A. K. Kiss, and M. Naruszewicz. 2012. A comparison of antioxidant activities of oleuropein and its dialdehydic derivative from olive oil, oleacein. Food Chemistry 131 (3):940–7. doi: 10.1016/j.foodchem.2011.09.082.
  • D’Angelo, S., C. Manna, V. Migliardi, O. Mazzoni, P. Morrica, G. Capasso, G. Pontoni, P. Galletti, and V. Zappia. 2001. Pharmacokinetics and metabolism of hydroxytyrosol. Drug Metabolism and Disposition: The Biological Fate of Chemicals 29 (11):1492–8.
  • Day, A. J., F. J. Cañada, J. C. Díaz, P. A. Kroon, R. Mclauchlan, C. B. Faulds, G. W. Plumb, M. R. Morgan, and G. Williamson. 2000. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Letters 468 (2-3):166–70. doi: 10.1016/S0014-5793(00)01211-4.
  • de Bock, M., E. B. Thorstensen, J. G. B. Derraik, H. V. Henderson, P. L. Hofman, and W. S. Cutfield. 2013. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Molecular Nutrition & Food Research 57 (11):2079–85. doi: 10.1002/mnfr.201200795.
  • De La Cruz, J. P., M. I. Ruiz-Moreno, A. Guerrero, J. A. López-Villodres, J. J. Reyes, J. L. Espartero, M. T. Labajos, and J. A. González-Correa. 2015. Role of the catechol group in the antioxidant and neuroprotective effects of virgin olive oil components in rat brain. The Journal of Nutritional Biochemistry 26 (5):549–55. doi: 10.1016/j.jnutbio.2014.12.013.
  • de la Torre-Carbot, K., O. Jauregui, A. I. Castellote, R. M. Lamuela-Raventós, M.-I. Covas, I. Casals, and M. C. López-Sabater. 2006. Rapid high-performance liquid chromatography–electrospray ionization tandem mass spectrometry method for qualitative and quantitative analysis of virgin olive oil phenolic metabolites in human low-density lipoproteins. Journal of Chromatography. A 1116 (1-2):69–75. doi: 10.1016/j.chroma.2006.03.022.
  • de la Torre, R. 2008. Bioavailability of olive oil phenolic compounds in humans. Inflammopharmacology 16 (5):245–7. doi: 10.1007/s10787-008-8029-4.
  • Dean, B., S. Chang, G. A. Doss, C. King, and P. E. Thomas. 2004. Glucuronidation, oxidative metabolism, and bioactivation of enterolactone in rhesus monkeys. Archives of Biochemistry and Biophysics 429 (2):244–51. doi: 10.1016/j.abb.2004.06.023.
  • Deiana, M., G. Serra, and G. Corona. 2018. Modulation of intestinal epithelium homeostasis by extra virgin olive oil phenolic compounds. Food & Function 9 (8):4085–99. doi: 10.1039/C8FO00354H.
  • Del Monaco, G., A. Officioso, S. D’Angelo, F. La Cara, E. Ionata, L. Marcolongo, G. Squillaci, L. Maurelli, and A. Morana. 2015. Characterization of extra virgin olive oils produced with typical Italian varieties by their phenolic profile. Food Chemistry 184:220–8. doi: 10.1016/j.foodchem.2015.03.071.
  • Di Francesco, A., A. Falconi, C. Di Germanio, M. V. Micioni Di Bonaventura, A. Costa, S. Caramuta, M. Del Carlo, D. Compagnone, E. Dainese, C. Cifani, et al. 2015. Extravirgin olive oil up-regulates CB1 tumor suppressor gene in human colon cancer cells and in rat colon via epigenetic mechanisms. The Journal of Nutritional Biochemistry 26 (3):250–8. doi: 10.1016/j.jnutbio.2014.10.013.
  • Diamantakos, P., K. Ioannidis, C. Papanikolaou, A. Tsolakou, A. Rigakou, E. Melliou, and P. Magiatis. 2021. A new definition of the term “high-phenolic olive oil” based on large scale statistical data of greek olive oils analyzed by qNMR. Molecules 26Issue (4):1115. ( doi: 10.3390/molecules26041115.
  • Domínguez-Perles, R., D. Auñón, F. Ferreres, and A. Gil-Izquierdo. 2017. Gender differences in plasma and urine metabolites from Sprague–Dawley rats after oral administration of normal and high doses of hydroxytyrosol, hydroxytyrosol acetate, and DOPAC. European Journal of Nutrition 56 (1):215–24. doi: 10.1007/s00394-015-1071-2.
  • Elnagar, A. Y., P. W. Sylvester, and K. A. El Sayed. 2011. (−)Oleocanthal as a c-Met inhibitor for the control of metastatic breast and prostate cancers. Planta Medica 77 (10):1013–9.
  • Emma, M. R., G. Augello, V. Di Stefano, A. Azzolina, L. Giannitrapani, G. Montalto, M. Cervello, and A. Cusimano. 2021. Potential Uses of Olive Oil Secoiridoids for the Prevention and Treatment of Cancer: A Narrative Review of Preclinical Studies. International Journal of Molecular Sciences 22 (3):1234. doi: 10.3390/ijms22031234.
  • Fabiani, R. 2016. Anti-cancer properties of olive oil secoiridoid phenols: A systematic review of in vivo studies. Food & Function 7 (10):4145–59. doi: 10.1039/C6FO00958A.
  • Fabiani, R., A. De Bartolomeo, P. Rosignoli, M. Servili, R. Selvaggini, G. F. Montedoro, C. Di Saverio, and G. Morozzi. 2006. Virgin Olive Oil Phenols Inhibit Proliferation of Human Promyelocytic Leukemia Cells (HL60) by Inducing Apoptosis and Differentiation. The Journal of Nutrition 136 (3):614–9. doi: 10.1093/jn/136.3.614.
  • Farràs, M., L. Martinez-Gili, K. Portune, S. Arranz, G. Frost, M. Tondo, and F. Blanco-Vaca. 2020. Modulation of the gut microbiota by olive oil phenolic compounds: implications for lipid metabolism, immune system, and obesity. Nutrients 12 (8):2200. doi: 10.3390/nu12082200.
  • Fernandes, S., C. Ribeiro, F. Paiva-Martins, C. Catarino, and A. Santos-Silva. 2020. Protective effect of olive oil polyphenol phase II sulfate conjugates on erythrocyte oxidative-induced hemolysis. Food & Function 11 (10):8670–9. doi: 10.1039/D0FO01690J.
  • Filipek, A., M. E. Czerwińska, A. K. Kiss, M. Wrzosek, and M. Naruszewicz. 2015. Oleacein enhances anti-inflammatory activity of human macrophages by increasing CD163 receptor expression. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 22 (14):1255–61. doi: 10.1016/j.phymed.2015.10.005.
  • Fogli, S., C. Arena, S. Carpi, B. Polini, S. Bertini, M. Digiacomo, F. Gado, A. Saba, G. Saccomanni, M. C. Breschi, et al. 2016. Cytotoxic activity of oleocanthal isolated from virgin olive oil on human melanoma cells. Nutrition and Cancer 68 (5):873–7. doi: 10.1080/01635581.2016.1180407.
  • Fuccelli, R., R. Fabiani, M. V. Sepporta, and P. Rosignoli. 2015. The hydroxytyrosol-dependent increase of TNF-α in LPS-activated human monocytes is mediated by PGE2 and adenylate cyclase activation. Toxicology in Vitro : An International Journal Published in Association with BIBRA 29 (5):933–7. doi: 10.1016/j.tiv.2015.03.022.
  • Gaforio, V., Alarcón-de-la-Lastra, C. Delgado-Rodríguez, F. Hernández, H. Martínez-González, M. Osada, P. Parrón, P. Rosillo, S.-Q. S, and Toledo, T. 2019. Virgin olive oil and health: summary of the III International Conference on Virgin Olive Oil and Health Consensus Report, JAEN (Spain) 2018. Nutrients 11 (9):2039. doi: 10.3390/nu11092039.
  • Galmés, S., B. Reynés, M. Palou, A. Palou-March, and A. Palou. 2021. Absorption, distribution, metabolism, and excretion of the main olive tree phenols and polyphenols: A literature review. Journal of Agricultural and Food Chemistry 69 (18):5281–96. doi: 10.1021/acs.jafc.1c00737.
  • Gambino, C. M., G. Accardi, A. Aiello, G. Candore, G. Dara-Guccione, M. Mirisola, A. Procopio, G. Taormina, and C. Caruso. 2018. Effect of extra virgin olive oil and table olives on the immuneinflammatory responses: potential clinical applications. Endocrine, Metabolic & Immune Disorders Drug Targets 18 (1):14–22. doi: 10.2174/1871530317666171114113822.
  • García-Villalba, R., A. Carrasco-Pancorbo, E. Nevedomskaya, O. A. Mayboroda, A. M. Deelder, A. Segura-Carretero, and A. Fernández-Gutiérrez. 2010. Exploratory analysis of human urine by LC–ESI-TOF MS after high intake of olive oil: Understanding the metabolism of polyphenols. Analytical and Bioanalytical Chemistry 398 (1):463–75. doi: 10.1007/s00216-010-3899-x.
  • García, A., M. Brenes, F. Martínez, J. Alba, P. García, and A. Garrido. 2001. High-performance liquid chromatography evaluation of phenols in virgin olive oil during extraction at laboratory and industrial scale. Journal of the American Oil Chemists’ Society 78 (6):625–9. doi: 10.1007/s11746-001-0316-x.
  • Garcia, B., J. Magalhães, G. Fregapane, M. D. Salvador, and F. Paiva‐Martins. 2012. Potential of selected Portuguese cultivars for the production of high quality monovarietal virgin olive oil. European Journal of Lipid Science and Technology 114 (9):1070–82. doi: 10.1002/ejlt.201200046.
  • Gavahian, M., A. Mousavi Khaneghah, J. M. Lorenzo, P. E. S. Munekata, I. Garcia-Mantrana, M. C. Collado, A. J. Meléndez-Martínez, and F. J. Barba. 2019. Health benefits of olive oil and its components: Impacts on gut microbiota antioxidant activities, and prevention of noncommunicable diseases. Trends in Food Science & Technology 88:220–7. doi: 10.1016/j.tifs.2019.03.008.
  • Gee, J. M., M. S. DuPont, A. J. Day, G. W. Plumb, G. Williamson, and I. T. Johnson. 2000. Intestinal transport of quercetin glycosides in rats involves both deglycosylation and interaction with the hexose transport pathway. The Journal of Nutrition 130 (11):2765–71. doi: 10.1093/jn/130.11.2765.
  • Ghanbari, R., F. Anwar, K. M. Alkharfy, A.-H. Gilani, and N. Saari. 2012. Valuable nutrients and functional bioactives in different parts of olive (Olea europaea L.)—A review. International Journal of Molecular Sciences 13 (3):3291–340. doi: 10.3390/ijms13033291.
  • Giordano, E., A. Dávalos, and F. Visioli. 2014. Chronic hydroxytyrosol feeding modulates glutathione-mediated oxido-reduction pathways in adipose tissue: A nutrigenomic study. Nutrition, Metabolism, and Cardiovascular Diseases : NMCD 24 (10):1144–50. doi: 10.1016/j.numecd.2014.05.003.
  • Giuliani, M., Daghio, F. Innocenti, and V. d W. Mulinacci. 2019. Effects of olive and pomegranate by-products on human microbiota: A study using the SHIME® in vitro simulator. Molecules 24 (20):3791. doi: 10.3390/molecules24203791
  • Giusti, L., C. Angeloni, M. Barbalace, S. Lacerenza, F. Ciregia, M. Ronci, A. Urbani, C. Manera, M. Digiacomo, M. Macchia, et al. 2018. A proteomic approach to uncover neuroprotective mechanisms of oleocanthal against oxidative stress. International Journal of Molecular Sciences 19 (8):2329. doi: 10.3390/ijms19082329.
  • Gómez-Rico, A., G. Fregapane, and M. D. Salvador. 2008. Effect of cultivar and ripening on minor components in Spanish olive fruits and their corresponding virgin olive oils. Food Research International 41 (4):433–40. doi: 10.1016/j.foodres.2008.02.003.
  • González-Santiago, M., J. Fonollá, and E. Lopez-Huertas. 2010. Human absorption of a supplement containing purified hydroxytyrosol, a natural antioxidant from olive oil, and evidence for its transient association with low-density lipoproteins. Pharmacological Research 61 (4):364–70. doi: 10.1016/j.phrs.2009.12.016.
  • Gordon, M. H., F. Paiva-Martins, and M. Almeida. 2001. Antioxidant activity of hydroxytyrosol acetate compared with that of other olive oil polyphenols. Journal of Agricultural and Food Chemistry 49 (5):2480–5. doi: 10.1021/jf000537w.
  • Gu, Y., J. Wang, and L. Peng. 2017. (–)-Oleocanthal exerts anti-melanoma activities and inhibits STAT3 signaling pathway. Oncology Reports 37 (1):483–91. doi: 10.3892/or.2016.5270.
  • Iacono, A., R. Gómez, J. Sperry, J. Conde, G. Bianco, R. Meli, J. J. Gómez-Reino, A. B. Smith, and O. Gualillo. 2010. Effect of oleocanthal and its derivatives on inflammatory response induced by lipopolysaccharide in a murine chondrocyte cell line. Arthritis and Rheumatism 62 (6):1675–82. doi: 10.1002/art.27437.
  • Ilbeigi, D., M. Nourbakhsh, S. Khaghani, N. Einollahi, N. Kheiripour, Z. Gholinejad, M. Alaee, and M. Saberian. 2017. Enterolactone reduces telomerase activity and the level of its catalytic subunit in breast cancer cells. Cell Journal (Yakhteh) 19 (Suppl 1):37. doi: 10.22074/cellj.2017.4705.
  • Ito, S., Y. Yamanaka, M. Ojika, and K. Wakamatsu. 2016. The metabolic fate of ortho-quinones derived from catecholamine metabolites. International Journal of Molecular Sciences 17 (2):164. doi: 10.3390/ijms17020164.
  • Iwata, S., T. Kato, A. Yokoyama, J. Hirota, and T. Ogihara. 2019. Specified kiwifruit extract blocks increase of body weight and visceral fat in high-fat-diet-fed mice by inhibiting intestinal lipase. Food Science and Technology Research 25 (2):295–302. doi: 10.3136/fstr.25.295.
  • Jan, K.-C., C.-T. Ho, and L. S. Hwang. 2009. Elimination and metabolism of sesamol, a bioactive compound in sesame oil, in rats. Molecular Nutrition & Food Research 53 (S1):S36–S43. doi: 10.1002/mnfr.200800214.
  • Jan, K.-C., L. S. Hwang, and C.-T. Ho. 2009. Tissue distribution and elimination of sesaminol triglucoside and its metabolites in rat. Molecular Nutrition & Food Research 53 (7):815–25. doi: 10.1002/mnfr.200800380.
  • Jansen, G. H. E., I. C. W. Arts, M. W. F. Nielen, M. Müller, P. C. H. Hollman, and J. Keijer. 2005. Uptake and metabolism of enterolactone and enterodiol by human colon epithelial cells. Archives of Biochemistry and Biophysics 435 (1):74–82. doi: 10.1016/j.abb.2004.12.015.
  • Jez, J. M., M. J. Bennett, B. P. Schlegel, M. Lewis, and T. M. Penning. 1997. Comparative anatomy of the aldo–keto reductase superfamily. Biochemical Journal 326 (3):625–36. doi: 10.1042/bj3260625.
  • Karkoula, E., A. Skantzari, E. Melliou, and P. Magiatis. 2012. Direct measurement of oleocanthal and oleacein levels in olive oil by quantitative 1H NMR establishment of a new index for the characterization of extra virgin olive oils. Journal of Agricultural and Food Chemistry 60 (47):11696–703. doi: 10.1021/jf3032765.
  • Kay, C. D. 2006. Aspects of anthocyanin absorption, metabolism and pharmacokinetics in humans. Nutrition Research Reviews 19 (1):137–46. doi: 10.1079/NRR2005116.
  • Kay, C. D., G. Pereira-Caro, I. A. Ludwig, M. N. Clifford, and A. Crozier. 2017. Anthocyanins and flavanones are more bioavailable than previously perceived: A review of recent evidence. Annual Review of Food Science and Technology 8:155–80. doi: 10.1146/annurev-food-030216-025636.
  • Kezimana, P., A. A. Dmitriev, A. V. Kudryavtseva, E. V. Romanova, and N. V. Melnikova. 2018. Secoisolariciresinol diglucoside of flaxseed and its metabolites: Biosynthesis and potential for nutraceuticals. Frontiers in Genetics 9:641. doi: 10.3389/fgene.2018.00641.
  • Kiritsakis, A. K., K. A. Kiritsakis, and C. K. Tsitsipas. 2020. A review of the evolution in the research of antioxidants in olives and olive oil during the last four decades. Journal of Food Bioactives 11:31–56. doi: 10.31665/JFB.2020.11236.
  • Kiritsakis, A., K. M. Turkan, and K. Kiritsakis. 2020. Olive oil. In Bailey’s industrial oil and fat products, 1–38. John Wiley & Sons, Ltd. doi: 10.1002/047167849X.bio029.pub2.
  • Khanfar, M. A., S. K. Bardaweel, M. R. Akl, and K. A. El Sayed. 2015. Olive oil-derived oleocanthal as potent inhibitor of mammalian target of rapamycin: Biological evaluation and molecular modeling studies. Phytotherapy Research: PTR 29 (11):1776–82. doi: 10.1002/ptr.5434.
  • Khymenets, O., M. C. Crespo, O. Dangles, N. Rakotomanomana, C. Andres-Lacueva, and F. Visioli. 2016. Human hydroxytyrosol’s absorption and excretion from a nutraceutical. Journal of Functional Foods 23:278–82. doi: 10.1016/j.jff.2016.02.046.
  • Khymenets, O., M. Farré, M. Pujadas, E. Ortiz, J. Joglar, M. I. Covas, and R. de la Torre. 2011. Direct analysis of glucuronidated metabolites of main olive oil phenols in human urine after dietary consumption of virgin olive oil. Food Chemistry 126 (1):306–14. doi: 10.1016/j.foodchem.2010.10.044.
  • Khymenets, O., M. Fitó, S. Touriño, D. Muñoz-Aguayo, M. Pujadas, J. L. Torres, J. Joglar, M. Farré, M.-I. Covas, and R. de la Torre. 2010. Antioxidant activities of hydroxytyrosol main metabolites do not contribute to beneficial health effects after olive oil ingestion. Drug Metabolism and Disposition: The Biological Fate of Chemicals 38 (9):1417–21. doi: 10.1124/dmd.110.032821.
  • Kilkkinen, A., K. Stumpf, P. Pietinen, L. M. Valsta, H. Tapanainen, and H. Adlercreutz. 2001. Determinants of serum enterolactone concentration. The American Journal of Clinical Nutrition 73 (6):1094–100. doi: 10.1093/ajcn/73.6.1094.
  • Knust, U., W. E. Hull, B. Spiegelhalder, H. Bartsch, T. Strowitzki, and R. W. Owen. 2006. Analysis of enterolignan glucuronides in serum and urine by HPLC-ESI-MS. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 44 (7):1038–49. doi: 10.1016/j.fct.2005.12.008.
  • Kotronoulas, A., N. Pizarro, A. Serra, P. Robledo, J. Joglar, L. Rubió, Á. Hernaéz, C. Tormos, M. J. Motilva, M. Fitó, et al. 2013. Dose-dependent metabolic disposition of hydroxytyrosol and formation of mercapturates in rats. Pharmacological Research 77:47–56. doi: 10.1016/j.phrs.2013.09.001.
  • Krichene, D., W. Taamalli, D. Daoud, M. D. Salvador, G. Fregapane, and M. Zarrouk. 2007. Phenolic compounds, tocopherols and ­other minor components in virgin olive oils of some Tunisian varieties. Journal of Food Biochemistry 31 (2):179–94. doi: 10.1111/j.1745-4514.2007.00107.x.
  • Landete, J. M., J. A. Curiel, H. Rodríguez, B. de las Rivas, and R. Muñoz. 2008. Study of the inhibitory activity of phenolic compounds found in olive products and their degradation by Lactobacillus plantarum strains. Food Chemistry 107 (1):320–6. doi: 10.1016/j.foodchem.2007.08.043.
  • Larussa, T., M. Oliverio, E. Suraci, M. Greco, R. Placida, S. Gervasi, R. Marasco, M. Imeneo, D. Paolino, L. Tucci, et al. 2017. Oleuropein decreases cyclooxygenase-2 and interleukin-17 expression and attenuates inflammatory damage in colonic samples from ulcerative colitis patients. Nutrients 9 (4):391. doi: 10.3390/nu9040391.
  • LeGendre, O., P. A. S. Breslin, and D. A. Foster. 2015. (–)-Oleocanthal rapidly and selectively induces cancer cell death via lysosomal membrane permeabilization. Molecular & Cellular Oncology 2 (4):e1006077. doi: 10.1080/23723556.2015.1006077.
  • Lenaerts, K., F. G. Bouwman, W. H. Lamers, J. Renes, and E. C. Mariman. 2007. Comparative proteomic analysis of cell lines and scrapings of the human intestinal epithelium. BMC Genomics 8 (1):91. doi: 10.1186/1471-2164-8-91.
  • Lin, P., W. Qian, X. Wang, L. Cao, S. Li, and T. Qian. 2013. The biotransformation of oleuropein in rats. Biomedical Chromatography : BMC 27 (9):1162–7. doi: 10.1002/bmc.2922.
  • Liu, Z., N. M. Saarinen, and L. U. Thompson. 2006. Sesamin Is One of the Major Precursors of Mammalian Lignans in Sesame Seed (Sesamum indicum) as Observed In Vitro and in Rats. The Journal of Nutrition 136 (4):906–12. doi: 10.1093/jn/136.4.906.
  • Loizzo, M. R., G. D. Lecce, E. Boselli, F. Menichini, and N. G. Frega. 2011. Inhibitory activity of phenolic compounds from extra virgin olive oils on the enzymes involved in diabetes, obesity and hypertension. Journal of Food Biochemistry 35 (2):381–99. doi: 10.1111/j.1745-4514.2010.00390.x.
  • Lombardo, G. E., S. M. Lepore, V. M. Morittu, B. Arcidiacono, C. Colica, A. Procopio, V. Maggisano, S. Bulotta, N. Costa, C. Mignogna, et al. 2018. Effects of oleacein on high-fat diet-dependent steatosis, weight gain, and insulin resistance in mice. Frontiers in Endocrinology 9:116. doi: 10.3389/fendo.2018.00116.
  • López-Miranda, J., F. Pérez-Jiménez, E. Ros, R. De Caterina, L. Badimón, M. I. Covas, E. Escrich, J. M. Ordovás, F. Soriguer, R. Abiá, et al. 2010. Olive oil and health: Summary of the II international conference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD 20 (4):284–94. doi: 10.1016/j.numecd.2009.12.007.
  • López-Yerena, A., M. Pérez, A. Vallverdú-Queralt, E. Miliarakis, R. M. Lamuela-Raventós, and E. Escribano-Ferrer. 2021. Oleacein intestinal permeation and metabolism in rats using an in situ perfusion technique. Pharmaceutics 13 (5):719. doi: 10.3390/pharmaceutics13050719.
  • López-Yerena, A., A. Vallverdú-Queralt, O. Jáuregui, X. Garcia-Sala, R. M. Lamuela-Raventós, and E. Escribano-Ferrer. 2021. Tissue distribution of oleocanthal and its metabolites after oral ingestion in rats. Antioxidants 10 (5):688. doi: 10.3390/antiox10050688.
  • López-Yerena, A., A. Vallverdú-Queralt, R. M. Lamuela-Raventós, and E. Escribano-Ferrer. 2021. LC-ESI-LTQ-Orbitrap-MS for profiling the distribution of oleacein and its metabolites in rat tissues. Antioxidants 10 (7):1083. doi: 10.3390/antiox10071083.
  • López-Yerena, A., A. Vallverdú-Queralt, R. Mols, P. Augustijns, R. M. Lamuela-Raventós, and E. Escribano-Ferrer. 2020. Absorption and intestinal metabolic profile of oleocanthal in rats. Pharmaceutics 12 (2):134. doi: 10.3390/pharmaceutics12020134.
  • López de las Hazas, M.-C., J. Godinho-Pereira, A. Macià, A. F. Almeida, M. R. Ventura, M.-J. Motilva, and C. N. Santos. 2018. Brain uptake of hydroxytyrosol and its main circulating metabolites: Protective potential in neuronal cells. Journal of Functional Foods 46:110–7. doi: 10.1016/j.jff.2018.04.028.
  • López de las Hazas, M.-C., C. Piñol, A. Macià, M.-P. Romero, A. Pedret, R. Solà, L. Rubió, and M.-J. Motilva. 2016. Differential absorption and metabolism of hydroxytyrosol and its precursors oleuropein and secoiridoids. Journal of Functional Foods 22:52–63. doi: 10.1016/j.jff.2016.01.030.
  • Lozano-Castellón, J., A. López-Yerena, A. Olmo-Cunillera, O. Jáuregui, M. Pérez, R. M. Lamuela-Raventós, and A. Vallverdú-Queralt. 2021. Total analysis of the major secoiridoids in extra virgin olive oil: Validation of an UHPLC-ESI-MS/MS method. Antioxidants 10 (4):540. doi: 10.3390/antiox10040540.
  • Lozano-Castellón, J., A. López-Yerena, J. F. Rinaldi de Alvarenga, J. Romero del Castillo-Alba, A. Vallverdú-Queralt, E. Escribano-Ferrer, and R. M. Lamuela-Raventós. 2020. Health-promoting properties of oleocanthal and oleacein: Two secoiridoids from extra-virgin olive oil. Critical Reviews in Food Science and Nutrition 60 (15):2532–48. doi: 10.1080/10408398.2019.1650715.
  • Marcelino, G., P. A. Hiane, K. Freitas, C. de, L. F. Santana, A. Pott, J. R. Donadon, R. Guimarães, and C. A. de. 2019. Effects of olive oil and its minor components on cardiovascular diseases, inflammation, and gut microbiota. Nutrients 11 (8):1826. doi: 10.3390/nu11081826.
  • Markopoulos, C., M. Vertzoni, A. Agalias, P. Magiatis, and C. Reppas. 2009. Stability of oleuropein in the human proximal gut. The Journal of Pharmacy and Pharmacology 61 (2):143–9. doi: 10.1211/jpp.61.02.0002.
  • Marsilio, V, and B. Lanza. 1998. Characterisation of an oleuropein degrading strain of Lactobacillus plantarum. Combined effects of compounds present in olive fermenting brines (phenols, glucose and NaCl) on bacterial activity. Journal of the Science of Food and Agriculture 76 (4):520–4. doi: 10.1002/(SICI)1097-0010(199804)76:4<520::AID-JSFA982>3.0.CO;2-I.
  • Martín-Peláez, S., O. Castañer, R. Solà, M. Motilva, M. Castell, F. Pérez-Cano, and M. Fitó. 2016. Influence of phenol-enriched olive oils on human intestinal immune function. Nutrients 8 (4):213. doi: 10.3390/nu8040213.
  • Menendez, C., M. Dueñas, P. Galindo, S. González-Manzano, R. Jimenez, L. Moreno, M. J. Zarzuelo, I. Rodríguez-Gómez, J. Duarte, C. Santos-Buelga, et al. 2011. Vascular deconjugation of quercetin glucuronide: The flavonoid paradox revealed? Molecular Nutrition & Food Research 55 (12):1780–90. doi: 10.1002/mnfr.201100378.
  • Mete, M., I. Aydemir, U. U. Unsal, F. Collu, G. Vatandas, B. Gurcu, Y. K. Duransoy, F. Taneli, M. I. Tuglu, and M. Selcuki. 2018. Neuroprotective effects of oleocanthal, a compound in virgin olive oil, in a rat model of traumatic brain injury. Turkish Neurosurgery 28 (6):858–65. doi: 10.5137/1019-5149.JTN.21417-17.2.
  • Miró-Casas, E., M.-I. Covas, M. Farre, M. Fito, J. Ortuño, T. Weinbrenner, P. Roset, and R. de la Torre. 2003. Hydroxytyrosol disposition in humans. Clinical Chemistry 49 (6):945–52. doi: 10.1373/49.6.945.
  • Miró-Casas, E., M.-I. Covas, M. Fitó, M. Farré-Albadalejo, J. Marrugat, and R. de la Torre. 2003. Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin olive oil in humans. European Journal of Clinical Nutrition 57 (1):186–90. doi: 10.1038/sj.ejcn.1601532.
  • Miró-Casas, E., M. Farré Albaladejo, M. I. Covas Planells, J. O. Rodriguez, E. Menoyo Colomer, R. M. Lamuela Raventós, and R. de la Torre. 2001. Capillary gas chromatography–mass spectrometry quantitative determination of hydroxytyrosol and tyrosol in human urine after olive oil intake. Analytical Biochemistry 294 (1):63–72. doi: 10.1006/abio.2001.5160.
  • Miró-Casas, E., M. Farré Albadalejo, M. I. Covas Planells, M. Fitó Colomer, R. M. Lamuela Raventós, and R. de la Torre Fornell. 2001. Tyrosol bioavailability in humans after ingestion of virgin olive oil. Clinical Chemistry 47 (2):341–3. doi: 10.1093/clinchem/47.2.341.
  • Mitjavila, M. T, and J. J. Moreno. 2012. The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of high prevalence diseases. Biochemical Pharmacology 84 (9):1113–22. doi: 10.1016/j.bcp.2012.07.017.
  • Mitsou, E. K., A. Kakali, S. Antonopoulou, K. C. Mountzouris, M. Yannakoulia, D. B. Panagiotakos, and A. Kyriacou. 2017. Adherence to the Mediterranean diet is associated with the gut microbiota pattern and gastrointestinal characteristics in an adult population. The British Journal of Nutrition 117 (12):1645–55. doi: 10.1017/S0007114517001593.
  • Montedoro, G., M. Servili, M. Baldioli, R. Selvaggini, E. Miniati, and A. Macchioni. 1993. Simple and hydrolyzable compounds in virgin olive oil. 3. Spectroscopic characterizations of the secoiridoid derivatives. Journal of Agricultural and Food Chemistry 41 (11):2228–34. doi: 10.1021/jf00035a076.
  • Mosele, J. I., S. Martín-Peláez, A. Macià, M. Farràs, R.-M. Valls, Ú. Catalán, and M.-J. Motilva. 2014. Faecal microbial metabolism of olive oil phenolic compounds: In vitro and in vivo approaches. Molecular Nutrition & Food Research 58 (9):1809–19. doi: 10.1002/mnfr.201400124.
  • Moskaug, J. Ø., H. Carlsen, M. C. W. Myhrstad, and R. Blomhoff. 2005. Polyphenols and glutathione synthesis regulation. The American Journal of Clinical Nutrition 81 (1 Suppl):277S–83S. doi: 10.1093/ajcn/81.1.277S.
  • Muriana, F. J. G., S. Montserrat-de la Paz, R. Lucas, B. Bermudez, S. Jaramillo, J. C. Morales, R. Abia, and S. Lopez. 2017. Tyrosol and its metabolites as antioxidative and anti-inflammatory molecules in human endothelial cells. Food & Function 8 (8):2905–14. doi: 10.1039/C7FO00641A.
  • Nurmi, T., S. Voutilainen, K. Nyyssönen, H. Adlercreutz, and J. T. Salonen. 2003. Liquid chromatography method for plant and mammalian lignans in human urine. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 798 (1):101–10. doi: 10.1016/j.jchromb.2003.09.018.
  • Obied, H. K., P. D. Prenzler, D. Ryan, M. Servili, A. Taticchi, S. Esposto, and K. Robards. 2008. Biosynthesis and biotransformations of phenol-conjugated oleosidic secoiridoids from Olea europaea L. Natural Product Reports 25 (6):1167–79. doi: 10.1039/b719736e.
  • Ortega, N., J. Reguant, M.-P. Romero, A. Macià, and M.-J. Motilva. 2009. Effect of fat content on the digestibility and bioaccessibility of cocoa polyphenol by an in vitro digestion model. Journal of Agricultural and Food Chemistry 57 (13):5743–9. doi: 10.1021/jf900591q.
  • Paiva-Martins, F., P. Gonçalves, J. E. Borges, D. Przybylska, F. Ibba, J. Fernandes, and A. Santos-Silva. 2015. Effects of the olive oil phenol metabolite 3,4-DHPEA-EDAH2 on human erythrocyte oxidative damage. Food & Function 6 (7):2350–6. doi: 10.1039/C5FO00203F.
  • Paiva-Martins, F., R. Correia, S. Félix, P. Ferreira, and M. H. Gordon. 2007. Effects of enrichment of refined olive oil with phenolic compounds from olive leaves. Journal of Agricultural and Food Chemistry 55 (10):4139–43. doi: 10.1021/jf063093y.
  • Paiva-Martins, F., J. Fernandes, S. Rocha, H. Nascimento, R. Vitorino, F. Amado, F. Borges, L. Belo, and A. Santos-Silva. 2009. Effects of olive oil polyphenols on erythrocyte oxidative damage. Molecular Nutrition & Food Research 53 (5):609–16. doi: 10.1002/mnfr.200800276.
  • Paiva-Martins, F, and M. H. Gordon. 2001. Isolation and characterization of the antioxidant component 3,4-dihydroxyphenylethyl 4-formyl-3-formylmethyl-4-hexenoate from olive (Olea europaea) leaves. Journal of Agricultural and Food Chemistry 49 (9):4214–9. doi: 10.1021/jf010373z.
  • Paiva-Martins, F, and M. H. Gordon. 2002. Effects of pH and ferric ions on the antioxidant activity of olive polyphenols in oil-in-water emulsions. Journal of the American Oil Chemists’ Society 79 (6):571–6. doi: 10.1007/s11746-002-0524-4.
  • Paiva-Martins, F, and M. H. Gordon. 2005. Interactions of ferric ions with olive oil phenolic compounds. Journal of Agricultural and Food Chemistry 53 (7):2704–9. doi: 10.1021/jf0481094.
  • Paiva-Martins, F, and M. Pinto. 2008. Isolation and characterization of a new hydroxytyrosol derivative from olive (Olea europaea) leaves. Journal of Agricultural and Food Chemistry 56 (14):5582–8. doi: 10.1021/jf800698y.
  • Paiva-Martins, F., A. Silva, V. Almeida, M. Carvalheira, C. Serra, J. E. Rodrígues-Borges, J. Fernandes, L. Belo, and A. Santos-Silva. 2013. Protective activity of hydroxytyrosol metabolites on erythrocyte oxidative-induced hemolysis. Journal of Agricultural and Food Chemistry 61 (27):6636–42. doi: 10.1021/jf4016202.
  • Parkinson, L, and S. Cicerale. 2016. The Health benefiting mechanisms of virgin olive oil phenolic compounds. Molecules 21 (12):1734. doi: 10.3390/molecules21121734.
  • Patel, K. R., C. Andreadi, R. G. Britton, E. Horner-Glister, A. Karmokar, S. Sale, V. A. Brown, D. E. Brenner, R. Singh, W. P. Steward, et al. 2013. Sulfate metabolites provide an intracellular pool for resveratrol generation and induce autophagy with senescence. Science Translational Medicine 5 (205):205ra133. doi: 10.1126/scitranslmed.3005870.
  • Pei, T., Q. Meng, J. Han, H. Sun, L. Li, R. Song, B. Sun, S. Pan, D. Liang, and L. Liu. 2016. (−)-Oleocanthal inhibits growth and metastasis by blocking activation of STAT3 in human hepatocellular carcinoma. Oncotarget 7 (28):43475–91. doi: 10.18632/oncotarget.9782.
  • Pereira-Caro, G., B. Sarriá, A. Madrona, J. L. Espartero, M. E. Escuderos, L. Bravo, and R. Mateos. 2012. Digestive stability of hydroxytyrosol, hydroxytyrosyl acetate and alkyl hydroxytyrosyl ethers. International Journal of Food Sciences and Nutrition 63 (6):703–7. doi: 10.3109/09637486.2011.652943.
  • Perrone, M. A., P. Gualtieri, S. Gratteri, W. Ali, D. Sergi, S. Muscoli, A. Cammarano, S. Bernardini, L. Di Renzo, and F. Romeo. 2019. Effects of postprandial hydroxytyrosol and derivates on oxidation of LDL, cardiometabolic state and gene expression. Journal of Cardiovascular Medicine 20 (7):419–26. doi: 10.2459/JCM.0000000000000816.
  • Persia, F. A., M. L. Mariani, T. H. Fogal, and A. B. Penissi. 2014. Hydroxytyrosol and oleuropein of olive oil inhibit mast cell degranulation induced by immune and non-immune pathways. Phytomedicine : international Journal of Phytotherapy and Phytopharmacology 21 (11):1400–5. doi: 10.1016/j.phymed.2014.05.010.
  • Pinto, J., F. Paiva-Martins, G. Corona, E. S. Debnam, M. Jose Oruna-Concha, D. Vauzour, M. H. Gordon, and J. P. E. Spencer. 2011. Absorption and metabolism of olive oil secoiridoids in the small intestine. The British Journal of Nutrition 105 (11):1607–18. doi: 10.1017/S000711451000526X.
  • Polini, B., M. Digiacomo, S. Carpi, S. Bertini, F. Gado, G. Saccomanni, M. Macchia, P. Nieri, C. Manera, and S. Fogli. 2018. Oleocanthal and oleacein contribute to the in vitro therapeutic potential of extra virgin oil-derived extracts in non-melanoma skin cancer. Toxicology in Vitro: An International Journal Published in Association with BIBRA 52:243–50. doi: 10.1016/j.tiv.2018.06.021.
  • Psaltopoulou, T., R. I. Kosti, D. Haidopoulos, M. Dimopoulos, and D. B. Panagiotakos. 2011. Olive oil intake is inversely related to cancer prevalence: A systematic review and a meta-analysis of 13800 patients and 23340 controls in 19 observational studies. Lipids in Health and Disease 10 (1):127. doi: 10.1186/1476-511X-10-127.
  • Qosa, H., Y. S. Batarseh, M. M. Mohyeldin, K. A. El Sayed, J. N. Keller, and A. Kaddoumi. 2015. Oleocanthal enhances amyloid-β clearance from the brains of TgSwDI mice and in vitro across a human blood-brain barrier model. ACS Chemical Neuroscience 6 (11):1849–59. doi: 10.1021/acschemneuro.5b00190.
  • Quintero-Flórez, A., G. Pereira-Caro, C. Sánchez-Quezada, J. M. Moreno-Rojas, J. J. Gaforio, A. Jimenez, and G. Beltrán. 2018. Effect of olive cultivar on bioaccessibility and antioxidant activity of phenolic fraction of virgin olive oil. European Journal of Nutrition 57 (5):1925–46. doi: 10.1007/s00394-017-1475-2.
  • Raffaelli, B., A. Hoikkala, E. Leppälä, and K. Wähälä. 2002. Enterolignans. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 777 (1-2):29–43. doi: 10.1016/S1570-0232(02)00092-2.
  • Rocchetti, G., M. Luisa Callegari, A. Senizza, G. Giuberti, J. Ruzzolini, A. Romani, S. Urciuoli, C. Nediani, and L. Lucini. 2022. Oleuropein from olive leaf extracts and extra-virgin olive oil provides distinctive phenolic profiles and modulation of microbiota in the large intestine. Food Chemistry 380:132187. doi: 10.1016/j.foodchem.2022.132187.
  • Rodríguez, H., J. A. Curiel, J. M. Landete, B. de las Rivas, F. L. de Felipe, C. Gómez-Cordovés, J. M. Mancheño, and R. Muñoz. 2009. Food phenolics and lactic acid bacteria. International Journal of Food Microbiology 132 (2-3):79–90. doi: 10.1016/j.ijfoodmicro.2009.03.025.
  • Romani, A., F. Ieri, S. Urciuoli, A. Noce, G. Marrone, C. Nediani, and R. Bernini. 2019. Health effects of phenolic compounds found in extra-virgin olive oil, by-products, and leaf of Olea europaea L. Nutrients 11 (8):1776. doi: 10.3390/nu11081776.
  • Rosignoli, P., R. Fuccelli, R. Fabiani, M. Servili, and G. Morozzi. 2013. Effect of olive oil phenols on the production of inflammatory mediators in freshly isolated human monocytes. The Journal of Nutritional Biochemistry 24 (8):1513–9. doi: 10.1016/j.jnutbio.2012.12.011.
  • Rowland, I., M. Faughnan, L. Hoey, K. Wähälä, G. Williamson, and A. Cassidy. 2003. Bioavailability of phyto-oestrogens. British Journal of Nutrition 89 (S1):S45–S58. doi: 10.1079/BJN2002796.
  • Rubió, L., M. Farràs, R. de La Torre, A. Macià, M.-P. Romero, R. M. Valls, R. Solà, M. Farré, M. Fitó, and M.-J. Motilva. 2014. Metabolite profiling of olive oil and thyme phenols after a sustained intake of two phenol-enriched olive oils by humans: Identification of compliance markers. Food Research International 65:59–68. doi: 10.1016/j.foodres.2014.05.009.
  • Rubió, L., A. Macià, A. Castell-Auví, M. Pinent, M. T. Blay, A. Ardévol, M.-P. Romero, and M.-J. Motilva. 2014. Effect of the co-occurring olive oil and thyme extracts on the phenolic bioaccesibility and bioavailability assessed by in vitro digestion and cell models. Food Chemistry 149:277–84. doi: 10.1016/j.foodchem.2013.10.075.
  • Rubió, L., A. Macià, R. M. Valls, A. Pedret, M.-P. Romero, R. Solà, and M.-J. Motilva. 2012. A new hydroxytyrosol metabolite identified in human plasma: Hydroxytyrosol acetate sulphate. Food Chemistry 134 (2):1132–6. doi: 10.1016/j.foodchem.2012.02.192.
  • Rubió, L., R.-M. Valls, A. Macià, A. Pedret, M. Giralt, M.-P. Romero, R. de la Torre, M.-I. Covas, R. Solà, and M.-J. Motilva. 2012. Impact of olive oil phenolic concentration on human plasmatic phenolic metabolites. Food Chemistry 135 (4):2922–9. doi: 10.1016/j.foodchem.2012.07.085.
  • Sánchez de Medina, V., H. Miho, E. Melliou, P. Magiatis, F. Priego-Capote, and M. D. Luque de Castro. 2017. Quantitative method for determination of oleocanthal and oleacein in virgin olive oils by liquid chromatography–tandem mass spectrometry. Talanta 162:24–31. doi: 10.1016/j.talanta.2016.09.056.
  • Sarbishegi, M., F. Mehraein, and M. Soleimani. 2014. Antioxidant role of oleuropein on midbrain and dopaminergic neurons of substantia nigra in aged rats. Iranian Biomedical Journal 18 (1):16. doi: 10.6091/ibj.1274.2013.
  • Sarikaki, G., N. Christoforidou, N. Gaboriaud-Kolar, A. B. Smith, I. K. Kostakis, and A.-L. Skaltsounis. 2020. Biomimetic synthesis of oleocanthal, oleacein, and their analogues starting from oleuropein, a major compound of olive leaves. Journal of Natural Products 83 (6):1735–9. doi: 10.1021/acs.jnatprod.0c00086.
  • Saura-Calixto, F., J. Serrano, and I. Goñi. 2007. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chemistry 101 (2):492–501. doi: 10.1016/j.foodchem.2006.02.006.
  • Scalbert, A, and G. Williamson. 2000. Dietary intake and bioavailability of polyphenols. The Journal of Nutrition 130 (8S Suppl):2073S–85S. doi: 10.1093/jn/130.8.2073S.
  • Scotece, M., Gomez, R. Conde, J. Lopez, V. Gomez-Reino, J. J. Lago, F. Smith, I. I. I. A. B, and Gualillo, O. 2013. Oleocanthal inhibits proliferation and MIP-1&#945; expression in human multiple myeloma cells. Current Medicinal Chemistry 20 (19):2467–75. doi: 10.2174/0929867311320190006.
  • Scotece, M., R. Gómez, J. Conde, V. Lopez, J. J. Gómez-Reino, F. Lago, A. B. Smith, and O. Gualillo. 2012. Further evidence for the anti-inflammatory activity of oleocanthal: Inhibition of MIP-1α and IL-6 in J774 macrophages and in ATDC5 chondrocytes. Life Sciences 91 (23-24):1229–35. doi: 10.1016/j.lfs.2012.09.012.
  • Segade, M., R. Bermejo, A. Silva, F. Paiva-Martins, J. Gil-Longo, and M. Campos-Toimil. 2016. Involvement of endothelium in the vasorelaxant effects of 3,4-DHPEA-EA and 3,4-DHPEA-EDA, two major functional bioactives in olive oil. Journal of Functional Foods 23:637–46. doi: 10.1016/j.jff.2016.03.024.
  • Serra, A., L. Rubió, X. Borràs, A. Macià, M.-P. Romero, and M.-J. Motilva. 2012. Distribution of olive oil phenolic compounds in rat tissues after administration of a phenolic extract from olive cake. Molecular Nutrition & Food Research 56 (3):486–96. doi: 10.1002/mnfr.201100436.
  • Serra, G., A. Incani, G. Serreli, L. Porru, M. P. Melis, C. I. G. Tuberoso, D. Rossin, F. Biasi, and M. Deiana. 2018. Olive oil polyphenols reduce oxysterols -induced redox imbalance and pro-inflammatory response in intestinal cells. Redox Biology 17:348–54. doi: 10.1016/j.redox.2018.05.006.
  • Serreli, G, and M. Deiana. 2018. Biological relevance of extra virgin olive oil polyphenols metabolites. Antioxidants 7 (12):170. doi: 10.3390/antiox7120170.
  • Servili, M., M. Baldioli, R. Selvaggini, E. Miniati, A. Macchioni, and G. Montedoro. 1999. High-performance liquid chromatography evaluation of phenols in olive fruit, virgin olive oil, vegetation waters, and pomace and 1D- and 2D-nuclear magnetic resonance characterization. Journal of the American Oil Chemists’ Society 76 (7):873–82. doi: 10.1007/s11746-999-0079-2.
  • Sharan, S., O. F. Iwuchukwu, D. J. Canney, C. L. Zimmerman, and S. Nagar. 2012. In vivo-formed versus preformed metabolite kinetics of  trans-resveratrol-3-sulfate and trans-resveratrol-3-glucuronide. Drug Metabolism and Disposition: The Biological Fate of Chemicals 40 (10):1993–2001. doi: 10.1124/dmd.112.046417.
  • Shimoi, K., N. Saka, R. Nozawa, M. Sato, I. Amano, T. Nakayama, and N. Kinae. 2001. Deglucuronidation of a flavonoid, luteolin monoglucuronide, during inflammation. Drug Metabolism and Disposition: The Biological Fate of Chemicals 29 (12):1521–4.
  • Shinde, P., N. Vidyasagar, S. Dhulap, A. Dhulap, and R. Hirwani. 2015. Natural products based P-glycoprotein activators for improved β-amyloid clearance in Alzheimer’s Disease: An in silico approach. Central Nervous System Agents in Medicinal Chemistry 16 (1):50–9. doi: 10.2174/1871524915666150826092152.
  • Silva, L., B. Garcia, and F. Paiva-Martins. 2010a. Oxidative stability of olive oil and its polyphenolic compounds after boiling vegetable process. LWT - Food Science and Technology 43 (9):1336–44. doi: 10.1016/j.lwt.2010.05.013.
  • Silva, L., J. Pinto, J. Carrola, and F. Paiva-Martins. 2010b. Oxidative stability of olive oil after food processing and comparison with other vegetable oils. Food Chemistry 121 (4):1177–87. doi: 10.1016/j.foodchem.2010.02.001.
  • Silva, S., M. Garcia-Aloy, M. E. Figueira, E. Combet, W. Mullen, and M. R. Bronze. 2018. High Resolution Mass Spectrometric Analysis of Secoiridoids and Metabolites as Biomarkers of Acute Olive Oil Intake—An Approach to Study Interindividual Variability in Humans. Molecular Nutrition & Food Research 62 (2):1700065. doi: 10.1002/mnfr.201700065.
  • Silva, S. 2020. Isolamento e síntese de fenóis do azeite e otimização da sua quantificação em biofluídos, Thesis diss.
  • Sindona, G., A. Caruso, A. Cozza, S. Fiorentini, B. Lorusso, E. Marini, M. Nardi, A. Procopio, and S. Zicari. 2012. Anti-inflammatory effect of 3,4-DHPEA-EDA [2-(3,4-hydroxyphenyl) ethyl (3S, 4E)- 4-formyl-3-(2-oxoethyl)hex-4-enoate] on primary human vascular endothelial cells. Current Medicinal Chemistry 19 (23):4006–13. doi: 10.2174/092986712802002536.
  • Sobhani, M., M. H. Farzaei, S. Kiani, and R. Khodarahmi. 2021. Immunomodulatory; anti-inflammatory/antioxidant effects of polyphenols: A comparative review on the parental compounds and their metabolites. Food Reviews International 37 (8):759–811. doi: 10.1080/87559129.2020.1717523.
  • Soler, A., M. P. Romero, A. Macià, S. Saha, C. S. M. Furniss, P. A. Kroon, and M. J. Motilva. 2010. Digestion stability and evaluation of the metabolism and transport of olive oil phenols in the human small-intestinal epithelial Caco-2/TC7 cell line. Food Chemistry 119 (2):703–14. doi: 10.1016/j.foodchem.2009.07.017.
  • Solfrizzi, V., F. Panza, and A. Capurso. 2003. The role of diet in cognitive decline. Journal of Neural Transmission (Vienna, Austria: 1996) 110 (1):95–110. doi: 10.1007/s00702-002-0766-8.
  • Steinbrueck, C., N. Mora-Ugalde, C. Morales, R. Loiaza, A. J. García-Piñeres, and J. J. Araya. 2019. Bioassay-guided isolation of anti-inflammatory O-sulfated withanolides from Acnistus arborescens (Solanaceae). Phytochemistry Letters 29:190–4. doi: 10.1016/j.phytol.2018.12.001.
  • Stevens, J. F, and C. S. Maier. 2016. The chemistry of gut microbial metabolism of polyphenols. Phytochemistry Reviews : proceedings of the Phytochemical Society of Europe 15 (3):425–44. doi: 10.1007/s11101-016-9459-z.
  • Suárez, M., M.-P. Romero, A. Macià, R. M. Valls, S. Fernández, R. Solà, and M.-J. Motilva. 2009. Improved method for identifying and quantifying olive oil phenolic compounds and their metabolites in human plasma by microelution solid-phase extraction plate and liquid chromatography–tandem mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 877 (32):4097–106. doi: 10.1016/j.jchromb.2009.10.025.
  • Suárez, M., R. M. Valls, M.-P. Romero, A. Macià, S. Fernández, M. Giralt, R. Solà, and M.-J. Motilva. 2011. Bioavailability of phenols from a phenol-enriched olive oil. British Journal of Nutrition 106 (11):1691–701. doi: 10.1017/S0007114511002200.
  • Sun, L., C. Luo, and J. Liu. 2014. Hydroxytyrosol induces apoptosis in human colon cancer cells through ROS generation. Food & Function 5 (8):1909–14. doi: 10.1039/C4FO00187G.
  • Sun, W., X. Wang, C. Hou, L. Yang, H. Li, J. Guo, C. Huo, M. Wang, Y. Miao, J. Liu, et al. 2017. Oleuropein improves mitochondrial function to attenuate oxidative stress by activating the Nrf2 pathway in the hypothalamic paraventricular nucleus of spontaneously hypertensive rats. Neuropharmacology 113 (Pt A):556–66. doi: 10.1016/j.neuropharm.2016.11.010.
  • Tafesh, A., N. Najami, J. Jadoun, F. Halahlih, H. Riepl, and H. Azaizeh. 2011. Synergistic antibacterial effects of polyphenolic compounds from olive mill wastewater. Evidence-Based Complementary and Alternative Medicine: eCAM 2011:431021. doi: 10.1155/2011/431021.
  • Thomas, L. A., M. J. Veysey, G. French, P. B. Hylemon, G. M. Murphy, and R. H. Dowling. 2001. Bile acid metabolism by fresh human colonic contents: A comparison of caecal versus faecal samples. Gut 49 (6):835–42. doi: 10.1136/gut.49.6.835.
  • Tomas-Barberan, F. A., A. González-Sarrías, and R. García-Villalba. 2020. Dietary polyphenols: Metabolism and health effects. John Wiley & Sons, Inc.
  • Tresserra-Rimbau, A., E. B. Rimm, A. Medina-Remón, M. A. Martínez-González, R. de la Torre, D. Corella, J. Salas-Salvadó, E. Gómez-Gracia, J. Lapetra, F. Arós, et al. 2014. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD 24 (6):639–47. doi: 10.1016/j.numecd.2013.12.014.
  • Tuck, K. L, and P. J. Hayball. 2002. Major phenolic compounds in olive oil: Metabolism and health effects. The Journal of Nutritional Biochemistry 13 (11):636–44. doi: 10.1016/S0955-2863(02)00229-2.
  • Tuck, K. L., P. J. Hayball, and I. Stupans. 2002. Structural characterization of the metabolites of hydroxytyrosol, the principal phenolic component in olive oil, in rats. Journal of Agricultural and Food Chemistry 50 (8):2404–9. doi: 10.1021/jf011264n.
  • Visioli, F., D. Caruso, E. Plasmati, R. Patelli, N. Mulinacci, A. Romani, G. Galli, and C. Galli. 2001. Hydroxytyrosol, as a component of olive mill waste water, is dose- dependently absorbed and increases the antioxidant capacity of rat plasma. Free Radical Research 34 (3):301–5. doi: 10.1080/10715760100300271.
  • Visioli, F., C. Galli, F. Bornet, A. Mattei, R. Patelli, G. Galli, and D. Caruso. 2000. Olive oil phenolics are dose-dependently absorbed in humans. FEBS Letters 468 (2-3):159–60. doi: 10.1016/S0014-5793(00)01216-3.
  • Vissers, M. N., P. L. Zock, and M. B. Katan. 2004. Bioavailability and antioxidant effects of olive oil phenols in humans: A review. European Journal of Clinical Nutrition 58 (6):955–65. doi: 10.1038/sj.ejcn.1601917.
  • Vissers, M. N., P. L. Zock, A. J. C. Roodenburg, R. Leenen, and M. B. Katan. 2002. Olive oil phenols are absorbed in humans. The Journal of Nutrition 132 (3):409–17. doi: 10.1093/jn/132.3.409.
  • Vougogiannopoulou, K., C. Lemus, M. Halabalaki, C. Pergola, O. Werz, A. B. Smith, S. Michel, L. Skaltsounis, and B. Deguin. 2014. One-step semisynthesis of oleacein and the determination as a 5-lipoxygenase inhibitor. Journal of Natural Products 77 (3):441–5. doi: 10.1021/np401010x.
  • Weinbrenner, T., M. Fitó, G. T. Saez, P. Rijken, C. Tormos, S. Coolen, R. De La Torre, and M. I. Covas. 2004. Bioavailability of phenolic compounds from olive oil and oxidative/antioxidant status at postprandial state in healthy humans. Drugs under Experimental and Clinical Research 30 (5–6):207–12.
  • Weinbrenner, T., Fitó, M. Torre, R., de la Saez, G. T. Rijken, P. Tormos, C. Coolen, S. Albaladejo, M. F. Abanades, S. Schroder, H, et al. 2004. Olive oils high in phenolic compounds modulate oxidative/antioxidative status in men. The Journal of Nutrition 134 (9):2314–21. doi: 10.1093/jn/134.9.2314.
  • Widmer, R. J., A. J. Flammer, L. O. Lerman, and A. Lerman. 2015. The Mediterranean diet, its components, and cardiovascular disease. The American Journal of Medicine 128 (3):229–38. doi: 10.1016/j.amjmed.2014.10.014.
  • Williamson, G., C. D. Kay, and A. Crozier. 2018. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Comprehensive Reviews in Food Science and Food Safety 17 (5):1054–112. doi: 10.1111/1541-4337.12351.
  • Yamashita, Y., L. Wang, F. Nanba, C. Ito, T. Toda, and H. Ashida. 2016. Procyanidin promotes translocation of glucose transporter 4 in muscle of mice through activation of insulin and AMPK signaling pathways. PloS One 11 (9):e0161704. doi: 10.1371/journal.pone.0161704.
  • Yang, J., X. Yang, and M. Li. 2012. Baicalin, a natural compound, promotes regulatory T cell differentiation. BMC Complementary and Alternative Medicine 12 (1):64–7. doi: 10.1186/1472-6882-12-64.
  • Yoder, S. C., S. M. Lancaster, M. A. J. Hullar, and J. W. Lampe. 2015. Chapter 7 – Gut microbial metabolism of plant lignans: Influence on human health. In Diet-microbe interactions in the gut, eds. K. Tuohy, and D. Del Rio, 103–17. Academic Press. doi: 10.1016/B978-0-12-407825-3.00007-1.
  • Zhu, L., L. Lu, S. Wang, J. Wu, J. Shi, T. Yan, C. Xie, Q. Li, M. Hu, and Z. Liu. 2017. Chapter 11 – Oral absorption basics: Pathways and physicochemical and biological factors affecting absorption. In Developing solid oral dosage forms: Pharmaceutical theory and practice, eds. Y. Qui, Y. Chen, G. G. Z. Zhang, L. Yu, and R. V. Mantri, R. V., 2nd ed, 297–329. Academic Press. doi: 10.1016/B978-0-12-802447-8.00011-X.
  • Zhu, L., Z. Liu, Z. Feng, J. Hao, W. Shen, X. Li, L. Sun, E. Sharman, Y. Wang, K. Wertz, et al. 2010. Hydroxytyrosol protects against oxidative damage by simultaneous activation of mitochondrial biogenesis and phase II detoxifying enzyme systems in retinal pigment epithelial cells. The Journal of Nutritional Biochemistry 21 (11):1089–98. doi: 10.1016/j.jnutbio.2009.09.006.
  • Zrelli, H., M. Matsuoka, S. Kitazaki, M. Zarrouk, and H. Miyazaki. 2011. Hydroxytyrosol reduces intracellular reactive oxygen species levels in vascular endothelial cells by upregulating catalase expression through the AMPK–FOXO3a pathway. European Journal of Pharmacology 660 (2-3):275–82. doi: 10.1016/j.ejphar.2011.03.045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.