484
Views
3
CrossRef citations to date
0
Altmetric
Reviews

The use of various statistical methods for authenticity and detection of adulteration in fish and seafood

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Alamprese, C, and E. Casiraghi. 2015. Application of FT-NIR and FT-IR spectroscopy to fish fillet authentication. LWT - Food Science and Technology 63 (1):720–5. doi: 10.1016/j.lwt.2015.03.021.
  • An, Y., Y. L. Qian, A. Alcazar Magana, S. Xiong, and M. C. Qian. 2020. Comparative characterization of aroma compounds in silver carp (Hypophthalmichthys molitrix), pacific whiting (Merluccius productus), and Alaska pollock (Theragra chalcogramma) surimi by aroma extract dilution analysis, odor activity value, and aroma recombination studies. Journal of Agricultural and Food Chemistry 68 (38):10403–13. doi: 10.1021/acs.jafc.9b07621.
  • Anderson, K. A., K. A. Hobbie, and B. W. Smith. 2010. Chemical profiling with modeling differentiates wild and farm-raised salmon. Journal of Agricultural and Food Chemistry 58 (22):11768–74. doi: 10.1021/jf102046b.[PMC].[20973481.
  • Anderson, T. W., ed. 2003. Introduction. In An introduction of multivariate statistical analysis (3rd ed.), 1–5. New Jersey, Canada: John Wiley & Sons.
  • Arnold, W. S., S. L. Walters, J. S. Fajans, S. C. Peters, and T. M. Bert. 2004. Influence of congeneric aquaculture on hard clam (Mercenaria spp.) population genetic structure. Aquaculture International 12 (2):139–60. doi: 10.1023/B:AQUI.0000032078.90352.03.
  • Azarian, C., S. Foster, F. Devloo‐Delva, and P. Feutry. 2021. Population differentiation from environmental DNA: investigating the potential of haplotype presence/absence‐based analysis of molecular variance. Environmental DNA 3 (3):541–52. doi: 10.1002/edn3.143.
  • Balázs, G., J. Vörös, B. Lewarne, and G. Herczeg. 2020. A new non‑invasive in situ underwater DNA sampling method for estimating genetic diversity. Evolutionary Ecology 34 (4):633–44. doi: 10.1007/s10682-020-10053-1.
  • Behrmann, K., H. Rehbein, A. von Appen, and M. Fischer. 2015. Applying population genetics for authentication of marine fish: the case of Saithe (Pollachius virens). Journal of Agricultural and Food Chemistry 63 (3):802–9. doi: 10.1021/jf506201m.
  • Berejikian, B. A., D. M. Van Doornik, R. C. Endicott, T. L. Hoffnagle, E. P. Tezak, M. E. Moore, and J. Atkins. 2010. Mating success of alternative male phenotypes and evidence for frequency-dependent selection in Chinook salmon, Oncorhynchus tshawytscha. Canadian Journal of Fisheries and Aquatic Sciences 67 (12):1933–41. doi: 10.1139/F10-112.
  • Bernatchez, L., M. Wellenreuther, C. Araneda, D. T. Ashton, J. M. I. Barth, T. D. Beacham, G. E. Maes, J. T. Martinsohn, K. M. Miller, K. A. Naish, et al. 2017. Harnessing the power of genomics to secure the future of seafood. Trends in Ecology & Evolution 32 (9):665–80. doi: 10.1016/j.tree.2017.06.010.
  • Bhatia, G., N. Patterson, S. Sankararaman, and A. L. Price. 2013. Estimating and interpreting FST: the impact of rare variants. Genome Research 23 (9):1514–21. doi: 10.1101/gr.154831.113.
  • Bhattachan, P, and B. Dong. 2019. Multivariate analysis of genomic variables, effective population size, and mutation rate. BMC Research Notes 12 (1):1–6. doi: 10.1186/s13104-019-4097-3.
  • Black, C., O. P. Chevallier, S. A. Haughey, J. Balog, S. Stead, S. D. Pringle, M. V. Riina, F. Martucci, P. L. Acutis, M. Morris, et al. 2017. A real time metabolomic profiling approach to detecting fish fraud using rapid evaporative ionisation mass spectrometry. Metabolomics 13 (12):1–13. doi: 10.1007/s11306-017-1291-y.
  • Bronte, C. R, and S. A. Moore. 2007. Morphological variation of Siscowet Lake trout in lake superior. Transactions of the American Fisheries Society 136 (2):509–17. doi: 10.1577/T06-098.1.
  • Caselle, J. E., S. L. Hamilton, D. M. Schroeder, M. S. Love, J. D. Standish, J. A. Rosales-Casián, and O. Sosa-Nishizaki. 2011. Geographic variation in density, demography, and life history traits of a harvested, sex-changing, temperate reef fish. Canadian Journal of Fisheries and Aquatic Sciences 68 (2):288–303. doi: 10.1139/F10-140.
  • Chanto-García, D. A., S. Saber, D. Macías, A. Sureda, J. Hernández-Urcera, and M. Cabanellas-Reboredo. 2022. Species-specific heavy metal concentrations of tuna species: the case of Thunnus alalunga and Katsuwonus pelamis in the Western Mediterranean. Environmental Science and Pollution Research International 29 (1):1278–88. doi: 10.1007/s11356-021-15700-w.
  • Chatterjee, N. S., O. P. Chevallier, E. Wielogorska, C. Black, and C. T. Elliott. 2019. Simultaneous authentication of species identity and geographical origin of shrimps: untargeted metabolomics to recurrent biomarker ions. Journal of Chromatography. A 1599:75–84. doi: 10.1016/j.chroma.2019.04.001.
  • Chicco, D, and G. Jurman. 2020. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21 (1):6–13. doi: 10.1186/s12864-019-6413-7.
  • Choi, E. H., M. Y. Yeo, G. Kim, B. Park, C. R. Shin, S. Y. Baek, and U. W. Hwang. 2021. Liolophura species discrimination with geographical distribution patterns and their divergence and expansion history on the northwestern Pacific coast. Scientific Reports 11 (1):17602–17. doi: 10.1038/s41598-021-96823-5.
  • Christiansen, H., F. M. Heindler, B. Hellemans, Q. Jossart, F. Pasotti, H. Robert, M. Verheye, B. Danis, M. Kochzius, F. Leliaert, et al. 2021. Facilitating population genomics of non-model organisms through optimized experimental design for reduced representation sequencing. BMC Genomics 22 (1):625. doi: 10.1186/s12864-021-07917-3.
  • Cooke, G. M., T. E. Schlub, W. B. Sherwin, and T. J. Ord. 2016. Understanding the spatial scale of genetic connectivity at sea: unique insights from a land fish and a meta-analysis. PLoS One 11 (5):e0150991–25. doi: 10.1371/journal.pone.0150991.
  • Davis, R. P., C. E. Boyd, R. Godumala, A. B. C. Mohan, A. Gonzalez, N. P. Duy, P. G. Sasmita J, N. Ahyani, O. Shatova, J. Wakefield, et al. 2022. Assessing the variability and discriminatory power of elemental fingerprints in whiteleg shrimp Litopenaeus vannamei from major shrimp production countries. Food Control. 133:108589–8. doi: 10.1016/j.foodcont.2021.108589.
  • Dodds, W. K, and M. R. Whiles, eds. 2020. Fish ecology, fisheries, and aquaculture. In Freshwater ecology (3rd ed.), 699–722. London, UK: Elsevier Inc.
  • Duarte, B., I. A. Duarte, I. Caçador, P. Reis-Santos, R. P. Vasconcelos, C. Gameiro, S. E. Tanner, and V. F. Fonseca. 2022. Elemental fingerprinting of thornback ray (Raja clavata) muscle tissue as a tracer for provenance and food safety assessment. Food Control. 133:108592. doi: 10.1016/j.foodcont.2021.108592.
  • Dufour, É., J. P. Frencia, and E. Kane. 2003. Development of a rapid method based on front-face fluorescence spectroscopy for the monitoring of fish freshness. Food Research International 36 (5):415–23. doi: 10.1016/S0963-9969(02)00174-6.
  • Exadactylos, A. 2014. Nutrigenomics in aquaculture research. Fisheries & Aquaculture Journal 5 (2):e107. doi: 10.4172/2150-3508.10000e107.
  • Exadaktylos, A., D. Vafidis, C. S. Tsigenopoulos, and G. A. Gkafas. 2019. High connectivity of the White Seabream Diplodus sargus, L. 1758) in the Aegean Sea, Eastern Mediterranean Basin. Animals 9 (979):1–8. doi: 10.3390/ani9110979.
  • Fard, N. J. H., M. Ravanbakhsh, Z. Ramezani, M. Ahmadi, K. A. Angali, and A. Z. Javid. 2015. Determination of mercury and vanadium concentration in Johnius belangerii (C) fish in Musa estuary in Persian Gulf. Marine Pollution Bulletin 97 (1-2):499–505. doi: 10.1016/j.marpolbul.2015.05.036.
  • Fard, N. J. H., A. Z. Javid, M. Ravanbakhsh, Z. Ramezani, M. Ahmadi, K. A. Angali, and S. Ardeshirzadeh. 2017. Determination of nickel and thallium concentration in Cynoglossus arel fish in Musa estuary, Persian Gulf, Iran. Environmental Science and Pollution Research International 24 (3):2936–45. doi: 10.1007/s11356-016-8055-5.
  • Fiorino, G. M., I. Losito, E. De Angelis, M. Arlorio, A. F. Logrieco, and L. Monaci. 2019. Assessing fish authenticity by direct analysis in real time-high resolution mass spectrometry and multivariate analysis: discrimination between wildtype and farmed salmon. Food Research International (Ottawa, Ont.) 116:1258–65. doi: 10.1016/j.foodres.2018.10.013.
  • Franceschini, S., E. Gandola, M. Martinoli, L. Tancioni, and M. Scardi. 2018. Cascaded neural networks improving fish species prediction accuracy: the role of the biotic information. Scientific Reports 8 (1):1–12. doi: 10.1038/s41598-018-22761-4.
  • Frichot, E, and O. François. 2015. LEA: an R package for landscape and ecological association studies. Methods in Ecology and Evolution 6 (8):925–9. doi: 10.1111/2041-210X.12382.
  • Gain, C, and O. François. 2021. LEA 3: factor models in population genetics and ecological genomics with R. Molecular Ecology Resources 21 (8):2738–48. doi: 10.1111/1755-0998.13366.
  • Gamboa-Delgado, J., C. Molina-Poveda, D. E. Godínez-Siordia, D. Villarreal-Cavazos, D. Ricque-Marie, and L. E. Cruz-Suárez. 2014. Application of stable isotope analysis to differentiate shrimp extracted by industrial fishing or produced through aquaculture practices. Canadian Journal of Fisheries and Aquatic Sciences 71 (10):1520–8. doi: 10.1139/cjfas-2014-0005.
  • González, S., F. Álvarez-Valin, and J. E. Maldonado. 2002. Morphometric differentiation of endangered pampas deer (Ozotoceros bezoarticus), with description of new subspecies from Uruguay. Journal of Mammalogy 83 (4):1127–40. doi: 10.1644/1545-1542(2002)083 < 1127:MDOEPD>2.0.CO;2.
  • Gonzalez-Martinez, A., M. Lopez, H. M. Molero, J. Rodriguez, M. González, C. Barba, and A. García. 2020. Morphometric and meristic characterization of native chame fish (Dormitator latifrons) in Ecuador using multivariate analysis. Animals 10 (10):1805–16. doi: 10.3390/ani10101805.
  • Grazina, L., P. J. Rodrigues, G. Igrejas, M. A. Nunes, I. Mafra, M. Arlorio, M. Oliveira, and J. S. Amaral. 2020. Machine learning approaches applied to GC-FID fatty acid profiles to discriminate wild from farmed salmon. Foods 9 (11):1622–15. doi: 10.3390/foods9111622.
  • Guo, X., R. Cai, S. Wang, B. Tang, Y. Li, and W. Zhao. 2018. Non-destructive geographical traceability of sea cucumber (Apostichopus japonicus) using near infrared spectroscopy combined with chemometric methods. Royal Society Open Science 5 (1):170714–2. doi: http://dx.doi.org/10.1098/rsos.170714.
  • Han, C., S. Dong, L. Li, Q. Gao, and Y. Zhou. 2021. Evaluation of elemental analysis assisted by chemometrics for authenticating production methods and geographical origins of salmonids. Aquaculture 545:737210–8. doi: 10.1016/j.aquaculture.2021.737210.
  • Han, C., S. Dong, L. Li, F. Wei, Y. Zhou, and Q. Gao. 2020. The effect of the seasons on geographical traceability of salmonid based on multi-element analysis. Food Control. 109:106893–10. doi: 10.1016/j.foodcont.2019.106893.
  • Haniffa, M. A., M. Nagarajan, A. Gopalakrishnan, and K. K. Musammilu. 2007. Allozyme variation in a threatened freshwater fish, spotted murrel (Channa punctatus) in a South Indian river system. Biochemical Genetics 45 (3-4):363–74. doi: 10.1007/s10528-007-9080-3.
  • Holland, S. M. 2008. Non-metric multidimensional scaling (MDS), 1–7. Athens, GA: Department of Geology, University of Georgia. https://strata.uga.edu/software/pdf/mdsTutorial.pdf.
  • Hu, W., X. X. Guo, X. C. Wang, Y. Zhao, S. Q. Sun, C. H. Xu, and Y. Liu. 2016. Rapid discrimination of different grades of white croaker surimi by tri-step infrared spectroscopy combined with soft independent modeling of class analogy (SIMCA). Food Analytical Methods 9 (4):831–9. doi: 10.1007/s12161-015-0258-8.
  • Janse, R. J., T. Hoekstra, K. J. Jager, C. Zoccali, G. Tripepi, F. W. Dekker, and M. van Diepen. 2021. Conducting correlation analysis: important limitations and pitfalls. Clinical Kidney Journal 14 (11):2332–7. doi: 10.1093/ckj/sfab085.
  • Johnson, R. A., and D. W. Wichern, eds. 2007. Aspects of multivariate analysis. In Applied multivariate statistical analysis, 1–48. Hoboken, NJ: Pearson Prentice Hall.
  • Jones, R. C, and C. C. Clark. 1987. Impact of watershed urbanization on stream insect communities. Journal of the American Water Resources Association 23 (6):1047–55. doi: 10.1111/j.1752-1688.1987.tb00854.x.
  • Karoui, R., A. Hassoun, and P. Ethuin. 2017. Front face fluorescence spectroscopy enables rapid differentiation of fresh and frozen-thawed sea bass (Dicentrarchus labrax) fillets. Journal of Food Engineering 202:89–98. doi: 10.1016/j.jfoodeng.2017.01.018.
  • Katano, O., K. Hosoya, K. Iguchi, M. Yamaguchi, Y. Aonuma, and S. Kitano. 2003. Species diversity and abundance of freshwater fishes in irrigation ditches around rice fields. Environmental Biology of Fishes 66 (2):107–21. doi: 10.1023/A:1023678401886.
  • Kotsanopoulos, K. V., A. Exadactylos, G. A. Gkafas, P. V. Martsikalis, F. F. Parlapani, I. S. Boziaris, and I. S. Arvanitoyannis. 2021. The use of molecular markers in the verification of fish and seafood authenticity and the detection of adulteration. Comprehensive Reviews in Food Science and Food Safety 20 (2):1584–654. doi: 10.1111/1541-4337.12719.
  • Kumar, B. V., A. Mahalanobis, and R. D. Juday. 2005. Correlation pattern recognition. Vancouver: Cambridge University Press.
  • Lewandowski, D., R. M. Cooke, and R. Tebbens. 2007. Sample-based estimation of correlation ratio with polynomial approximation. ACM Transactions on Modeling and Computer Simulation 18 (1):1–16. doi: 10.1145/1315575.1315578.
  • Li, L., C. E. Boyd, and S. Dong. 2015. Chemical profiling with modeling differentiates Ictalurid catfish produced in fertilized and feeding ponds. Food Control. 50:18–22. doi: 10.1016/j.foodcont.2014.08.014.
  • Li, L., C. E. Boyd, and J. Odom. 2014. Identification of Pacific white shrimp (Litopenaeus vannamei) to rearing location using elemental profiling. Food Control. 45:70–5. doi: 10.1016/j.foodcont.2014.03.013.
  • Li, L., C. Han, S. Dong, and C. E. Boyd. 2019. Use of elemental profiling and isotopic signatures to differentiate Pacific white shrimp (Litopenaeus vannamei) from freshwater and seawater culture areas. Food Control. 95:249–56. doi: 10.1016/j.foodcont.2018.08.015.
  • Lishchenko, F, and B. Jones. 2021. Application of shape analyses to recording structures of marine organisms for stock discrimination and taxonomic purposes. Frontiers in Marine Science 8:1–26. doi: 10.3389/fmars.2021.667183.
  • Liu, X., J. S. Teixeira, S. Ner, K. V. Ma, N. Petronella, S. Banerjee, and J. Ronholm. 2020. Exploring the potential of the microbiome as a marker of the geographic origin of fresh seafood. Frontiers in Microbiology 11 (696):1–9. doi: 10.3389/fmicb.2020.00696.
  • Liu, X., L. Zhang, L. You, J. Yu, M. Cong, Q. Wang, F. Li, L. Li, J. Zhao, C. Li, et al. 2011. Assessment of Clam Ruditapes philippinarum as heavy metal bioindicators using NMR based metabolomics. CLEAN - Soil, Air, Water 39 (8):759–66. doi: 10.1002/clen.201000410.
  • López, M. I., N. Colomer, I. Ruisánchez, and M. P. Callao. 2014. Validation of multivariate screening methodology. Case study: detection of food fraud. Analytica Chimica Acta 827:28–33. doi: 10.1016/j.aca.2014.04.019.
  • Lourie, S. A, and A. C. J. Vincent. 2004. Using biogeography to help set priorities in marine conservation. Conservation Biology 18 (4):1004–20. doi: https://www.jstor.org/stable/3589174.
  • Lu, C.-P., B. L. Smith, M. G. Hinton, and J. R. A. Bremer. 2016. Bayesian analyses of Pacific swordfish (Xiphias gladius L.) genetic differentiation using multilocus single nucleotide polymorphism (SNP) data. Journal of Experimental Marine Biology and Ecology 482:1–17. doi: 10.1016/j.jembe.2016.03.010.
  • Maluly, H. D. B., A. Porcari, I. Cunha, M. T. B. Pacheco, M. N. Eberlin, and R. M. Alberici. 2019. The impacts of the raising regime of Salmon species on their triacylglycerol composition revealed by easy ambient sonic-spray ionization mass spectrometry. Food Research International (Ottawa, Ont.) 120:19–25. doi: 10.1016/j.foodres.2019.01.066.
  • Marchetti, P., A. Mottola, R. Piredda, G. Ciccarese, and A. Di Pinto. 2020. Determining the authenticity of shark meat products by DNA sequencing. Foods 9 (9):1194. doi: 10.3390/foods9091194.
  • Martsikalis, P. V., M. Kavouras, G. A. Gkafas, A. P. Apostolidis, I. S. Boziaris, and A. Exadactylos. 2018. Morphological and free amino acid profile variability, as a tool for stock identification among farmed rainbow trout Oncorhynchus mykiss of different origin. Aquaculture Research 49 (2):621–30. doi: 10.1111/are.13491.
  • Massaro, A., R. Stella, A. Negro, M. Bragolusi, B. Miano, G. Arcangeli, G. Biancotto, R. Piro, and A. Tata. 2021. New strategies for the differentiation of fresh and frozen/thawed fish: a rapid and accurate non-targeted method by ambient mass spectrometry and data fusion (part A). Food Control. 130:108364. doi: 10.1016/j.foodcont.2021.108364.
  • McClelland, M. A, and G. G. Sass. 2012. Assessing fish collections from random and fixed site sampling methods on the Illinois River. Journal of Freshwater Ecology 27 (3):325–33. doi: 10.1080/02705060.2012.658213.
  • Miller, K., B. Alvarez, C. Battershill, P. Northcote, and H. Parthasarathy. 2001. Genetic, morphological, and chemical divergence in the sponge genus Latrunculia (Porifera: Demospongiae) from New Zealand. Marine Biology 139 (2):235–50. doi: 10.1007/s002270100574.
  • Mojekwu, T. O, and C. I. Anumudu. 2015. Advanced techniques for morphometric analysis in fish. Journal of Aquaculture Research and Development 6 (8):1–6. doi: 10.4172/2155-9546.1000354.
  • Morgan-Richards, M., M. Bulgarella, L. Sivyer, E. J. Dowle, M. Hale, N. E. McKean, and S. A. Trewick. 2017. Explaining large mitochondrial sequence differences within a population sample. Royal Society Open Science 4 (11):170730–13. doi: 10.1098/rsos.170730.
  • Mounir, A., A. Ewague, M. Znari, and H. Elmghazli. 2019. Discrimination of the phenotypic sardine Sardina pilchardus stocks off the Moroccan Atlantic coast using a morphometric analysis. African Journal of Marine Science 41 (2):137–44. doi: 10.2989/1814232X.2019.1597765.
  • Naccarato, A., E. Furia, G. Sindona, and A. Tagarelli. 2016. Multivariate class modeling techniques applied to multielement analysis for the verification of the geographical origin of chili pepper. Food Chemistry 206:217–22. doi: 10.1016/j.foodchem.2016.03.072.
  • Nantón, A., A. Arias-Pérez, R. Freire, J. Fernández-Pérez, S. Nóvoa, and J. Méndez. 2017. Microsatellite variation in Donax trunculus from the Iberian Peninsula, with particular attention to Galician estuaries (NW Spain. )Estuarine, Coastal and Shelf Science 197:27–34. doi: 10.1016/j.ecss.2017.08.011.
  • Nikolaou, M., N. Neofitou, K. Skordas, I. Castritsi-Catharios, and L. Tziantziou. 2014. Fish farming and anti-fouling paints: a potential source of Cu and Zn in farmed fish. Aquaculture Environment Interactions 5 (2):163–71. doi: 10.3354/AEI00101.
  • Onogi, 2019. Comparison of F-tests for univariate and multivariate mixed-effect models in genome-wide association mapping. Frontiers in Genetics 10:1–8. doi: 10.3389/fgene.2019.00030.
  • Ortea, I, and J. M. Gallardo. 2015. Investigation of production method, geographical origin and species authentication in commercially relevant shrimps using stable isotope ratio and/or multi-element analyses combined with chemometrics: an exploratory analysis. Food Chemistry 170:145–53. doi: 10.1016/j.foodchem.2014.08.049.
  • Ouyang, X., J. Gao, M. Xie, B. Liu, L. Zhou, B. Chen, J. Jourdan, R. Riesch, and M. Plath. 2018. Natural and sexual selection drive multivariate phenotypic divergence along climatic gradients in an invasive fish. Scientific Reports 8 (1):11164–22. doi: 10.1038/s41598-018-29254-4.
  • Palmer, M., G. X. Pons, and M. Linde. 2004. Discriminating between geographical groups of a Mediterranean commercial clam (Chamelea gallina (L.): Veneridae) by shape analysis. Fisheries Research 67 (1):93–8. doi: 10.1016/j.fishres.2003.07.006.
  • Picone, G., S. B. Engelsen, F. Savorani, S. Testi, A. Badiani, and F. Capozzi. 2011. Metabolomics as a powerful tool for molecular quality assessment of the fish Sparus aurata. Nutrients 3 (2):212–27. doi: 10.3390/nu3020212.
  • Pimentel, T., J. Marcelino, F. Ricardo, A. Soares, and R. Calado. 2017. Bacterial communities 16S rDNA fingerprinting as a potential tracing tool for cultured seabass Dicentrarchus labrax. Scientific Reports 7 (1):1–10. doi: 10.1038/s41598-017-11552-y.
  • Poćwierz-Kotus, A., A. Kijewska, C. Petereit, R. Bernaś, B. Więcaszek, M. Arnyasi, S. Lien, M. P. Kent, and R. Wenne. 2015. Genetic differentiation of brackish water populations of cod Gadus morhua in the southern Baltic, inferred from genotyping using SNP-arrays. Marine Genomics 19:17–22. doi: 10.1016/j.margen.2014.05.010.
  • Pukk, L., R. Gross, M. Vetemaa, and A. Vasem.gi. 2016. Genetic discrimination of brackish and freshwater populations of Eurasian perch (Perca fluviatilis L.) in the Baltic Sea drainage: implications for fish forensics. Fisheries Research 183:155–64. doi: 10.1016/j.fishres.2016.05.027.
  • Raykov, T, and G. A. Marcoulides, eds. 2008. Introduction to multivariate statistics. In An introduction of applied multivariate analysis, 1–30. New York, NY: Routledge Taylor and Frances Group.
  • Refsgaard, H. H. F., P. B. Brockhoff, and B. Jensen. 1998. Sensory and chemical changes in farmed atlantic salmon (Salmo salar) during frozen storage. Journal of Agricultural and Food Chemistry 46 (9):3473–9. doi: 10.1021/jf980309q.
  • Schönhuth, S., G. Luikart, and I. Doadrio. 2003. Effects of a founder event and supplementary introductions on genetic variation in a captive breeding population of the endangered Spanish killifish. Journal of Fish Biology 63 (6):1538–51. doi: 10.1111/j.1095-8649.2003.00265.x.
  • Shao, Y., J. Wang, Y. Qiao, Y. He, and W. Cao. 2007. Morphological variability between wild populations and inbred stocks of a Chinese minnow, Gobiocypris rarus. Zoological Science 24 (11):1094–102. doi: 10.2108/zsj.24.1094.
  • Shen, Q., G. Song, Q. Zhao, P. Wang, H. Yang, J. Xue, H. Wang, Y. Cui, and H. Wang. 2022. Detection of lipidomics characterization of tuna meat during different wet-aging stages using iKnife rapid evaporative ionization mass spectrometry. Food Research International 156:111307. doi: 10.1016/j.foodres.2022.111307.
  • Taboada, L., A. Sánchez, and C. G. Sotelo. 2017. A new real-time PCR method for rapid and specific detection of ling (Molvamolva). Food Chemistry 228:469–75. doi: 10.1016/j.foodchem.2017.01.117.
  • Thibert-Plante, X., K. Praebel, K. Østbye, K. K. Kahilainen, P.-A. Amundsen, and S. Gavrilets. 2020. Using mathematical modelling to investigate the adaptive divergence of whitefish in Fennoscandia. Scientific Reports 10 (1):7394–12. doi: 10.1038/s41598-020-63684-3.
  • Truonghuynh, H. T., B. Li, and G. K. Jaganathan. 2020. Differentiate the fatty acids profiles of large yellow croaker (Pseudosciaena crocea) fed with trash, commercial and formulated diets. International Journal of Fisheries and Aquatic Studies 8 (3):292–7.
  • Uddin, M., E. Okazaki, S. Turza, Y. Yumiko, M. Tanaka, and Y. Fukuda. 2005. Non‐destructive visible/NIR spectroscopy for differentiation of fresh and frozen‐thawed fish. Journal of Food Science 70 (8):c506–10. doi: 10.1111/j.1365-2621.2005.tb11509.x.
  • Vajargah, M. F., M. H. Gerami, M. Sattari, and A. Hedayati. 2020. Morphological analysis of Alburnoides samiii from Toolkhone river, Guilan province, south Caspian Sea basin. Iranian Journal of Fisheries Sciences 19 (2):1015–23. doi: 10.22092/IJFS.2019.118130.
  • Velasco, A., G. Ramilo-Fernández, and C. G. Sotelo. 2020. A real-time PCR method for the authentication of common cuttlefish (Sepia officinalis) in food products. Foods 9 (3):286. doi: 10.3390/foods9030286.
  • Vella, A., N. Vella, F. S. Karakulak, I. Oray, S. Garcia-Tiscar, and R. de Stephanis. 2016. Population genetics of Atlantic bluefin tuna, Thunnus thynnus (Linnaeus, 1758), in the Mediterranean: implications for its conservation management. Journal of Applied Ichthyology 32 (3):523–31. doi: 10.1111/jai.13035.
  • Venables, W. N, and C. M. Dichmont. 2004. GLMs, GAMs and GLMMs: an overview of theory for applications in fisheries research. Fisheries Research 70 (2-3):319–37. doi: 10.1016/j.fishres.2004.08.011.
  • Wang, X, and A. Ma. 2020. Dynamic genetic analysis for body weight and main length ratio in turbot Scophthalmus maximus. Acta Oceanologica Sinica 39 (2):22–7. doi: 10.1007/s13131-020-1551-y.
  • Wang, Y. V., A. H. L. Wan, E.-J. Lock, N. Andersen, C. Winter-Schuh, and T. Larsen. 2018. Know your fish: a novel compound-specific isotope approach for tracing wild and farmed salmon. Food Chemistry 256:380–9. doi: 10.1016/j.foodchem.2018.02.095.
  • Wang, W. L., W. H. Chen, H. Y. Tian, and Y. Liu. 2018. Detection of frozen-thawed cycles for frozen tilapia (oreochromis) fillets using near infrared spectroscopy. Journal of Aquatic Food Product Technology 27 (5):609–18. doi: 10.1080/10498850.2018.1461156.
  • Wang, C., H. Bi, and J. Xie. 2020. Visualization of the distance among fishes by MALDI MS for rapid determination of the taxonomic status of fish fillets. Journal of Agricultural and Food Chemistry 68 (31):8438–46. doi: 10.1021/acs.jafc.0c01291.
  • Wold, S., K. Esbensen, and P. Geladi. 1987. Principal component analysis. Chemometrics and Intelligent Laboratory Systems 2 (1–3):37–52. doi: 10.1016/0169-7439(87)80084-9.
  • Wu, J., W. Wang, D. Deng, K. Zhang, S. Peng, X. Xu, Y. Zhang, and Z. Zhou. 2019. Genetic diversity and phylogeography of Daphnia similoides sinensis located in the middle and lower reaches of the Yangtze River. Ecology and Evolution 9 (8):4362–72. doi: 10.1002/ece3.4880.
  • Xu, T., J. Sun, J. Lv, H. K. Watanabe, T. Li, W. Zou, G. W. Rouse, S. Wang, P.-Y. Qian, Z. Bao, et al. 2017. Genome-wide discovery of single nucleotide polymorphisms (SNPs) and single nucleotide variants (SNVs) in deep-sea mussels: potential use in population genomics and cross-species application. Deep Sea Research Part II: Topical Studies in Oceanography 137:318–26. doi: 10.1016/j.dsr2.2016.03.011.
  • Yu, X., L. Li, H. Wang, G. Song, J. Wang, S. Li, Y. Wang, and Q. Shen. 2020. Lipidomics study of rainbow trout (Oncorhynchus mykiss) and salmons (Oncorhynchus tshawytscha and Salmo salar) using hydrophilic interaction chromatography and mass spectrometry. Lwt 121:108988–10. doi: 10.1016/j.lwt.2019.108988.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.