1,392
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Recent advances on characterization of protein oxidation in aquatic products: A comprehensive review

, , , ORCID Icon, ORCID Icon, & show all

References

  • Adeyeye, S. A. O. 2019. Smoking of fish: A critical review. Journal of Culinary Science & Technology 17 (6):559–75. doi: 10.1080/15428052.2018.1495590.
  • Akagawa, M. 2021. Protein carbonylation: Molecular mechanisms, biological implications, and analytical approaches. Free Radical Research 55 (4):307–20. doi: 10.1080/10715762.2020.1851027.
  • Ayala, A., M. F. Muñoz, and S. Argüelles. 2014. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity 2014:360438. doi: 10.1155/2014/360438.
  • Bao, Y, and P. Ertbjerg. 2019. Effects of protein oxidation on the texture and water-holding of meat: A review. Critical Reviews in Food Science and Nutrition 59 (22):3564–78. doi: 10.1080/10408398.2018.1498444.
  • Baron, C. P. 2014. Protein oxidation in aquatic products. In Antixoidants and Functional Components in aquatic foods, ed. H. G. Kristinsson, 23–42. UK: Wiley Blackwell.
  • Bekhit, A. E. A., D. L. Hopkins, F. T. Fahri, and E. N. Ponnampalam. 2013. Oxidative processes in muscle systems and fresh meat: Sources, markers, and remedies. Comprehensive Reviews in Food Science and Food Safety 12 (5):565–97. doi: 10.1111/1541-4337.12027.
  • Bernevic, B., B. A. Petre, D. Galetskiy, C. Werner, M. Wicke, K. Schellander, and M. Przybylski. 2011. Degradation and oxidation postmortem of myofibrillar proteins in porcine skeleton muscle revealed by high resolution mass spectrometric proteome analysis. International Journal of Mass Spectrometry 305 (2-3):217–27. doi: 10.1016/j.ijms.2010.11.010.
  • Bian, C., H. Yu, K. Yang, J. Mei, and J. Xie. 2022. Effects of single-, dual-, and multi-frequency ultrasound-assisted freezing on the muscle quality and myofibrillar protein structure in large yellow croaker (Larimichthys crocea). Food Chemistry: X 15:100362. doi: 10.1016/j.fochx.2022.100362.
  • Birnie-Gauvin, K., D. Costantini, S. J. Cooke, and W. G. Willmore. 2017. A comparative and evolutionary approach to oxidative stress in fish: A review. Fish and Fisheries 18 (5):928–42. doi: 10.1111/faf.12215.
  • Borràs, E, and E. Sabidó. 2017. What is targeted proteomics? A concise revision of targeted acquisition and targeted data analysis in mass spectrometry. Proteomics 17 (17–18):1700180. doi: 10.1002/pmic.201700180.
  • Bouletis, A. D., I. S. Arvanitoyannis, and C. Hadjichristodoulou. 2017. Application of modified atmosphere packaging on aquacultured fish and fish products: A review. Critical Reviews in Food Science and Nutrition 57 (11):2263–85. doi: 10.1080/10408398.2013.862202.
  • Brand, M. D. 2010. The sites and topology of mitochondrial superoxide production. Experimental Gerontology 45 (7-8):466–72. doi: 10.1016/j.exger.2010.01.003.
  • Cabiscol, E., J. Tamarit, and J. Ros. 2014. Protein carbonylation: Proteomics, specificity and relevance to aging. Mass Spectrometry Reviews 33 (1):21–48. doi: 10.1002/mas.21375.
  • Cadet, J., K. J. A. Davies, M. H. Medeiros, P. Di Mascio, and J. R. Wagner. 2017. Formation and repair of oxidatively generated damage in cellular DNA. Free Radical Biology & Medicine 107:13–34. doi: 10.1016/j.freeradbiomed.2016.12.049.
  • Chaijan, M., W. Panpipat, and M. Nisoa. 2017. Chemical deterioration and discoloration of semi-dried tilapia processed by sun drying and microwave drying. Drying Technology 35 (5):642–9. doi: 10.1080/07373937.2016.1199565.
  • Chen, Z., F. Leinisch, I. Greco, W. Zhang, N. Shu, C. Y. Chuang, M. N. Lund, and M. J. Davies. 2019. Characterisation and quantification of protein oxidative modifications and amino acid racemisation in powdered infant milk formula. Free Radical Research 53 (1):68–81. doi: 10.1080/10715762.2018.1554250.
  • Cheng, S., W. Su, L. Yuan, and M. Tan. 2021. Recent developments of drying techniques for aquatic products: With emphasis on drying process monitoring with innovative methods. Drying Technology 39 (11):1577–94. doi: 10.1080/07373937.2021.1895205.
  • Cropotova, J., R. Mozuraityte, I. B. Standal, M. S. Grovlen, and T. Rustad. 2019. Superchilled, chilled and frozen storage of Atlantic mackerel (Scomber scombrus) fillets – Changes in texture, drip loss, protein solubility and oxidation. International Journal of Food Science & Technology 54 (6):2228–35. doi: 10.1111/ijfs.14136.
  • Cropotova, J, and T. Rustad. 2019. A novel fluorimetric assay for visualization and quantification of protein carbonyls in muscle foods. Food Chemistry 297:125006. doi: 10.1016/j.foodchem.2019.125006.
  • Dalsgaard, T. K., J. H. Nielsen, B. E. Brown, N. Stadler, and M. J. Davies. 2011. Dityrosine, 3,4-dihydroxyphenylalanine (DOPA), and radical formation from tyrosine residues on milk proteins with globular and flexible structures as a result of riboflavin-mediated photo-oxidation. Journal of Agricultural and Food Chemistry 59 (14):7939–47. doi: 10.1021/jf200277r.
  • Daskalova, A. 2019. Farmed fish welfare: Stress, post-mortem muscle metabolism, and stress-related meat quality changes. International Aquatic Research 11 (2):113–24. doi: 10.1007/s40071-019-0230-0.
  • Dawood, M. A. O., S. Koshio, and M. A. Esteban. 2018. Beneficial roles of feed additives as immunostimulants in aquaculture: A review. Reviews in Aquaculture 10 (4):950–74. doi: 10.1111/raq.12209.
  • Davies, M. J. 2005. The oxidative environment and protein damage. Biochimica et Biophysica Acta 1703 (2):93–109. doi: 10.1016/j.bbapap.2004.08.007.
  • Dunn, J. D., L. A. J. Alvarez, X. Zhang, and T. Soldati. 2015. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis. Redox Biology 6:472–85. doi: 10.1016/j.redox.2015.09.005.
  • Ehrenshaft, M., L. J. Deterding, and R. P. Mason. 2015. Tripping up Trp: Modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences. Free Radical Biology & Medicine 89:220–8. doi: 10.1016/j.freeradbiomed.2015.08.003.
  • Ellman, G. L. 1959. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 82 (1):70–7. doi: 10.1016/0003-9861(59)90090-6.
  • Estévez, M. 2011. Protein carbonyls in meat systems: A review. Meat Science 89 (3):259–79. doi: 10.1016/j.meatsci.2011.04.025.
  • Estévez, M., V. Ollilainen, and M. Heinonen. 2009. Analysis of protein oxidation markers alpha-aminoadipic and gamma-glutamic semialdehydes in food proteins using liquid chromatography (LC)-electrospray ionization (ESI)-multistage tandem mass spectrometry (MS). Journal of Agricultural and Food Chemistry 57 (9):3901–10. doi: 10.1021/jf804017p.
  • Estévez, M., P. Padilla, L. Carvalho, L. Martin, A. Carrapiso, and J. Delgado. 2019. Malondialdehyde interferes with the formation and detection of primary carbonyls in oxidized proteins. Redox Biology 26:101277. doi: 10.1016/j.redox.2019.101277.
  • Eymard, S., C. P. Baron, and C. Jacobsen. 2009. Oxidation of lipid and protein in horse mackerel (Trachurus trachurus) mince and washed minces during processing and storage. Food Chemistry 114 (1):57–65. doi: 10.1016/j.foodchem.2008.09.030.
  • Fang, M., S. Xiong, T. Yin, Y. Hu, R. Liu, H. Du, Y. Liu, and J. You. 2021. Proteomic profiling and oxidation site analysis of gaseous ozone oxidized myosin from silver carp (Hypophthalmichthys molitrix) with different oxidation degrees. Food Chemistry 363:130307. doi: 10.1016/j.foodchem.2021.130307.
  • FAO. 2020. The state of World fisheries and aquaculture: Sustainablity in action, 3. Rome: Food and Agriculture Organization of the United Nations.
  • Fedorova, M., N. Kuleva, and R. Hoffmann. 2010. Identification of cysteine, methionine and tryptophan residues of actin oxidized in vivo during oxidative stress. Journal of Proteome Research 9 (3):1598–609. doi: 10.1021/pr901099e.
  • Feng, X., C. Li, N. Ullah, R. M. Hackman, L. Chen, and G. Zhou. 2015. Potential biomarker of myofibrillar protein oxidation in raw and cooked ham: 3-nitrotyrosine formed by nitrosation. Journal of Agricultural and Food Chemistry 63 (51):10957–64. doi: 10.1021/acs.jafc.5b04107.
  • Gallego, M., L. Mora, and F. Toldrá. 2018a. Differences in peptide oxidation between muscles in 12 months Spanish dry-cured ham. Food Research International (Ottawa, Ontario) 109:343–9. doi: 10.1016/j.foodres.2018.04.045.
  • Gallego, M., L. Mora, and F. Toldrá. 2018b. Evolution of oxidised peptides during the processing of 9 months Spanish dry-cured ham. Food Chemistry 239:823–30. doi: 10.1016/j.foodchem.2017.06.159.
  • Ge, G., Y. Han, J. Zheng, M. Zhao, and W. Sun. 2020. Physicochemical characteristics and gel-forming properties of myofibrillar protein in an oxidative system affected by partial substitution of NaCl with KCl, MgCl2 or CaCl2. Food Chemistry 309:125614. doi: 10.1016/j.foodchem.2019.125614.
  • Gomez-Estaca, J., M. C. Gomez-Guillen, P. Montero, P. Sopelana, and M. D. Guillen. 2011. Oxidative stability, volatile components and polycyclic aromatic hydrocarbons of cold-smoked sardine (Sardina pilchardus) and dolphinfish (Coryphaena hippurus). LWT - Food Science and Technology 44 (6):1517–24. doi: 10.1016/j.lwt.2011.02.006.
  • Guo, X., S. Chen, J. Cao, J. Zhou, Y. Chen, M. A. Jamali, and Y. Zhang. 2019. Hydrolysis and oxidation of protein and lipids in dry-salted grass carp (Ctenopharyngodon idella) as affected by partial substitution of NaCl with KCl and amino acids. RSC Advances 9 (68):39545–60. doi: 10.1039/c9ra07019b.
  • Gupta, V, and K. S. Carroll. 2014. Sulfenic acid chemistry, detection and cellular lifetime. Biochimica et Biophysica Acta 1840 (2):847–75. doi: 10.1016/j.bbagen.2013.05.040.
  • Hawkins, C. L, and M. J. Davies. 2019. Detection, identification, and quantification of oxidative protein modifications. The Journal of Biological Chemistry 294 (51):19683–708. doi: 10.1074/jbc.REV119.006217.
  • Hellwig, M. 2019. The chemistry of protein oxidation in food. Angewandte Chemie (International ed. in English) 58 (47):16742–63. doi: 10.1002/anie.201814144.
  • Hoseinifar, S. H., S. Yousefi, H. Van Doan, G. Ashouri, G. Gioacchini, F. Maradonna, and O. Carnevali. 2021. Oxidative stress and antioxidant defense in fish: The implications of probiotic, prebiotic, and synbiotics. Reviews in Fisheries Science & Aquaculture 29 (2):198–217. doi: 10.1080/23308249.2020.1795616.
  • Houée-Lévin, C., K. Bobrowski, L. Horakova, B. Karademir, C. Schöneich, M. J. Davies, and C. M. Spickett. 2015. Exploring oxidative modifications of tyrosine: An update on mechanisms of formation, advances in analysis and biological consequences. Free Radical Research 49 (4):347–73. doi: 10.3109/10715762.2015.1007968.
  • Hu, L., S. Ren, Q. Shen, J. Chen, X. Ye, and J. Ling. 2017. Proteomic study of the effect of different cooking methods on protein oxidation in fish fillets. RSC Advances 7 (44):27496–505. doi: 10.1039/C7RA03408C.
  • Iwasaki, Y., K. Mochizuki, Y. Nakano, N. Maruya, M. Goto, Y. Maruyama, R. Ito, K. Saito, and H. Nakazawa. 2012. Comparison of fluorescence reagents for simultaneous determination of hydroxylated phenylalanine and nitrated tyrosine by high-performance liquid chromatography with fluorescence detection. Biomedical Chromatography : BMC 26 (1):41–50. doi: 10.1002/bmc.1623.
  • Jiang, J, and Y. Xiong. 2016. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Science 120:107–17. doi: 10.1016/j.meatsci.2016.04.005.
  • Jongberg, S., M. N. Lund, A. L. Waterhouse, and L. H. Skibsted. 2011. 4-Methylcatechol inhibits protein oxidation in meat but not disulfide formation. Journal of Agricultural and Food Chemistry 59 (18):10329–35. doi: 10.1021/jf202268q.
  • Karlsdottir, M. G., H. T. Petty, and H. G. Kristinsson. 2014. Oxidation in aquatic foods and analysis methods. In Antixoidants and functional components in aquatic foods, H. G. Kristinsson, 1–16. UK: Wiley Blackwell.
  • Keppler, J. K., T. R. Heyn, P. M. Meissner, K. Schrader, and K. Schwarz. 2019. Protein oxidation during temperature-induced amyloid aggregation of beta-lactoglobulin. Food Chemistry 289:223–31. doi: 10.1016/j.foodchem.2019.02.114.
  • Kjaersgard, I. V. H., M. R. Nørrelykke, C. P. Baron, and F. Jessen. 2006. Identification of carbonylated protein in frozen Rainbow trout (Oncorhynchus mykiss) fillets and development of protein oxidation during frozen storage. Journal of Agricultural and Food Chemistry 54 (25):9437–46. doi: 10.1021/jf061885m.
  • Kölpin, M, and M. Hellwig. 2019. Quantitation of methionine sulfoxide in milk and milk-based beverages-minimizing artificial oxidation by anaerobic enzymatic hydrolysis. Journal of Agricultural and Food Chemistry 67 (32):8967–76. doi: 10.1021/acs.jafc.9b03605.
  • Lee, J., N. Koo, and D. B. Min. 2004. Reactive oxygen species, aging, and antioxidative nutraceuticals. Comprehensive Reviews in Food Science and Food Safety 3 (1):21–33. doi: 10.1111/j.1541-4337.2004.tb00058.x.
  • Leinisch, F., M. Mariotti, M. Rykaer, C. Lopez-Alarcon, P. Hagglund, and M. J. Davies. 2017. Peroxyl radical- and photo-oxidation of glucose 6-phosphate dehydrogenase generates cross-links and functional changes via oxidation of tyrosine and tryptophan residues. Free Radical Biology & Medicine 112:240–52. doi: 10.1016/j.freeradbiomed.2017.07.025.
  • Levine, R. L., D. Garland, C. N. Oliver, A. Amici, I. Climent, A. G. Lenz, B. W. Ahn, S. Shaltiel, and E. R. Stadtman. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology 186:464–78. doi: 10.1016/0076-6879(90)86141-H.
  • Li, D., Z. Tan, Z. Liu, C. Wu, H. Liu, C. Guo, and D. Zhou. 2021. Effect of hydroxyl radical induced oxidation on the physicochemical and gelling properties of shrimp myofibrillar protein and its mechanism. Food Chemistry 351:129344. doi: 10.1016/j.foodchem.2021.129344.
  • Li, C., S. B. Nielsen, K. Engholm-Keller, and M. N. Lund. 2022. Oxidation of whey proteins during thermal treatment characterized by a site-specific LC–MS/MS-based proteomic approach. Journal of Agricultural and Food Chemistry 70 (14):4391–406. doi: 10.1021/acs.jafc.1c07946.
  • Li, P., J. Mei, and J. Xie. 2021. Chitosan-sodium alginate bioactive coatings containing ε-polylysine combined with high CO2 modified atmosphere packaging inhibit myofibril oxidation and degradation of farmed pufferfish (Takifugu obscurus) during cold storage. LWT 140:110652. doi: 10.1016/j.lwt.2020.110652.
  • Li, X., C. Liu, J. Wang, K. Zhou, S. Yi, W. Zhu, Y. Xu, H. Lin, and J. Li. 2020. Effect of hydroxyl radicals on biochemical and functional characteristics of myofibrillar protein from large yellow croaker (Pseudosciaena crocea). Journal of Food Biochemistry 44 (1):e13084. doi: 10.1111/jfbc.13084.
  • Li, Y., B. Kong, X. Xia, Q. Liu, and X. Diao. 2013. Structural changes of the myofibrillar proteins in common carp (Cyprinus carpio) muscle exposed to a hydroxyl radical-generating system. Process Biochemistry 48 (5-6):863–70. doi: 10.1016/j.procbio.2013.03.015.
  • Lin, H.-M., X.-E. Qi, S.-S. Shui, S. Benjakul, S. P. Aubourg, and B. Zhang. 2021. Label-free proteomic analysis revealed the mechanisms of protein oxidation induced by hydroxyl radicals in whiteleg shrimp (Litopenaeus vannamei) muscle. Food & Function 12 (10):4337–48. doi: 10.1039/D1FO00380A.
  • Lin, J., H. Hong, L. Zhang, C. Zhang, and Y. Luo. 2019. Antioxidant and cryoprotective effects of hydrolysate from gill protein of bighead carp (Hypophthalmichthys nobilis) in preventing denaturation of frozen surimi. Food Chemistry 298:124868. doi: 10.1016/j.foodchem.2019.05.142.
  • Liu, C., W. Li, M. Zhou, S. Yi, B. Ye, H. Mi, J. Li, J. Wang, and X. Li. 2021. Effect of oxidation modification induced by peroxyl radicals on the physicochemical and gel characteristics of grass carp myofibrillar protein. Journal of Food Measurement and Characterization 15 (6):5572–83. doi: 10.1007/s11694-021-01123-1.
  • Liu, Y., L. Zhang, S. Gao, Y. Bao, Y. Tan, Y. Luo, X. Li, and H. Hong. 2022. Effect of protein oxidation in meat and exudates on the water holding capacity in bighead carp (Hypophthalmichthys nobilis) subjected to frozen storage. Food Chemistry 370:131079. doi: 10.1016/j.foodchem.2021.131079.
  • Liu, Z., D. Li, L. Song, Y. Liu, M. Yu, M. Zhang, K. Rakariyatham, D. Zhou, and F. Shahidi. 2020. Effects of proteolysis and oxidation on mechanical properties of sea cucumber (Stichopus japonicus) during thermal processing and storage and their control. Food Chemistry 330:127248. doi: 10.1016/j.foodchem.2020.127248.
  • Lu, H., F. Li, and S. Lin. 2007. Site specificity of alpha-H abstraction reaction among secondary structure motif – An ab initio study. Journal of Computational Chemistry 28 (4):783–94. doi: 10.1002/jcc.20605.
  • Lu, H., Y. Luo, and R. Lametsch. 2018. Proteomic profiling of oxidized cysteine and methionine residues by hydroxyl radicals in myosin of pork. Food Chemistry 243:277–84. doi: 10.1016/j.foodchem.2017.09.076.
  • Lu, H., L. Zhang, Q. Li, and Y. Luo. 2017. Comparison of gel properties and biochemical characteristics of myofibrillar protein from bighead carp (Aristichthys nobilis) affected by frozen storage and a hydroxyl radical-generation oxidizing system. Food Chemistry 223:96–103. doi: 10.1016/j.foodchem.2016.11.143.
  • Lund, M. N., M. Heinonen, C. P. Baron, and M. Estévez. 2011. Protein oxidation in muscle foods: A review. Molecular Nutrition & Food Research 55 (1):83–95. doi: 10.1002/mnfr.201000453.
  • Lushchak, V. I. 2011. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology (Amsterdam, Netherlands) 101 (1):13–30. doi: 10.1016/j.aquatox.2010.10.006.
  • Lykkesfeldt, J, and O. Svendsen. 2007. Oxidants and antioxidants in disease: Oxidative stress in farm animals. Veterinary Journal (London, England : 1997) 173 (3):502–11. doi: 10.1016/j.tvjl.2006.06.005.
  • Jiao, X., B. Yan, J. Huang, J. Zhao, H. Zhang, W. Chen, and D. Fan. 2021. Redox proteomic analysis reveals microwave-induced oxidation modifications of myofibrillar proteins from silver carp (Hypophthalmichthys molitrix). Journal of Agricultural and Food Chemistry 69 (33):9706–15. doi: 10.1021/acs.jafc.1c03045.
  • Khan, S., A. Rehman, H. Shah, R. M. Aadil, A. Ali, Q. Shehzad, W. Ashraf, F. Yang, A. Karim, A. Khaliq, et al. 2020. Fish protein and its derivatives: The novel applications, bioactivities, and their functional significance in food products. Food Reviews International 1–28. doi: 10.1080/87559129.2020.1828452.
  • Maghzal, G. J., K. H. Krause, R. Stocker, and V. Jaquet. 2012. Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radical Biology & Medicine 53 (10):1903–18. doi: 10.1016/j.freeradbiomed.2012.09.002.
  • Mariutti, L. R. B, and N. Bragagnolo. 2017. Influence of salt on lipid oxidation in meat and seafood products: A review. Food Research International (Ottawa, Ontario) 94:90–100. doi: 10.1016/j.foodres.2017.02.003.
  • Mesquita, C. S., R. Oliveira, F. Bento, D. Geraldo, J. V. Rodrigues, and J. C. Marcos. 2014. Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins. Analytical Biochemistry 458:69–71. doi: 10.1016/j.ab.2014.04.034.
  • Minkiewicz, P., J. Dziuba, M. Darewicz, A. Iwaniak, M. Dziuba, and D. Nałeçz. 2008. Food peptidomics. Food Technology and Biotechnology 46 (1):1–10.
  • Mitra, B., R. Lametsch, T. Akcan, and J. Ruiz-Carrascal. 2018. Pork proteins oxidative modifications under the influence of varied time-temperature thermal treatments: A chemical and redox proteomics assessment. Meat Science 140:134–44. doi: 10.1016/j.meatsci.2018.03.011.
  • Mohanty, B. P., A. Mahanty, S. Ganguly, T. Mitra, D. Karunakaran, and R. Anandan. 2019. Nutritional composition of food fishes and their importance in providing food and nutritional security. Food Chemistry 293:561–70. doi: 10.1016/j.foodchem.2017.11.039.
  • Moldogazieva, N. T., I. M. Mokhosoev, N. B. Feldman, and S. V. Lutsenko. 2018. ROS and RNS signalling: Adaptive redox switches through oxidative/nitrosative protein modifications. Free Radical Research 52 (5):507–43. doi: 10.1080/10715762.2018.1457217.
  • Naderi, M., S. Keyvanshokooh, A. Ghaedi, and A. P. Salati. 2018. Effect of acute crowding stress on rainbow trout (Oncorhynchus mykiss): A proteomics study. Aquaculture 495:106–14. doi: 10.1016/j.aquaculture.2018.05.038.
  • Pazos, M., A. P. da Rocha, P. Roepstorff, and A. Rogowska-Wrzesinska. 2011. Fish proteins as targets of ferrous-catalyzed oxidation: Identification of protein carbonyls by fluorescent labeling on two-dimensional gels and MALDI-TOF/TOF mass spectrometry. Journal of Agricultural and Food Chemistry 59 (14):7962–77. doi: 10.1021/jf201080t.
  • Pazos, M., R. Maestre, J. M. Gallardo, and I. Medina. 2013. Proteomic evaluation of myofibrillar carbonylation in chilled fish mince and its inhibition by catechin. Food Chemistry 136 (1):64–72. doi: 10.1016/j.foodchem.2012.07.109.
  • Peterson, A. C., J. D. Russell, D. J. Bailey, M. S. Westphall, and J. J. Coon. 2012. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Molecular & Cellular Proteomics: MCP 11 (11):1475–88. doi: 10.1074/mcp.O112.020131.
  • Poojary, M. M., B. K. Tiwari, and M. N. Lund. 2021. Selective and sensitive UHPLC-ESI-Orbitrap MS method to quantify protein oxidation markers. Talanta 234:122700. doi: 10.1016/j.talanta.2021.122700.
  • Qian, S., P. Dou, J. Wang, L. Chen, X. Xu, G. Zhou, B. Zhu, N. Ullah, and X. Feng. 2021. Effect of MTGase on silver carp myofibrillar protein gelation behavior after peroxidation induced by peroxyl radicals. Food Chemistry 349:129066. doi: 10.1016/j.foodchem.2021.129066.
  • Qiu, X., S. Chen, and H. Lin. 2019. Oxidative stability of dried seafood products during processing and storage: A review. Journal of Aquatic Food Product Technology 28 (3):329–40. doi: 10.1080/10498850.2019.1581317.
  • Rathod, N. B., P. Kulawik, Y. Ozogul, F. Ozogul, and A. E. A. Bekhit. 2022. Recent developments in non-thermal processing for seafood andseafood products: Cold plasma, pulsed electric field and highhydrostatic pressure. International Journal of Food Science & Technology 57 (2):774–90. doi: 10.1111/ijfs.15392.
  • Redza-Dutordoir, M, and D. A. Averill-Bates. 2016. Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta 1863 (12):2977–92. doi: 10.1016/j.bbamcr.2016.09.012.
  • Rutherfurd, S. M, and P. J. Moughan. 2008. Determination of sulfur amino acids in foods as related to bioavailability. Journal of AOAC International 91 (4):907–13. doi: 10.1093/jaoac/91.4.907.
  • Rysman, T., T. Van Hecke, C. Van Poucke, S. D. Smet, and G. Van Royen. 2016. Protein oxidation and proteolysis during storage and in vitro digestion of pork and beef patties. Food Chemistry 209:177–84. doi: 10.1016/j.foodchem.2016.04.027.
  • Salminen, H., H. Jaakkola, and M. Heinonen. 2008. Modifications of tryptophan oxidation by phenolic-rich plant materials. Journal of Agricultural and Food Chemistry 56 (23):11178–86. doi: 10.1021/jf8022673.
  • Schey, K. L, and F. L. Finley. 2000. Identification of peptide oxidation by tandem mass spectrometry. Accounts of Chemical Research 33 (5):299–306. doi: 10.1021/ar9800744.
  • Shahidi, F, and A. Hossain. 2022. Preservation of aquatic food using edible films and coatings containing essential oils: A review. Critical Reviews in Food Science and Nutrition 62 (1):66–105. doi: 10.1080/10408398.2020.1812048.
  • Shen, H., J. S. Elmore, M. Zhao, and W. Sun. 2020. Effect of oxidation on the gel properties of porcine myofibrillar proteins and their binding abilities with selected flavour compounds. Food Chemistry 329:127032. doi: 10.1016/j.foodchem.2020.127032.
  • Shiekh, K. A., W. N. Hozzein, and S. Benjakul. 2020. Effect of pulsed electric field and modified atmospheric packaging on melanosis and quality of refrigerated Pacific white shrimp treated with leaf extract of Chamuang (Garcinia cowa Roxb.). Food Packaging and Shelf Life 25:100544. doi: 10.1016/j.fpsl.2020.100544.
  • Singh, A., R. Kukreti, L. Saso, and S. Kukreti. 2019. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 24 (8):1583. doi: 10.3390/molecules24081583.
  • Soglia, F., M. Petracci, and P. Ertbjerg. 2016. Novel DNPH-based method for determination of protein carbonylation in muscle and meat. Food Chemistry 197 (Pt A):670–5. doi: 10.1016/j.foodchem.2015.11.038.
  • Soladoye, O. P., M. L. Juarez, J. L. Aalhus, P. Shand, and M. Estévez. 2015. Protein oxidation in processed meat: Mechanisms and potential implications on human health. Comprehensive Reviews in Food Science and Food Safety 14 (2):106–22. doi: 10.1111/1541-4337.12127.
  • Stadtman, E. R, and R. L. Levine. 2003. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25 (3–4):207–18. doi: 10.1007/s00726-003-0011-2.
  • Stocker, P., E. Ricquebourg, N. Vidal, C. Villard, D. Lafitte, L. Sellami, and S. Pietri. 2015. Fluorimetric screening assay for protein carbonyl evaluation in biological samples. Analytical Biochemistry 482:55–61. doi: 10.1016/j.ab.2015.04.021.
  • Tacon, A. G. L, and M. Metian. 2013. Fish matters: Importance of aquatic foods in human nutrition and global food supply. Reviews in Fisheries Science 21 (1):22–38. doi: 10.1080/10641262.2012.753405.
  • Tavares, W. P. S., S. Dong, Y. Yang, M. Zeng, and Y. Zhao. 2018. Influence of cooking methods on protein modification and in vitro digestibility of hairtail (Thichiurus lepturus) fillets. LWT 96:476–81. doi: 10.1016/j.lwt.2018.06.006.
  • Tenyang, N., B. Tiencheu, and H. M. Womeni. 2018. Effect of smoking and refrigeration on lipid oxidation of Clupea harengus: A fish commonly consumed in Cameroon. Food Science & Nutrition 6 (2):464–73. doi: 10.1002/fsn3.575.
  • Thannhauser, T. W., Y. Konishi, and H. A. Scheraga. 1987. Analysis for disulfide bonds in peptides and proteins. Methods in Enzymology 143:115–9. doi: 10.1016/0076-6879(87)43020-6.
  • Timm-Heinrich, M., S. Eymard, C. P. Baron, H. H. Nielsen, and C. Jacobsen. 2013. Oxidative changes during ice storage of rainbow trout (Oncorhynchus mykiss) fed different ratios of marine and vegetable feed ingredients. Food Chemistry 136 (3-4):1220–30. doi: 10.1016/j.foodchem.2012.09.019.
  • Tornvall, U. 2010. Pinpointing oxidative modifications in proteins-recent advances in analytical methods. Analytical Methods 2 (11):1638–50. doi: 10.1039/c0ay00375a.
  • Utrera, M, and M. Estévez. 2012. Oxidation of myofibrillar proteins and impaired functionality: Underlying mechanisms of the carbonylation pathway. Journal of Agricultural and Food Chemistry 60 (32):8002–11. doi: 10.1021/jf302111j.
  • Van Hecke, T., S. Goethals, E. Vossen, and S. D. Smet. 2019. Long-chain n-3 PUFA content and n-6/n-3 PUFA ratio in mammal, poultry, and fish muscles largely explain differential protein and lipid oxidation profiles following in vitro gastrointestinal digestion. Molecular Nutrition & Food Research 63 (22):1900404. doi: 10.1002/mnfr.201900404.
  • Viedma-Poyatos, A., P. Gonzalez-Jimenez, O. Langlois, I. Company-Marin, C. M. Spickett, and D. Perez-Sala. 2021. Protein lipoxidation: Basic concepts and emerging roles. Antioxidants 10 (2):295. doi: 10.3390/antiox10020295.
  • Walayat, N., J. Liu, A. Nawaz, R. M. Aadil, M. López-Pedrouso, and J. M. Lorenzo. 2022. Role of food hydrocolloids as antioxidants along with modern processing techniques on the surimi protein gel textural properties, developments, limitation and future perspectives. Antioxidants 11 (3):486. doi: 10.3390/antiox11030486.
  • Wang, C., Y. Li, C. Pan, J. Chen, W. Jiang, W. Li, X. Zhang, Z. Liao, and X. Yan. 2021. Quantitative analysis of carnosine, anserine, and homocarnosine in skeletal muscle of aquatic species from East China sea. Biochemistry and Biophysics Reports 25:100880. doi: 10.1016/j.bbrep.2020.100880.
  • Wang, K., Y. Bao, Y. Wang, D. Chen, and P. Zhou. 2020. Effects of stepwise steaming treatments at different temperatures on the eating quality of fish: A case study of large-mouth bass (Micropterus salmoides). LWT 132:109844. doi: 10.1016/j.lwt.2020.109844.
  • Wang, L., M. Zhang, B. Bhandari, and Z. Gao. 2016. Effects of malondialdehyde-induced protein modification on water functionality and physicochemical state of fish myofibrillar protein gel. Food Research International 86:131–9. doi: 10.1016/j.foodres.2016.06.007.
  • Wilhelm, D. 2007. Reactive oxygen species, antioxidants and fish mitochondria. Frontiers in Bioscience-Landmark 12:1229–37. doi: 10.2741/2141.
  • Winther, J. R, and C. Thorpe. 2014. Quantification of thiols and disulfides. Biochimica et Biophysica Acta 1840 (2):838–46. doi: 10.1016/j.bbagen.2013.03.031.
  • Xia, C., P. Wen, Y. Yuan, X. Yu, Y. Chen, H. Xu, G. Cui, and J. Wang. 2021. Effect of roasting temperature on lipid and protein oxidation and amino acid residue side chain modification of beef patties. RSC Advances 11 (35):21629–41. doi: 10.1039/D1RA03151A.
  • Xie, H., D. Zhou, F. Yin, K. Rakariyatham, M. Zhao, Z. Liu, D. Li, Q. Zhao, Y. Liu, F. Shahidi, et al. 2019. Mechanism of antioxidant action of natural phenolics on scallop (Argopecten irradians) adductor muscle during drying process. Food Chemistry 281:251–60. doi: 10.1016/j.foodchem.2018.12.108.
  • Xing, T., F. Gao, R. K. Tume, G. Zhou, and X. Xu. 2019. Stress effects on meat quality: A mechanistic perspective. Comprehensive Reviews in Food Science and Food Safety 18 (2):380–401. doi: 10.1111/1541-4337.12417.
  • Xiong, Y, and A. Guo. 2020. Animal and plant protein oxidation: Chemical and functional property significance. Foods 10 (1):40. doi: 10.3390/foods10010040.
  • Xu, W., Q. Ma, J. Sun, Y. Li, J. Wang, Y. Tang, Y. Liu, J. Mu, and W. Wang. 2022. Changes in quality characteristics of shrimp (Penaeus chinensis) during refrigerated storage and their correlation with protein degradation. Journal of Food Composition and Analysis 114:104773. doi: 10.1016/j.jfca.2022.104773.
  • Xu, Y, and X. Xu. 2021. Modification of myofibrillar protein functional propertiesprepared by various strategies: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety 20 (1):458–500. doi: 10.1111/1541-4337.12665.
  • Xue, J., J. Wang, P. Gong, M. Wu, W. Yang, S. Jiang, Y. Wu, Y. Jiang, Y. Zhang, T. Yuzyuk, et al. 2019. Simultaneous quantification of alpha-aminoadipic semialdehyde, piperideine-6-carboxylate, pipecolic acid and alpha-aminoadipic acid in pyridoxine-dependent epilepsy. Scientific Reports 9 (1):11371. doi: 10.1038/s41598-019-47882-2.
  • Yu, D., L. Wu, J. M. Regenstein, Q. Jiang, F. Yang, Y. Xu, and W. Xia. 2020. Recent advances in quality retention of non-frozen fish and fishery products: A review. Critical Reviews in Food Science and Nutrition 60 (10):1747–59. doi: 10.1080/10408398.2019.1596067.
  • Yu, T., J. D. Morton, S. Clerens, and J. M. Dyer. 2016. Proteomic investigation of protein profile changes and amino acid residue-level modification in cooked lamb longissimus thoracis et lumborum: The effect of roasting. Meat Science 119:80–8. doi: 10.1016/j.meatsci.2016.04.024.
  • Zainudin, M. A. M., M. M. Poojary, S. Jongberg, and M. N. Lund. 2019. Light exposure accelerates oxidative protein polymerization in beef stored in high oxygen atmosphere. Food Chemistry 299:125132. doi: 10.1016/j.foodchem.2019.125132.
  • Zhang, B., C. Fang, G. Hao, and Y. Zhang. 2018. Effect of kappa-carrageenan oligosaccharides on myofibrillar protein oxidation in peeled shrimp (Litopenaeus vannamei) during long-term frozen storage. Food Chemistry 245:254–61. doi: 10.1016/j.foodchem.2017.10.112.
  • Zhang, D., Y. Zhang, Y. Huang, L. Chen, P. Bao, H. Fang, and C. Zhou. 2021. L-Arginine and L-lysine alleviate myosin from oxidation: Their role in maintaining myosin’s emulsifying properties. Journal of Agricultural and Food Chemistry 69 (10):3189–98. doi: 10.1021/acs.jafc.0c06095.
  • Zhang, L., P. Gui, Y. Zhang, J. Lin, Q. Li, H. Hong, and Y. Luo. 2019. Assessment of structural, textural, and gelation properties of myofibrillar protein of silver carp (Hypophthalmichthys molitrix) modified by stunning and oxidative stress. LWT 102:142–9. doi: 10.1016/j.lwt.2018.12.030.
  • Zhang, L., Q. Li, H. Hong, and Y. Luo. 2021. Tracking structural modifications and oxidative status of myofibrillar proteins from silver carp (Hypophthalmichthys molitrix) fillets treated by different stunning methods and in vitro oxidizing conditions. Food Chemistry 365:130510. doi: 10.1016/j.foodchem.2021.130510.
  • Zhang, L., Q. Li, H. Hong, and Y. Luo. 2020. Prevention of protein oxidation and enhancement of gel properties of silver carp (Hypophthalmichthys molitrix) surimi by addition of protein hydrolysates derived from surimi processing by-products. Food Chemistry 316:126343. doi: 10.1016/j.foodchem.2020.126343.
  • Zhang, L., Q. Li, H. Hong, Y. Luo, and R. Lametsch. 2020. Search for proteomic markers for stunning stress and stress-induced textural tenderization in silver carp (Hypophthalmichthys molitrix) fillets using label-free strategy. Food Research International (Ottawa, Ontario) 137:109678. doi: 10.1016/j.foodres.2020.109678.
  • Zhang, L., Q. Li, S. Jia, Z. Huang, and Y. Luo. 2018. Effect of different stunning methods on antioxidant status, in vivo myofibrillar protein oxidation, and the susceptibility to oxidation of silver carp (Hypophthalmichthys molitrix) fillets during 72 h postmortem. Food Chemistry 246:121–8. doi: 10.1016/j.foodchem.2017.10.140.
  • Zhang, Z., P. Liu, X. Deng, X. Guo, X. Mao, X. Guo, and J. Zhang. 2021. Effects of hydroxyl radical oxidation on myofibrillar protein and its susceptibility to μ-calpain proteolysis. LWT 137:110453. doi: 10.1016/j.lwt.2020.110453.
  • Zhang, W., S. Xiao, and D. U. Ahn. 2013. Protein oxidation: Basic principles and implications for meat quality. Critical Reviews in Food Science and Nutrition 53 (11):1191–201. doi: 10.1080/10408398.2011.577540.
  • Zhang, Y., B. R. Fonslow, B. Shan, M. C. Baek, and J. R. Yates. 2013. Protein analysis by shotgun/bottom-up proteomics. Chemical Reviews 113 (4):2343–94. doi: 10.1021/cr3003533.
  • Zhang, Z., Z. Xiong, S. Lu, N. Walayat, C. Hu, and H. Xiong. 2020. Effects of oxidative modification on the functional, conformational and gelling properties of myofibrillar proteins from Culter alburnus. International Journal of Biological Macromolecules 162:1442–52. doi: 10.1016/j.ijbiomac.2020.08.052.
  • Zhao, X., X. Cheng, M. Zang, L. Wang, X. Li, Y. Yue, and B. Liu. 2022. Insights into the characteristics and molecular transformation of lipids in Litopenaeus vannamei during drying from combined lipidomics. Journal of Food Composition and Analysis 114:104809. doi: 10.1016/j.jfca.2022.104809.
  • Zhao, X., Y. Zhou, L. Zhao, L. Chen, Y. He, and H. Yang. 2019. Vacuum impregnation of fish gelatin combined with grape seed extract inhibits protein oxidation and degradation of chilled tilapia fillets. Food Chemistry 294:316–25. doi: 10.1016/j.foodchem.2019.05.054.
  • Zhu, J., I. Dhimitruka, and D. Pei. 2004. 5-(2-Aminoethyl)dithio-2-nitrobenzoate as a more base-stable alternative to Ellman’s reagent. Organic Letters 6 (21):3809–12. doi: 10.1021/ol048404+.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.