378
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Construction of lipid-biomacromolecular compounds for loading and delivery of carotenoids: Preparation methods, structural properties, and absorption-enhancing mechanisms

&

References

  • Abdul Hadi, N., A. Marefati, M. Matos, B. Wiege, and M. Rayner. 2020. Characterization and stability of short-chain fatty acids modified starch Pickering emulsions. Carbohydrate Polymers 240:116264. doi: 10.1016/j.carbpol.2020.116264.
  • Akhavan, S., E. Assadpour, I. Katouzian, and S. M. Jafari. 2018. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends in Food Science & Technology 74:132–46. doi: 10.1016/j.tifs.2018.02.001.
  • Albano, K. M., Â. L. F. Cavallieri, and V. R. Nicoletti. 2020. Electrostatic interaction between soy proteins and pectin in O/W emulsions stabilization by ultrasound application. Food Biophysics 15 (3):297–312. doi: 10.1007/s11483-020-09625-z.
  • Alvaro, A., R. Rosales, L. Masana, and J.-C. Vallvé. 2010. Polyunsaturated fatty acids down-regulate in vitro expression of the key intestinal cholesterol absorption protein NPC1L1: No effect of monounsaturated nor saturated fatty acids. The Journal of Nutritional Biochemistry 21 (6):518–25. doi: 10.1016/j.jnutbio.2009.02.010.
  • Andreas, W, and V.-U. Karola. 2011. Liposome technology for industrial purposes. Journal of Drug Delivery 2011 (2011):1–9. doi: 10.1155/2011/591325.
  • Anema, S. G. 2018. Spontaneous interaction of lactoferrin with casein micelles or individual caseins. Journal of the Royal Society of New Zealand 48 (2–3):89–110. doi: 10.1080/03036758.2018.1439846.
  • Aparicio-Ruiz, R., M. I. Mínguez-Mosquera, and B. Gandul-Rojas. 2011. Thermal degradation kinetics of lutein, β-carotene and β-cryptoxanthin in virgin olive oils. Journal of Food Composition and Analysis 24 (6):811–20. doi: 10.1016/j.jfca.2011.04.009.
  • Arangoa, M. A., G. Ponchel, A. M. Orecchioni, M. J. Renedo, D. Duchêne, and J. M. Irache. 2000. Bioadhesive potential of gliadin nanoparticulate systems. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 11 (4):333–41. doi: 10.1016/S0928-0987(00)00121-4.
  • Artiga-Artigas, M., A. Acevedo-Fani, and O. Martín-Belloso. 2017. Effect of sodium alginate incorporation procedure on the physicochemical properties of nanoemulsions. Food Hydrocolloids. 70:191–200. doi: 10.1016/j.foodhyd.2017.04.006.
  • Asgher, M., Y. Urooj, S. A. Qamar, and N. Khalid. 2020. Improved exopolysaccharide production from Bacillus licheniformis MS3: Optimization and structural/functional characterization. International Journal of Biological Macromolecules 151:984–92. doi: 10.1016/j.ijbiomac.2019.11.094.
  • Atarian, M., A. Rajaei, M. Tabatabaei, A. Mohsenifar, and H. Bodaghi. 2019. Formulation of Pickering sunflower oil-in-water emulsion stabilized by chitosan-stearic acid nanogel and studying its oxidative stability. Carbohydrate Polymers 210:47–55. doi: 10.1016/j.carbpol.2019.01.008.
  • Aveyard, R., B. P. Binks, and J. H. Clint. 2003. Emulsions stabilised solely by colloidal particles. Advances in Colloid and Interface Science 100–102:503–46. doi: 10.1016/S0001-8686(02)00069-6.
  • Azzi, J., A. Jraij, L. Auezova, S. Fourmentin, and H. Greige-Gerges. 2018. Novel findings for quercetin encapsulation and preservation with cyclodextrins, liposomes, and drug-in-cyclodextrin-in-liposomes. Food Hydrocolloids. 81:328–40. doi: 10.1016/j.foodhyd.2018.03.006.
  • Bai, C., H. Peng, H. Xiong, Y. Liu, L. Zhao, and X. Xiao. 2011. Carboxymethylchitosan-coated proliposomes containing coix seed oil: Characterisation, stability and in vitro release evaluation. Food Chemistry 129 (4):1695–702. doi: 10.1016/j.foodchem.2011.06.033.
  • Bao, C., P. Jiang, J. Chai, Y. Jiang, D. Li, W. Bao, B. Liu, B. Liu, W. Norde, and Y. Li. 2019. The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Research International (Ottawa, Ontario) 120:130–40. doi: 10.1016/j.foodres.2019.02.024.
  • Bilal, M., I. Gul, A. Basharat, and S. A. Qamar. 2021. Polysaccharides-based bio-nanostructures and their potential food applications. International Journal of Biological Macromolecules 176:540–57. doi: 10.1016/j.ijbiomac.2021.02.107.
  • Bohn, T., C. Desmarchelier, L. O. Dragsted, C. S. Nielsen, W. Stahl, R. Rühl, J. Keijer, and P. Borel. 2017. Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Molecular Nutrition & Food Research 61 (6):1600685. doi: 10.1002/mnfr.201600685.
  • Borel, P. 2003. Factors affecting intestinal absorption of highly lipophilic food microconstituents (fat-soluble vitamins, carotenoids and phytosterols). Clinical Chemistry and Laboratory Medicine 41 (8):979–94. doi: 10.1515/CCLM.2003.151.
  • Britton, G., S. Liaaen-Jensen, and H. Pfander. 2004. Carotenoids. Handbook: Birkhauser Verlag, Basel, Switzerland.
  • Brunham, L. R., J. K. Kruit, J. Iqbal, C. Fievet, J. M. Timmins, T. D. Pape, B. A. Coburn, N. Bissada, B. Staels, A. K. Groen, et al. 2006. Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. The Journal of Clinical Investigation 116 (4):1052–62. doi: 10.1172/JCI27352.
  • Bu, X., N. Ji, L. Dai, X. Dong, M. Chen, L. Xiong, and Q. Sun. 2021. Self-assembled micelles based on amphiphilic biopolymers for delivery of functional ingredients. Trends in Food Science & Technology 114:386–98. doi: 10.1016/j.tifs.2021.06.001.
  • Cai, Y., L. Huang, X. Tao, J. Su, C. Xiao, M. Zhao, Q. Zhao, and P. Van der Meeren. 2021. Enhanced acidic stability of O/W emulsions by synergistic interactions between okara protein and carboxymethyl cellulose. LWT 146:111439. doi: 10.1016/j.lwt.2021.111439.
  • Cervantes-Paz, B., J. d J. Ornelas-Paz, J. D. Pérez-Martínez, J. Reyes-Hernández, P. B. Zamudio-Flores, C. Rios-Velasco, V. Ibarra-Junquera, and S. Ruiz-Cruz. 2016. Effect of pectin concentration and properties on digestive events involved on micellarization of free and esterified carotenoids. Food Hydrocolloids. 60:580–8. doi: 10.1016/j.foodhyd.2016.04.038.
  • Chen, B., D. J. McClements, and E. A. Decker. 2010. Role of continuous phase anionic polysaccharides on the oxidative stability of menhaden oil-in-water emulsions. Journal of Agricultural and Food Chemistry 58 (6):3779–84. doi: 10.1021/jf9037166.
  • Chen, T., W. Jing, and S. Baoguo. 2021. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnology Advances 48:107727. doi: 10.1016/j.biotechadv.2021.107727.
  • Chen, X.-W., S.-Y. Fu, J.-J. Hou, J. Guo, J.-M. Wang, and X.-Q. Yang. 2016. Zein based oil-in-glycerol emulgels enriched with β-carotene as margarine alternatives. Food Chemistry 211:836–44. doi: 10.1016/j.foodchem.2016.05.133.
  • Cheng, C. J., M. Ferruzzi, and O. G. Jones. 2019. Fate of lutein-containing zein nanoparticles following simulated gastric and intestinal digestion. Food Hydrocolloids. 87:229–36. doi: 10.1016/j.foodhyd.2018.08.013.
  • Chitchumroonchokchai, C, and M. L. Failla. 2006. Hydrolysis of zeaxanthin esters by carboxyl ester lipase during digestion facilitates micellarization and uptake of the xanthophyll by Caco-2 human intestinal cells. The Journal of Nutrition 136 (3):588–94. doi: 10.1093/jn/136.3.588.
  • Christensen, J. Ø., K. Schultz, B. Mollgaard, H. G. Kristensen, and A. Mullertz. 2004. Solubilisation of poorly water-soluble drugs during in vitro lipolysis of medium- and long-chain triacylglycerols. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 23 (3):287–96. doi: 10.1016/j.ejps.2004.08.003.
  • Chuacharoen, T, and C. M. Sabliov. 2016. Stability and controlled release of lutein loaded in zein nanoparticles with and without lecithin and pluronic F127 surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 503:11–8. doi: 10.1016/j.colsurfa.2016.04.038.
  • Chuyen, H. V., P. D. Roach, J. B. Golding, S. E. Parks, and M. H. Nguyen. 2019. Encapsulation of carotenoid-rich oil from Gac peel: Optimisation of the encapsulating process using a spray drier and the storage stability of encapsulated powder. Powder Technology 344:373–9. doi: 10.1016/j.powtec.2018.12.012.
  • Clark, R. M., L. Yao, L. She, and H. C. Furr. 2000. A comparison of lycopene and astaxanthin absorption from corn oil and olive oil emulsions. Lipids 35 (7):803–6. doi: 10.1007/s11745-000-0589-8.
  • Cohen, B. R., L. C. Shani, T. S. Levi, S. Eyal, and L. Uri. 2012. Development of oral food-grade delivery systems: Current knowledge and future challenges. Food & Function 3 (1):10–21. doi: 10.1039/c1fo10068h.[PMC].[21993691.
  • Cortez, R. E, and E. Gonzalez de Mejia. 2019. Blackcurrants (Ribes nigrum): A review on chemistry, processing, and health benefits. Journal of Food Science 84 (9):2387–401. doi: 10.1111/1750-3841.14781.
  • Cui, R, and F. Zhu. 2021. Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications. Trends in Food Science & Technology 107:491–508. doi: 10.1016/j.tifs.2020.11.018.
  • das Neves, J., M. F. Bahia, M. M. Amiji, and B. Sarmento. 2011. Mucoadhesive nanomedicines: Characterization and modulation of mucoadhesion at the nanoscale. Expert Opinion on Drug Delivery 8 (8):1085–104. doi: 10.1517/17425247.2011.586334.
  • de Souza Simões, L., D. A. Madalena, A. C. Pinheiro, J. A. Teixeira, A. A. Vicente, and Ó. L. Ramos. 2017. Micro- and nano bio-based delivery systems for food applications: In vitro behavior. Advances in Colloid and Interface Science 243:23–45. doi: 10.1016/j.cis.2017.02.010.
  • Desmarchelier, C, and P. Borel. 2017. Overview of carotenoid bioavailability determinants: From dietary factors to host genetic variations. Trends in Food Science & Technology 69:270–80. doi: 10.1016/j.tifs.2017.03.002.
  • Devraj, R., H. D. Williams, D. B. Warren, A. Mullertz, C. J. H. Porter, and C. W. Pouton. 2013. In vitro digestion testing of lipid-based delivery systems: Calcium ions combine with fatty acids liberated from triglyceride rich lipid solutions to form soaps and reduce the solubilization capacity of colloidal digestion products. International Journal of Pharmaceutics 441 (1–2):323–33. doi: 10.1016/j.ijpharm.2012.11.024.
  • Dickinson, E. 2009. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocolloids. 23 (6):1473–82. doi: 10.1016/j.foodhyd.2008.08.005.
  • Ding, M., L. Liu, T. Zhang, N. Tao, X. Wang, and J. Zhong. 2021. Effect of interfacial layer number on the storage stability and in vitro digestion of fish oil-loaded multilayer emulsions consisting of gelatin particle and polysaccharides. Food Chemistry 336:127686. doi: 10.1016/j.foodchem.2020.127686.
  • Dong, W., X. Wang, C. Liu, X. Zhang, X. Zhang, X. Chen, Y. Kou, and S. Mao. 2018. Chitosan based polymer-lipid hybrid ­nanoparticles for oral delivery of enoxaparin. International Journal of Pharmaceutics 547 (1–2):499–505. doi: 10.1016/j.ijpharm.2018.05.076.
  • Duchatel-Crépy, L., N. Joly, P. Martin, A. Marin, J.-F. Tahon, J.-M. Lefebvre, and V. Gaucher. 2020. Substitution degree and fatty chain length influence on structure and properties of fatty acid cellulose esters. Carbohydrate Polymers 234:115912. doi: 10.1016/j.carbpol.2020.115912.
  • During, A, and E. H. Harrison. 2007. Mechanisms of provitamin A (carotenoid) and vitamin A (retinol) transport into and out of intestinal Caco-2 cells. Journal of Lipid Research 48 (10):2283–94. doi: 10.1194/jlr.M700263-JLR200.
  • During, A., M. M. Hussain, D. W. Morel, and E. H. Harrison. 2002. Carotenoid uptake and secretion by CaCo-2 cells: β-carotene isomer selectivity and carotenoid interactions1. Journal of Lipid Research 43 (7):1086–95. doi: 10.1194/jlr.M200068-JLR200.
  • Emmanuelle, R., G. Aurélie, C. Christine, B. Romain, N. Marion, L. Jean-François, J.-R. Dominique, D. Claire, C. Xavier, and B. Patrick. 2011. Vitamin D intestinal absorption is not a simple passive diffusion: Evidences for involvement of cholesterol transporters. Molecular Nutrition & Food Research 55 (5):691–702. doi: 10.1002/mnfr.201000553.
  • Esposito, E., M. Drechsler, P. Mariani, A. M. Panico, V. Cardile, L. Crascì, F. Carducci, A. C. E. Graziano, R. Cortesi, and C. Puglia. 2017. Nanostructured lipid dispersions for topical administration of crocin, a potent antioxidant from saffron (Crocus sativus L.). Materials Science & Engineering. C, Materials for Biological Applications 71:669–77. doi: 10.1016/j.msec.2016.10.045.
  • Failla, M. L., C. Chitchumronchokchai, M. G. Ferruzzi, S. R. Goltz, and W. W. Campbell. 2014. Unsaturated fatty acids promote bioaccessibility and basolateral secretion of carotenoids and α-tocopherol by Caco-2 cells. Food & Function 5 (6):1101–12. doi: 10.1039/C3FO60599J.
  • Falsafi, S. R., H. Rostamabadi, A. Babazadeh, Ö. Tarhan, A. Rashidinejad, S. Boostani, S. Khoshnoudi-Nia, S. Akbari-Alavijeh, R. Shaddel, and S. M. Jafari. 2022. Lycopene nanodelivery systems; recent advances. Trends in Food Science & Technology 119:378–99. doi: 10.1016/j.tifs.2021.12.016.
  • Fang, B., M. Zhang, M. Tian, L. Jiang, H. Y. Guo, and F. Z. Ren. 2014. Bovine lactoferrin binds oleic acid to form an anti-tumor complex similar to HAMLET. Biochimica et Biophysica Acta 1841 (4):535–43. doi: 10.1016/j.bbalip.2013.12.008.
  • Fang, S., X. Zhao, Y. Liu, X. Liang, and Y. Yang. 2019. Fabricating multilayer emulsions by using OSA starch and chitosan suitable for spray drying: Application in the encapsulation of β-carotene. Food Hydrocolloids. 93:102–10. doi: 10.1016/j.foodhyd.2019.02.024.
  • Fathi, M., F. Donsi, and D. J. McClements. 2018. Protein-based delivery systems for the nanoencapsulation of food ingredients. Comprehensive Reviews in Food Science and Food Safety 17 (4):920–36. doi: 10.1111/1541-4337.12360.
  • Feng, Y., L. A. Ibarra-Sánchez, L. Luu, M. J. Miller, and Y. Lee. 2019. Co-assembly of nisin and zein in microfluidics for enhanced antilisterial activity in Queso Fresco. LWT 111:355–62. doi: 10.1016/j.lwt.2019.05.059.
  • Foteini, P., N. Pippa, N. Naziris, and C. Demetzos. 2019. Physicochemical study of the protein–liposome interactions: Influence of liposome composition and concentration on protein binding. Journal of Liposome Research 29 (4):313–21. doi: 10.1080/08982104.2018.1468774.
  • Fraser, P. D., and P. M. Bramley. 2004. The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research 43 (3):228–65. doi: 10.1016/j.plipres.2003.10.002.
  • Frenzel, M, and A. Steffen-Heins. 2015. Whey protein coating increases bilayer rigidity and stability of liposomes in food-like matrices. Food Chemistry 173:1090–9. doi: 10.1016/j.foodchem.2014.10.076.
  • Frenzel, M, and A. Steffen-Heins. 2015. Impact of quercetin and fish oil encapsulation on bilayer membrane and oxidation stability of liposomes. Food Chemistry 185:48–57. doi: 10.1016/j.foodchem.2015.03.121.
  • Gaber, M., W. Medhat, M. Hany, N. Saher, J.-Y. Fang, and A. Elzoghby. 2017. Protein-lipid nanohybrids as emerging platforms for drug and gene delivery: Challenges and outcomes. Journal of Controlled Release: Official Journal of the Controlled Release Society 254:75–91. doi: 10.1016/j.jconrel.2017.03.392.
  • Garcia, M. C., M. A. Pereira-da-Silva, S. Taboga, and C. M. L. Franco. 2016. Structural characterization of complexes prepared with glycerol monoestearate and maize starches with different amylose contents. Carbohydrate Polymers 148:371–9. doi: 10.1016/j.carbpol.2016.04.067.
  • Gharib, R., S. Fourmentin, C. Charcosset, and H. Greige-Gerges. 2018. Effect of hydroxypropyl-β–cyclodextrin on lipid membrane fluidity, stability and freeze-drying of liposomes. Journal of Drug Delivery Science and Technology 44:101–7. doi: 10.1016/j.jddst.2017.12.009.
  • Gleize, B., M. Nowicki, C. Daval, H. Koutnikova, and P. Borel. 2016. Form of phytosterols and food matrix in which they are incorporated modulate their incorporation into mixed micelles and impact cholesterol micellarization. Molecular Nutrition & Food Research 60 (4):749–59. doi: 10.1002/mnfr.201500586.
  • Goncalves, A., B. Gleize, S. Roi, M. Nowicki, A. Dhaussy, A. Huertas, M.-J. Amiot, and E. Reboul. 2013. Fatty acids affect micellar properties and modulate vitamin D uptake and basolateral efflux in Caco-2 cells. The Journal of Nutritional Biochemistry 24 (10):1751–7. doi: 10.1016/j.jnutbio.2013.03.004.
  • Guedes Silva, K. C., G. Feltre, M. D. Hubinger, and A. C. Kawazoe Sato. 2021. Protection and targeted delivery of β-carotene by starch-alginate-gelatin emulsion-filled hydrogels. Journal of Food Engineering 290:110205. doi: 10.1016/j.jfoodeng.2020.110205.
  • Han, S., P. Dwivedi, F. A. Mangrio, M. Dwivedi, R. Khatik, D. E. Cohn, T. Si, and R. X. Xu. 2019. Sustained release paclitaxel-loaded core-shell-structured solid lipid microparticles for intraperitoneal chemotherapy of ovarian cancer. Artificial Cells, Nanomedicine, and Biotechnology 47 (1):957–67. doi: 10.1080/21691401.2019.1576705.
  • Hamilton, J. A. 2002. How fatty acids bind to proteins: The inside story from protein structures. Prostaglandins, Leukotrienes, and Essential Fatty Acids 67 (2–3):65–72. doi: 10.1054/plef.2002.0400.
  • Harrison, E. H. 2012. Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. Biochimica et Biophysica Acta 1821 (1):70–7. doi: 10.1016/j.bbalip.2011.06.002.
  • He, M., L. Li, C. Wu, L. Zheng, L. Jiang, Y. Huang, F. Teng, and Y. Li. 2021. Effects of glycation and acylation on the structural characteristics and physicochemical properties of soy protein isolate. Journal of Food Science 86 (5):1737–50. doi: 10.1111/1750-3841.15688.
  • Heidarian, P., A. Z. Kouzani, A. Kaynak, M. Paulino, B. Nasri-Nasrabadi, A. Zolfagharian, and R. Varley. 2020. Dynamic plant-derived polysaccharide-based hydrogels. Carbohydrate Polymers 231:115743. doi: 10.1016/j.carbpol.2019.115743.
  • Hu, X., R. J. Jandacek, and W. S. White. 2000. Intestinal absorption of β-carotene ingested with a meal rich in sunflower oil or beef tallow: Postprandial appearance in triacylglycerol-rich lipoproteins in women. The American Journal of Clinical Nutrition 71 (5):1170–80. doi: 10.1093/ajcn/71.5.1170.
  • Huang, L., D. Li, Y. Ma, Y. Liu, G. Liu, Y. Wang, and B. Tan. 2022. Dietary fatty acid-mediated protein encapsulation simultaneously improving the water-solubility, storage stability, and oral absorption of astaxanthin. Food Hydrocolloids. 123:107152. doi: 10.1016/j.foodhyd.2021.107152.
  • Hussain, M. M., S. Fatma, X. Pan, and J. Iqbal. 2005. Intestinal lipoprotein assembly. Current Opinion in Lipidology 16 (3):281–5. doi: 10.1097/01.mol.0000169347.53568.5a.
  • Izza, N. m., N. Watanabe, Y. Okamoto, K. Suga, Y. Wibisono, N. Kajimura, K. Mitsuoka, and H. Umakoshi. 2022. Dependence of the core–shell structure on the lipid composition of nanostructured lipid carriers: implications for drug carrier design. ACS Applied Nano Materials 5 (7):9958–69. doi: 10.1021/acsanm.2c02214.
  • Kang, X., S. Jia, W. Gao, B. Wang, X. Zhang, Y. Tian, Q. Sun, M. Atef, B. Cui, and A. M. Abd El-Aty. 2022. The formation of starch-lipid complexes by microwave heating. Food Chemistry 382:132319. doi: 10.1016/j.foodchem.2022.132319.
  • Khalid, M., R. Saeed ur, M. Bilal, H. M. N. Iqbal, and D. Huang. 2019. Biosynthesis and biomedical perspectives of carotenoids with special reference to human health-related applications. Biocatalysis and Agricultural Biotechnology 17:399–407. doi: 10.1016/j.bcab.2018.11.027.
  • Kiefer, C., E. Sumser, M. F. Wernet, and J. von Lintig. 2002. A class B scavenger receptor mediates the cellular uptake of carotenoids in Drosophila. Proceedings of the National Academy of Sciences of the United States of America 99 (16):10581–6. doi: 10.1073/pnas.162182899.
  • Kimura, R., N. Takahashi, S. Lin, T. Goto, K. Murota, R. Nakata, H. Inoue, and T. Kawada. 2013. DHA attenuates postprandial hyperlipidemia via activating PPARα in intestinal epithelial cells. Journal of Lipid Research 54 (12):3258–68. doi: 10.1194/jlr.M034942.
  • Kobayashi, J., E. Tominaga, M. Ozeki, T. Okubo, K. Nakagawa, and T. Miyazawa. 2019. Randomized controlled trial of a water-soluble formulation of lutein in humans. Bioscience, Biotechnology, and Biochemistry 83 (12):2372–4. doi: 10.1080/09168451.2019.1649977.
  • Kopec, R. E, and M. L. Failla. 2018. Recent advances in the bioaccessibility and bioavailability of carotenoids and effects of other dietary lipophiles. Journal of Food Composition and Analysis 68:16–30. doi: 10.1016/j.jfca.2017.06.008.
  • Kossena, G. A., B. J. Boyd, C. J. H. Porter, and W. N. Charman. 2003. Separation and characterization of the colloidal phases produced on digestion of common formulation lipids and assessment of their impact on the apparent solubility of selected poorly water-soluble drugs. Journal of Pharmaceutical Sciences 92 (3):634–48. doi: 10.1002/jps.10329.
  • Krinsky, N. I, and E. J. Johnson. 2005. Carotenoid actions and their relation to health and disease. Molecular Aspects of Medicine 26 (6):459–516. doi: 10.1016/j.mam.2005.10.001.
  • Kumar, V. V., D. Chandrasekar, S. Ramakrishna, V. Kishan, Y. M. Rao, and P. V. Diwan. 2007. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: Influence of wax and glyceride lipids on plasma pharmacokinetics. International Journal of Pharmaceutics 335 (1–2):167–75. doi: 10.1016/j.ijpharm.2006.11.004.
  • Lakshminarayana, R., M. Raju, T. P. Krishnakantha, and V. Baskaran. 2007. Lutein and zeaxanthin in leafy greens and their bioavailability: olive oil influences the absorption of dietary lutein and its accumulation in adult rats. Journal of Agricultural and Food Chemistry 55 (15):6395–400. doi: 10.1021/jf070482z.
  • Lei, L., Y. Zhang, L. He, S. Wu, B. Li, and Y. Li. 2017. Fabrication of nanoemulsion-filled alginate hydrogel to control the digestion behavior of hydrophobic nobiletin. LWT - Food Science and Technology 82:260–7. doi: 10.1016/j.lwt.2017.04.051.
  • Li, D., L. Li, N. Xiao, M. Li, and X. Xie. 2018. Physical properties of oil-in-water nanoemulsions stabilized by OSA-modified starch for the encapsulation of lycopene. Colloids and Surfaces A: Physicochemical and Engineering Aspects 552:59–66. doi: 10.1016/j.colsurfa.2018.04.055.
  • Li, D., Q. Zhang, L. Huang, Z. Chen, C. Zou, Y. Ma, M.-J. Cao, G.-M. Liu, Y. Liu, and Y. Wang. 2021. Fabricating hydrophilic particles with oleic acid and bovine serum albumin to improve the dispersibility and bioaccessibility of fucoxanthin in water. Food Hydrocolloids. 118:106752. doi: 10.1016/j.foodhyd.2021.106752.
  • Li, D., Z. Wei, and C. Xue. 2021. Alginate-based delivery systems for food bioactive ingredients: An overview of recent advances and future trends. Comprehensive Reviews in Food Science and Food Safety 20 (6):5345–69. doi: 10.1111/1541-4337.12840.
  • Li, H., Z. Zhang, X. Bao, G. Xu, and P. Yao. 2018. Fatty acid and quaternary ammonium modified chitosan nanoparticles for insulin delivery. Colloids and Surfaces. B, Biointerfaces 170:136–43. doi: 10.1016/j.colsurfb.2018.05.063.
  • Li, S., B. Zhang, C. Li, X. Fu, and Q. Huang. 2020. Pickering emulsion gel stabilized by octenylsuccinate quinoa starch granule as lutein carrier: Role of the gel network. Food Chemistry 305:125476. doi: 10.1016/j.foodchem.2019.125476.
  • Liang, R., C. F. Shoemaker, X. Yang, F. Zhong, and Q. Huang. 2013. Stability and bioaccessibility of β-carotene in nanoemulsions stabilized by modified starches. Journal of Agricultural and Food Chemistry 61 (6):1249–57. doi: 10.1021/jf303967f.
  • Lim, A. S. L, and Y. H. Roos. 2016. Spray drying of high hydrophilic solids emulsions with layered interface and trehalose-maltodextrin as glass formers for carotenoids stabilization. Journal of Food Engineering 171:174–84. doi: 10.1016/j.jfoodeng.2015.10.026.
  • Liu, C., Y. Tan, Y. Xu, D. J. McCleiments, and D. Wang. 2019. Formation, characterization, and application of chitosan/pectin-stabilized multilayer emulsions as astaxanthin delivery systems. International Journal of Biological Macromolecules 140:985–97. doi: 10.1016/j.ijbiomac.2019.08.071.
  • Liu, G., W. Huang, O. Babii, X. Gong, Z. Tian, J. Yang, Y. Wang, R. L. Jacobs, V. Donna, A. Lavasanifar, et al. 2018. Novel protein–lipid composite nanoparticles with an inner aqueous compartment as delivery systems of hydrophilic nutraceutical compounds. Nanoscale 10 (22):10629–40. doi: 10.1039/C8NR01009A.
  • Liu, G., Y. Zhou, and L. Chen. 2019. Intestinal uptake of barley protein-based nanoparticles for β-carotene delivery. Acta Pharmaceutica Sinica. B 9 (1):87–96. doi: 10.1016/j.apsb.2018.10.002.
  • Liu, J., L. Jiang, Y. Zhang, Z. Du, X. Qiu, L. Kong, and H. Zhang. 2017. Binding behaviors and structural characteristics of ternary complexes of β-lactoglobulin, curcumin, and fatty acids. RSC Advance 7 (73):45960–7. doi: 10.1039/C7RA09012A.
  • Liu, M., F. Wang, C. Pu, W. Tang, and Q. Sun. 2021. Nanoencapsulation of lutein within lipid-based delivery systems: Characterization and comparison of zein peptide stabilized nano-emulsion, solid lipid nanoparticle, and nano-structured lipid carrier. Food Chemistry 358:129840. doi: 10.1016/j.foodchem.2021.129840.
  • Liu, Q., Y. Jing, C. Han, H. Zhang, and Y. Tian. 2019. Encapsulation of curcumin in zein/caseinate/sodium alginate nanoparticles with improved physicochemical and controlled release properties. Food Hydrocolloids. 93:432–42. doi: 10.1016/j.foodhyd.2019.02.003.
  • Liu, X., R. Zhang, D. J. McClements, F. Li, H. Liu, Y. Cao, and H. Xiao. 2018. Nanoemulsion-based delivery systems for nutraceuticals: Influence of long-chain triglyceride (LCT) type on in vitro digestion and astaxanthin bioaccessibility. Food Biophysics 13 (4):412–21. doi: 10.1007/s11483-018-9547-2.
  • Liu, Y., L. Huang, D. Li, Y. Wang, Z. Chen, C. Zou, W. Liu, Y. Ma, M.-J. Cao, and G.-M. Liu. 2020. Re-assembled oleic acid-protein complexes as nano-vehicles for astaxanthin: Multispectral analysis and molecular docking. Food Hydrocolloids. 103:105689. doi: 10.1016/j.foodhyd.2020.105689.
  • Liu, Y., Z. Qiao, W. Liu, Z. Hou, D. Zhang, L. Huang, and Y. Zhang. 2019. Oleic acid as a protein ligand improving intestinal absorption and ocular benefit of fucoxanthin in water through protein-based encapsulation. Food & Function 10 (7):4381–95. doi: 10.1039/C9FO00814D.
  • Livney, Y. D. 2010. Milk proteins as vehicles for bioactives. Current Opinion in Colloid & Interface Science 15 (1–2):73–83. doi: 10.1016/j.cocis.2009.11.002.
  • Lopes, N. A., C. M. B. Pinilla, and A. Brandelli. 2017. Pectin and polygalacturonic acid-coated liposomes as novel delivery system for nisin: Preparation, characterization and release behavior. Food Hydrocolloids. 70:1–7. doi: 10.1016/j.foodhyd.2017.03.016.
  • Lu, Y., Y. Ma, Y. Zhang, Y. Gao, and L. Mao. 2022. Facile synthesis of zein-based emulsion gels with adjustable texture, rheology and stability by adding β-carotene in different phases. Food Hydrocolloids. 124:107178. doi: 10.1016/j.foodhyd.2021.107178.
  • Lu, Y., L. Mao, Z. Hou, S. Miao, and Y. Gao. 2019. Development of emulsion gels for the delivery of functional food ingredients: from structure to functionality. Food Engineering Reviews 11 (4):245–58. doi: 10.1007/s12393-019-09194-z.
  • Lv, P., D. Wang, Y. Chen, S. Zhu, J. Zhang, L. Mao, Y. Gao, and F. Yuan. 2020. Pickering emulsion gels stabilized by novel complex particles of high-pressure-induced WPI gel and chitosan: Fabrication, characterization and encapsulation. Food Hydrocolloids. 108:105992. doi: 10.1016/j.foodhyd.2020.105992.
  • Lv, P., D. Wang, R. Liang, J. Liu, J. Li, Y. Gao, J. Zhang, and F. Yuan. 2021. Lycopene-loaded bilayer emulsions stabilized by whey protein isolate and chitosan. LWT 151:112122. doi: 10.1016/j.lwt.2021.112122.
  • Ruiz-Sola, M. Á., and M. Rodríguez-Concepción. 2012. Carotenoid biosynthesis in Arabidopsis: A colorful pathway. The Arabidopsis Book 10:e0158. doi: 10.1199/tab.0158.
  • Madene, A., M. Jacquot, J. Scher, and S. Desobry. 2006. Flavour encapsulation and controlled release – A review. International Journal of Food Science and Technology 41 (1):1–21. doi: 10.1111/j.1365-2621.2005.00980.x.
  • Malgarim Cordenonsi, L., A. Faccendini, M. Catanzaro, M. C. Bonferoni, S. Rossi, L. Malavasi, R. Platcheck Raffin, E. E. Scherman Schapoval, C. Lanni, G. Sandri, et al. 2019. The role of chitosan as coating material for nanostructured lipid carriers for skin delivery of fucoxanthin. International Journal of Pharmaceutics 567:118487. doi: 10.1016/j.ijpharm.2019.118487.
  • Manzoor, M., J. Singh, J. D. Bandral, A. Gani, and R. Shams. 2020. Food hydrocolloids: Functional, nutraceutical and novel applications for delivery of bioactive compounds. International Journal of Biological Macromolecules 165 (Pt A):554–67. doi: 10.1016/j.ijbiomac.2020.09.182.
  • Mao, L., Y. Lu, M. Cui, S. Miao, and Y. Gao. 2020. Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Critical Reviews in Food Science and Nutrition 60 (10):1651–66. doi: 10.1080/10408398.2019.1587737.
  • Mao, Y., M. Dubot, H. Xiao, and D. J. McClements. 2013. Interfacial engineering using mixed protein systems: Emulsion-based delivery systems for encapsulation and stabilization of β-carotene. Journal of Agricultural and Food Chemistry 61 (21):5163–9. doi: 10.1021/jf401350t.
  • Mapelli‐Brahm, P., C. Desmarchelier, M. Margier, E. Reboul, A. J. M. Martínez, and P. Borel. 2018. Phytoene and phytofluene isolated from a tomato extract are readily incorporated in mixed micelles and absorbed by Caco‐2 Cells, as compared to lycopene, and SR‐BI is involved in their cellular uptake. Molecular Nutrition & Food Research 62 (22):1800703. doi: 10.1016/j.colsurfb.2018.05.063.
  • Marinopoulou, A., E. Papastergiadis, and S. N. Raphaelides. 2016. An investigation into the structure, morphology and thermal properties of amylomaize starch-fatty acid complexes prepared at different temperatures. Food Research International (Ottawa, Ontario) 90:111–20. doi: 10.1016/j.foodres.2016.10.035.
  • Marisiddaiah, R., L. Rangaswamy, and B. Vallikannan. 2011. Single oral dose of micellar β-carotene containing phospholipids improves β-carotene metabolism and plasma lipids in vitamin A-deficient rats. European Journal of Nutrition 50 (7):531–41. doi: 10.1007/s00394-010-0160-5.
  • Matemu, A. O., H. Kayahara, H. Murasawa, S. Katayama, and S. Nakamura. 2011. Improved emulsifying properties of soy proteins by acylation with saturated fatty acids. Food Chemistry 124 (2):596–602. doi: 10.1016/j.foodchem.2010.06.081.
  • Matemu, A. O., K. Nakamura, H. Kayahara, H. Murasawa, S. Katayama, and S. Nakamura. 2011. Enhanced antiviral activity of soybean β-conglycinin-derived peptides by acylation with saturated fatty acids. Journal of Food Science 76 (6):M299–M304. doi: 10.1111/j.1750-3841.2011.02248.x.
  • McClements, D. J. 2010. Emulsion design to improve the delivery of functional lipophilic components. Annual Review of Food Science and Technology 1 (1):241–69. doi: 10.1146/annurev.food.080708.100722.
  • McClements, D. J. 2015. Nanoscale nutrient delivery systems for food applications: Improving bioactive dispersibility, stability, and bioavailability. Journal of Food Science 80 (7):N1602–N1611. doi: 10.1111/1750-3841.12919.
  • McClements, D. J. 2021. Food hydrocolloids: Application as functional ingredients to control lipid digestion and bioavailability. Food Hydrocolloids. 111:106404. doi: 10.1016/j.foodhyd.2020.106404.
  • McClements, D. J, and E. A. Decker. 2009. 20 – Controlling lipid bioavailability using emulsion-based delivery systems. In Designing functional foods, ed. D. J. McClements & E. A. Decker, 502–46. Oxford, UK: Woodhead Publishing.
  • Mengdan, Q., P. Xiao, M. Dexue, M. Cuicui, and L. Fuguo. 2020. Effect of membrane surface modification using chitosan hydrochloride and lactoferrin on the properties of astaxanthin-loaded liposomes. Molecules (Basel, Switzerland) 25 (3):610. doi: 10.3390/molecules25030610.
  • Mohammadian, M., M. I. Waly, M. Moghadam, Z. Emam-Djomeh, M. Salami, and A. A. Moosavi-Movahedi. 2020. Nanostructured food proteins as efficient systems for the encapsulation of bioactive ­compounds. Food Science and Human Wellness 9 (3):199–213. doi: 10.1016/j.fshw.2020.04.009.
  • Mohammed, L., H. Nourddine, E. F. Saad, D. Abdelali, and R. Hamid. 2021. Chitosan-covered liposomes as a promising drug transporter: Nanoscale investigations. RSC Advances 11 (3):1503–16. doi: 10.1039/D0RA08305D.
  • Møller, A. H., W. Wijaya, A. Jahangiri, B. Madsen, B. Joernsgaard, S. Vaerbak, M. Hammershøj, P. Van der Meeren, and T. K. Dalsgaard. 2020. Norbixin binding to whey protein isolate – Alginate electrostatic complexes increases its solubility and stability. Food Hydrocolloids. 101:105559. doi: 10.1016/j.foodhyd.2019.105559.
  • Moran, N. E., E. S. Mohn, N. Hason, J. W. Erdman, Jr., and E. J. Johnson. 2018. Intrinsic and extrinsic factors impacting absorption, metabolism, and health effects of dietary carotenoids. Advances in Nutrition (Bethesda, Maryland) 9 (4):465–92. doi: 10.1093/advances/nmy025.
  • Moussa, M., J.-F. Landrier, E. Reboul, O. Ghiringhelli, C. Coméra, X. Collet, K. Fröhlich, V. Böhm, and P. Borel. 2008. Lycopene absorption in human intestinal cells and in mice involves scavenger receptor class B type I but not Niemann-Pick C1-like 1(1,2). The Journal of Nutrition 138 (8):1432–6. doi: 10.1093/jn/138.8.1432.
  • Mulligan, J. D., M. T. Flowers, A. Tebon, J. J. Bitgood, C. Wellington, M. R. Hayden, and A. D. Attie. 2003. ABCA1 is essential for efficient basolateral cholesterol efflux during the absorption of dietary cholesterol in chickens. The Journal of Biological Chemistry 278 (15):13356–66. doi: 10.1074/jbc.M212377200.
  • Mun, S., Y.-R. Kim, M. Shin, and D. J. McClements. 2015. Control of lipid digestion and nutraceutical bioaccessibility using starch-based filled hydrogels: Influence of starch and surfactant type. Food Hydrocolloids. 44:380–9. doi: 10.1016/j.foodhyd.2014.10.013.
  • Muñoz-Shugulí, C., C. P. Vidal, P. Cantero-López, and J. Lopez-Polo. 2021. Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes. Trends in Food Science & Technology 108:177–86. doi: 10.1016/j.tifs.2020.12.020.
  • Mutsokoti, L., A. Panozzo, A. Pallares Pallares, S. Jaiswal, A. Van Loey, T. Grauwet, and M. Hendrickx. 2017. Carotenoid bioaccessibility and the relation to lipid digestion: A kinetic study. Food Chemistry 232:124–34. doi: 10.1016/j.foodchem.2017.04.001.
  • Navon, Y., H. Radavidson, J.-L. Putaux, B. Jean, and L. Heux. 2017. pH-sensitive interactions between cellulose nanocrystals and dopc liposomes. Biomacromolecules 18 (9):2918–27. doi: 10.1021/acs.biomac.7b00872.
  • Nie, M., Z. Zhang, C. Liu, D. Li, W. Huang, C. Liu, and N. Jiang. 2019. Hesperetin and hesperidin improved β-carotene incorporation efficiency, intestinal cell uptake, and retinoid concentrations in tissues. Journal of Agricultural and Food Chemistry 67 (12):3363–71. doi: 10.1021/acs.jafc.9b00551.
  • Pan, L., X. Zhang, X. Fan, H. Li, B. Xu, and X. Li. 2020. Whey protein isolate coated liposomes as novel carrier systems for astaxanthin. European Journal of Lipid Science and Technology 122 (4):1900325. doi: 10.1002/ejlt.201900325.
  • Panja, S., D. K. Khatua, and M. Halder. 2019. Effect of casein on pure lecithin liposome: Mixed biomacromolecular system for providing superior stabilization to hydrophobic molecules. Colloids and Surfaces. B, Biointerfaces 180:298–305. doi: 10.1016/j.colsurfb.2019.04.038.
  • Patrick, B., L. Georg, G. Aurélie, S. d E. Fabien, L. Sophie, C. Peter, G. Louisa, M. J. C, E. A. M, P. Christopher, et al. 2013. CD36 and SR-BI are involved in cellular uptake of provitamin A carotenoids by Caco-2 and HEK cells, and some of their genetic ­variants are associated with plasma concentrations of these ­micronutrients in humans. The Journal of Nutrition 143 (4):448–56. doi: 10.3945/jn.112.172734.
  • Pedersen, J. N., H. K. S. Frislev, J. S. Pedersen, and D. Otzen. 2020. Structures and mechanisms of formation of liprotides. Biochimica et Biophysica Acta. Proteins and Proteomics 1868 (11):140505. doi: 10.1016/j.bbapap.2020.140505.
  • Peng, S., Z. Li, L. Zou, W. Liu, C. Liu, and D. J. McClements. 2018. Enhancement of curcumin bioavailability by encapsulation in sophorolipid-coated nanoparticles: An in vitro and in vivo study. Journal of Agricultural and Food Chemistry 66 (6):1488–97. doi: 10.1021/acs.jafc.7b05478.
  • Priyadarshani, A. M. B. 2017. A review on factors influencing bioaccessibility and bioefficacy of carotenoids. Critical Reviews in Food Science and Nutrition 57 (8):1710–7. doi: 10.1080/10408398.2015.1023431.
  • Pu, C., W. Tang, X. Li, M. Li, and Q. Sun. 2019. Stability enhancement efficiency of surface decoration on curcumin-loaded liposomes: Comparison of guar gum and its cationic counterpart. Food Hydrocolloids. 87:29–37. doi: 10.1016/j.foodhyd.2018.07.039.
  • Quan, J., S.-M. Kim, C.-H. Pan, and D. Chung. 2013. Characterization of fucoxanthin-loaded microspheres composed of cetyl palmitate-based solid lipid core and fish gelatin–gum arabic coacervate shell. Food Research International 50 (1):31–7. doi: 10.1016/j.foodres.2012.09.040.
  • Qv, X.-Y., Z.-P. Zeng, and J.-G. Jiang. 2011. Preparation of lutein microencapsulation by complex coacervation method and its physicochemical properties and stability. Food Hydrocolloids. 25 (6):1596–603. doi: 10.1016/j.foodhyd.2011.01.006.
  • Rao, A. V, and L. G. Rao. 2007. Carotenoids and human health. Pharmacological Research 55 (3):207–16. doi: 10.1016/j.phrs.2007.01.012.
  • Ravi, H, and V. Baskaran. 2017. Chitosan-glycolipid nanocarriers improve the bioavailability of fucoxanthin via up-regulation of PPARγ and SRB1 and antioxidant activity in rat model. Journal of Functional Foods 28:215–26. doi: 10.1016/j.jff.2016.10.023.
  • Reboul, E. 2013. Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins. Nutrients 5 (9):3563–81. doi: 10.3390/nu5093563.
  • Reboul, E. 2019. Mechanisms of carotenoid intestinal absorption: Where do we stand? Nutrients 11 (4):838. doi: 10.3390/nu11040838.
  • Reboul, E., A. Klein, F. Bietrix, B. Gleize, C. Malezet-Desmoulins, M. Schneider, A. Margotat, L. Lagrost, X. Collet, and P. Borel. 2006. Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. Journal of Biological Chemistry 281 (8):4739–45. doi: 10.1074/jbc.M509042200.
  • Reboul, E., M. Richelle, E. Perrot, C. Desmoulins-Malezet, V. Pirisi, and P. Borel. 2006. Bioaccessibility of carotenoids and vitamin E from their main dietary sources. Journal of Agricultural and Food Chemistry 54 (23):8749–55. doi: 10.1021/jf061818s.
  • Rehman, A., Q. Tong, S. M. Jafari, E. Assadpour, Q. Shehzad, R. M. Aadil, M. W. Iqbal, M. M. A. Rashed, B. S. Mushtaq, and W. Ashraf. 2020. Carotenoid-loaded nanocarriers: A comprehensive review. Advances in Colloid and Interface Science 275:102048. doi: 10.1016/j.cis.2019.102048.
  • Rich, G. T., A. L. Bailey, R. M. Faulks, M. L. Parker, M. S. J. Wickham, and A. Fillery-Travis. 2003. Solubilization of carotenoids from carrot juice and spinach in lipid phases: I. Modeling the gastric lumen. Lipids 38 (9):933–45. doi: 10.1007/s11745-003-1147-0.
  • Rovoli, M., O. Gortzi, S. Lalas, and G. Kontopidis. 2014. β-Lactoglobulin improves liposome’s encapsulation properties for vitamin E delivery. Journal of Liposome Research 24 (1):74–81. doi: 10.3109/08982104.2013.839701.
  • Rovoli, M., I. Pappas, S. Lalas, O. Gortzi, and G. Kontopidis. 2019. In vitro and in vivo assessment of vitamin A encapsulation in a liposome–protein delivery system. Journal of Liposome Research 29 (2):142–52. doi: 10.1080/08982104.2018.1502314.
  • Rowles, J. L, and J. W. Erdman. 2020. Carotenoids and their role in cancer prevention. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1865 (11):158613. doi: 10.1016/j.bbalip.2020.158613.
  • Salvia-Trujillo, L., C. Qian, O. Martín-Belloso, and D. J. McClements. 2013a. Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chemistry 141 (2):1472–80. doi: 10.1016/j.foodchem.2013.03.050.
  • Salvia-Trujillo, L., C. Qian, O. Martín-Belloso, and D. J. McClements. 2013b. Modulating β-carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chemistry 139 (1–4):878–84. doi: 10.1016/j.foodchem.2013.02.024.
  • Sangsuriyawong, A., M. Limpawattana, D. Siriwan, and W. Klaypradit. 2019. Properties and bioavailability assessment of shrimp astaxanthin loaded liposomes. Food Science and Biotechnology 28 (2):529–37. doi: 10.1007/s10068-018-0495-x.
  • Saporito, F., G. Sandri, S. Rossi, M. C. Bonferoni, F. Riva, L. Malavasi, C. Caramella, and F. Ferrari. 2018. Freeze dried chitosan acetate dressings with glycosaminoglycans and traxenamic acid. Carbohydrate Polymers 184:408–17. doi: 10.1016/j.carbpol.2017.12.066.
  • Saravana, P. S., K. Shanmugapriya, C. R. N. Gereniu, S.-J. Chae, H. W. Kang, H.-C. Woo, and B.-S. Chun. 2019. Ultrasound-mediated fucoxanthin rich oil nanoemulsions stabilized by κ-carrageenan: Process optimization, bio-accessibility and cytotoxicity. Ultrasonics Sonochemistry 55:105–16. doi: 10.1016/j.ultsonch.2019.03.014.
  • Semenova, M. 2017. Advances in molecular design of biopolymer-based delivery micro/nanovehicles for essential fatty acids. Food Hydrocolloids. 68:114–21. doi: 10.1016/j.foodhyd.2016.09.019.
  • Shao, P., P. Wang, B. Niu, and J. Kang. 2018. Environmental stress stability of pectin-stabilized resveratrol liposomes with different degree of esterification. International Journal of Biological Macromolecules 119:53–9. doi: 10.1016/j.ijbiomac.2018.07.139.
  • Shen, Z., D. T. Loe, J. K. Awino, M. Kröger, J. L. Rouge, and Y. Li. 2016. Self-assembly of core-polyethylene glycol-lipid shell (CPLS) nanoparticles and their potential as drug delivery vehicles. Nanoscale 8 (31):14821–35. doi: 10.1039/C6NR04134E.
  • Shi, J., and M. L. Maguer. 2000. Lycopene in tomatoes: Chemical and physical properties affected by food processing. Critical Reviews in Food Science and Nutrition 40 (1): 1–42. doi: 10.1080/10408690091189275.
  • Shi, W, and M.-J. Dumont. 2014. Processing and physical properties of canola protein isolate-based films. Industrial Crops and Products 52:269–77. doi: 10.1016/j.indcrop.2013.10.037.
  • Shibakami, M., G. Tsubouchi, M. Sohma, and M. Hayashi. 2015. Preparation of transparent self-standing thin films made from acetylated euglenoid β-1,3-glucans. Carbohydrate Polymers 133:421–8. doi: 10.1016/j.carbpol.2015.06.104.
  • Singh, A., Y. R. Neupane, B. P. Panda, and K. Kohli. 2017. Lipid based nanoformulation of lycopene improves oral delivery: Formulation optimization, ex vivo assessment and its efficacy against breast cancer. Journal of Microencapsulation 34 (4):416–29. doi: 10.1080/02652048.2017.1340355.
  • Singh, T. S, and S. Mitra. 2011. Interaction of cinnamic acid derivatives with serum albumins: A fluorescence spectroscopic study. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 78 (3):942–8. doi: 10.1016/j.saa.2010.11.046.
  • Sivapratha, S, and P. Sarkar. 2018. Multiple layers and conjugate materials for food emulsion stabilization. Critical Reviews in Food Science and Nutrition 58 (6):877–92. doi: 10.1080/10408398.2016.1227765.
  • Socaciu, C., C. Lausch, and H. A. Diehl. 1999. Carotenoids in DPPC vesicles: Membrane dynamics. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 55 (11):2289–97. doi: 10.1016/S1386-1425(99)00095-5.
  • Song, Y., L. Zhang, W. Gan, J. Zhou, and L. Zhang. 2011. Self-assembled micelles based on hydrophobically modified quaternized cellulose for drug delivery. Colloids and Surfaces. B, Biointerfaces 83 (2):313–20. doi: 10.1016/j.colsurfb.2010.11.039.
  • Steiner, B. M., D. J. McClements, and G. Davidov-Pardo. 2018. Encapsulation systems for lutein: A review. Trends in Food Science & Technology 82:71–81. doi: 10.1016/j.tifs.2018.10.003.
  • Su, J., Q. Guo, Y. Chen, L. Mao, Y. Gao, and F. Yuan. 2020. Utilization of β-lactoglobulin- (−)-epigallocatechin- 3-gallate(EGCG) composite colloidal nanoparticles as stabilizers for lutein pickering emulsion. Food Hydrocolloids. 98:105293. doi: 10.1016/j.foodhyd.2019.105293.
  • Sun, J., Z. Wei, and C. Xue. 2021. Recent research advances in astaxanthin delivery systems: Fabrication technologies, comparisons and applications. Critical Reviews in Food Science and Nutrition 2021:1–22. doi: 10.1080/10408398.2021.1989661.
  • Taheri, A, and S. M. Jafari. 2019. Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Advances in Colloid and Interface Science 269:277–95. doi: 10.1016/j.cis.2019.04.009.
  • Tan, C., B. Feng, X. Zhang, W. Xia, and S. Xia. 2016. Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocolloids. 52:774–84. doi: 10.1016/j.foodhyd.2015.08.016.
  • Tan, C., Y. Zhang, S. Abbas, B. Feng, X. Zhang, and S. Xia. 2014. Modulation of the carotenoid bioaccessibility through liposomal encapsulation. Colloids and Surfaces. B, Biointerfaces 123:692–700. doi: 10.1016/j.colsurfb.2014.10.011.
  • Tang, C.-H. 2019. Nanostructured soy proteins: Fabrication and applications as delivery systems for bioactives (a review). Food Hydrocolloids. 91:92–116. doi: 10.1016/j.foodhyd.2019.01.012.
  • Tang, C-h 2021. Strategies to utilize naturally occurring protein architectures as nanovehicles for hydrophobic nutraceuticals. Food Hydrocolloids. 112:106344. doi: 10.1016/j.foodhyd.2020.106344.
  • Tang, Y. R, and S. Ghosh. 2021. Stability and rheology of canola protein isolate-stabilized concentrated oil-in-water emulsions. Food Hydrocolloids. 113:106399. doi: 10.1016/j.foodhyd.2020.106399.
  • Tao, Y., B. Yan, D. Fan, N. Zhang, S. Ma, L. Wang, Y. Wu, M. Wang, J. Zhao, and H. Zhang. 2020. Structural changes of starch subjected to microwave heating: A review from the perspective of dielectric properties. Trends in Food Science & Technology 99:593–607. doi: 10.1016/j.tifs.2020.02.020.
  • Tarhini, M., H. Greige-Gerges, and A. Elaissari. 2017. Protein-based nanoparticles: From preparation to encapsulation of active molecules. International Journal of Pharmaceutics 522 (1–2):172–97. doi: 10.1016/j.ijpharm.2017.01.067.
  • Tavares, G. M., T. Croguennec, A. F. Carvalho, and S. Bouhallab. 2014. Milk proteins as encapsulation devices and delivery vehicles: Applications and trends. Trends in Food Science & Technology 37 (1):5–20. doi: 10.1016/j.tifs.2014.02.008.
  • Teo, A., S. J. Lee, K. K. T. Goh, and F. M. Wolber. 2017. Kinetic stability and cellular uptake of lutein in WPI-stabilised nanoemulsions and emulsions prepared by emulsification and solvent evaporation method. Food Chemistry 221:1269–76. doi: 10.1016/j.foodchem.2016.11.030.
  • Tomita, S., C. Suzuki, H. Wada, M. Nomachi, M. Imayasu, and K. Araki-Sasaki. 2017. Effects of lactoferrin on the viability and the encystment of Acanthamoeba trophozoites. Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire 95 (1):48–52. doi: 10.1139/bcb-2016-0054.
  • Torres, O., B. Murray, and A. Sarkar. 2016. Emulsion microgel particles: Novel encapsulation strategy for lipophilic molecules. Trends in Food Science & Technology 55:98–108. doi: 10.1016/j.tifs.2016.07.006.
  • Tso, P., M. Vurma, C.-W. Ko, D. Lee, and S. DeMichele. 2018. Effect of mono- and diglycerides on the digestion and absorption of lutein in lymph fistula rats. American Journal of Physiology-Gastrointestinal and Liver Physiology 315 (1):G95–G103. doi: 10.1152/ajpgi.00236.2017.
  • Tyssandier, V., B. Lyan, and P. Borel. 2001. Main factors governing the transfer of carotenoids from emulsion lipid droplets to micelles. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1533 (3):285–92. doi: 10.1016/S1388-1981(01)00163-9.
  • Tyssandier, V., E. Reboul, J.-F. Dumas, C. Bouteloup-Demange, M. Armand, J. Marcand, M. Sallas, and P. Borel. 2003. Processing of vegetable-borne carotenoids in the human stomach and duodenum. American Journal of Physiology. Gastrointestinal and Liver Physiology 284 (6):G913–G923. doi: 10.1152/ajpgi.00410.2002.
  • Unlu, N. Z., T. Bohn, S. K. Clinton, and S. J. Schwartz. 2005. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. The Journal of Nutrition 135 (3):431–6. doi: 10.1093/jn/135.3.431.
  • Terpstra, V., E. S. van Amersfoort, A. G. van Velzen, J. Kuiper, and T. J. van Berkel. 2000. Hepatic and extrahepatic scavenger receptors: Function in relation to disease. Arteriosclerosis, Thrombosis, and Vascular Biology 20 (8):1860–72. doi: 10.1161/01.atv.20.8.1860.
  • Verrijssen, T. A. J., S. H. E. Verkempinck, S. Christiaens, A. M. Van Loey, and M. E. Hendrickx. 2015. The effect of pectin on in vitro β-carotene bioaccessibility and lipid digestion in low fat emulsions. Food Hydrocolloids. 49:73–81. doi: 10.1016/j.foodhyd.2015.02.040.
  • von Lintig, J., J. Moon, J. Lee, and S. Ramkumar. 2020. Carotenoid metabolism at the intestinal barrier. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1865 (11):158580. doi: 10.1016/j.bbalip.2019.158580.
  • Wang, C., X. Chen, Y. Nakamura, C. Yu, and H. Qi. 2020. Fucoxanthin activities motivate its nano/micro-encapsulation for food or nutraceutical application: A review. Food & Function 11 (11):9338–58. doi: 10.1039/D0FO02176H.
  • Wang, M., M-q Feng, K. Jia, J. Sun, X-l Xu, and G-h Zhou. 2017. Effects of flaxseed gum concentrations and pH values on the ­stability of oil-in-water emulsions. Food Hydrocolloids. 67:54–62. doi: 10.1016/j.foodhyd.2017.01.004.
  • Wang, X.-Y, and M.-C. Heuzey. 2016. Chitosan-based conventional and pickering emulsions with long-term stability. Langmuir: The ACS Journal of Surfaces and Colloids 32 (4):929–36. doi: 10.1021/acs.langmuir.5b03556.
  • Wang, Y., Q. Lin, P. Zheng, L. Li, Z. Bao, and F. Huang. 2014. Effects of eicosapentaenoic acid and docosahexaenoic acid on chylomicron and VLDL synthesis and secretion in Caco-2 cells. BioMed Research International 2014:1–10. doi: 10.1155/2014/684325.
  • Winkler, H., W. Vorwerg, and M. Schmid. 2015. Synthesis of hydrophobic whey protein isolate by acylation with fatty acids. European Polymer Journal 62:10–8. doi: 10.1016/j.eurpolymj.2014.10.014.
  • Wolf-Schnurrbusch, U. E. K., M. S. Zinkernagel, M. R. Munk, A. Ebneter, and S. Wolf. 2015. Oral lutein supplementation enhances macular pigment density and contrast sensitivity but not in combination with polyunsaturated fatty acids. Investigative Opthalmology & Visual Science 56 (13):8069–74. doi: 10.1167/iovs.15-17586.
  • Xia, Z., Y. Han, H. Du, D. J. McClements, Z. Tang, and H. Xiao. 2020. Exploring the effects of carrier oil type on in vitro bioavailability of β-carotene: A cell culture study of carotenoid-enriched nanoemulsions. LWT 134:110224. doi: 10.1016/j.lwt.2020.110224.
  • Xiao, J., C. Li, and Q. Huang. 2015. Kafirin nanoparticle-stabilized pickering emulsions as oral delivery vehicles: Physicochemical stability and in vitro digestion profile. Journal of Agricultural and Food Chemistry 63 (47):10263–70. doi: 10.1021/acs.jafc.5b04385.
  • Xu, D., Y. Qi, X. Wang, X. Li, S. Wang, Y. Cao, C. Wang, B. Sun, E. Decker, and A. Panya. 2017. The influence of flaxseed gum on the microrheological properties and physicochemical stability of whey protein stabilized β-carotene emulsions. Food & Function 8 (1):415–23. doi: 10.1039/C6FO01357K.
  • Xu, D., X. Wang, J. Jiang, F. Yuan, and Y. Gao. 2012. Impact of whey protein – Beet pectin conjugation on the physicochemical stability of β-carotene emulsions. Food Hydrocolloids. 28 (2):258–66. doi: 10.1016/j.foodhyd.2012.01.002.
  • Xu, D., F. Yuan, Y. Gao, A. Panya, D. J. McClements, and E. A. Decker. 2014. Influence of whey protein–beet pectin conjugate on the properties and digestibility of β-carotene emulsion during in vitro digestion. Food Chemistry 156:374–9. doi: 10.1016/j.foodchem.2014.02.019.
  • Yan, C., X. Wu, Y. Wang, S. Peng, J. Chen, L. Zou, D. J. McClements, and W. Liu. 2021. Utilization of polysaccharide-based high internal phase emulsion for nutraceutical encapsulation: Enhancement of carotenoid loading capacity and stability. Journal of Functional Foods 84:104601. doi: 10.1016/j.jff.2021.104601.
  • Yang, J., Y. Zhou, and L. Chen. 2014. Elaboration and characterization of barley protein nanoparticles as an oral delivery system for lipophilic bioactive compounds. Food & Function 5 (1):92–101. doi: 10.1039/C3FO60351B.
  • Yang, Y., S. W. Cui, J. Gong, Q. Guo, Q. Wang, and Y. Hua. 2015. A soy protein-polysaccharides Maillard reaction product enhanced the physical stability of oil-in-water emulsions containing citral. Food Hydrocolloids. 48:155–64. doi: 10.1016/j.foodhyd.2015.02.004.
  • Yao, Y., P. Tan, and J. E. Kim. 2022. Effects of dietary fats on the bioaccessibility and bioavailability of carotenoids: A systematic review and meta-analysis of in vitro studies and randomized controlled trials. Nutrition Reviews 80 (4):741–61. doi: 10.1093/nutrit/nuab098.
  • Yaroslavov, A. A, and A. V. Sybachin. 2020. Multifunctional carriers for controlled drug delivery. Pure and Applied Chemistry 92 (6):919–39. doi: 10.1515/pac-2019-1111.
  • Ye, Q., Y. Han, J. Zhang, W. Zhang, C. Xia, and J. Li. 2019. Bio-based films with improved water resistance derived from soy protein ­isolate and stearic acid via bioconjugation. Journal of Cleaner Production 214:125–31. doi: 10.1016/j.jclepro.2018.12.277.
  • Yi, J., C. Gan, Z. Wen, Y. Fan, and X. Wu. 2021. Development of pea protein and high methoxyl pectin colloidal particles stabilized high internal phase pickering emulsions for β-carotene protection and delivery. Food Hydrocolloids. 113:106497. doi: 10.1016/j.foodhyd.2020.106497.
  • Yi, J., L. Gao, G. Zhong, and Y. Fan. 2020. Fabrication of high internal phase Pickering emulsions with calcium-crosslinked whey ­protein nanoparticles for β-carotene stabilization and delivery. Food & Function 11 (1):768–78. doi: 10.1039/C9FO02434D.
  • Yonekura, L, and A. Nagao. 2007. Intestinal absorption of dietary carotenoids. Molecular Nutrition & Food Research 51 (1):107–15. doi: 10.1002/mnfr.200600145.
  • Yu, H., K. Shi, D. Liu, and Q. Huang. 2012. Development of a food-grade organogel with high bioaccessibility and loading of curcuminoids. Food Chemistry 131 (1):48–54. doi: 10.1016/j.foodchem.2011.08.027.
  • Yuan, Y., H. Li, C. Liu, S. Zhang, Y. Xu, and D. Wang. 2019. Fabrication and characterization of lutein-loaded nanoparticles based on zein and sophorolipid: Enhancement of water solubility, stability, and bioaccessibility. Journal of Agricultural and Food Chemistry 67 (43):11977–85. doi: 10.1021/acs.jafc.9b05175.
  • Yuki, S., S. Risa, K. Masaki, I. Shirou, H. Takeshi, N. Toshihiro, M. Satoshi, S. Mitsuru, and I. Ken. 2012. Involvement of cholesterol membrane transporter Niemann-Pick C1-like 1 in the intestinal absorption of lutein. Journal of Pharmacy & Pharmaceutical Sciences 15 (2):256. doi: 10.18433/J38K56.
  • Zhang, J., C. J. Field, D. Vine, and L. Chen. 2015. Intestinal uptake and transport of vitamin B12-loaded soy protein nanoparticles. Pharmaceutical Research 32 (4):1288–303. doi: 10.1007/s11095-014-1533-x.
  • Zhang, L., C. Zhou, X. Na, Y. Chen, and M. Tan. 2021. High internal phase Pickering emulsions stabilized by a cod protein–chitosan nanocomplex for astaxanthin delivery. Food & Function 12 (23):11872–82. doi: 10.1039/D1FO02117F.
  • Zhang, R., T. Belwal, L. Li, X. Lin, Y. Xu, and Z. Luo. 2020. Recent advances in polysaccharides stabilized emulsions for encapsulation and delivery of bioactive food ingredients: A review. Carbohydrate Polymers 242:116388. doi: 10.1016/j.carbpol.2020.116388.
  • Zhang, R., Z. Zhang, H. Zhang, E. A. Decker, and D. J. McClements. 2015. Influence of lipid type on gastrointestinal fate of oil-in-water emulsions: In vitro digestion study. Food Research International (Ottawa, Ontario) 75:71–8. doi: 10.1016/j.foodres.2015.05.014.
  • Zhang, Y., C. Pu, W. Tang, S. Wang, and Q. Sun. 2019. Gallic acid liposomes decorated with lactoferrin: Characterization, in vitro ­digestion and antibacterial activity. Food Chemistry 293:315–22. doi: 10.1016/j.foodchem.2019.04.116.
  • Zhang, Y., T. Sun, and C. Jiang. 2018. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharmaceutica Sinica. B 8 (1):34–50. doi: 10.1016/j.apsb.2017.11.005.
  • Zhang, Z., W. Chen, X. Zhou, Q. Deng, X. Dong, C. Yang, and F. Huang. 2021. Astaxanthin-loaded emulsion gels stabilized by Maillard reaction products of whey protein and flaxseed gum: Physicochemical characterization and in vitro digestibility. Food Research International (Ottawa, Ontario) 144:110321. doi: 10.1016/j.foodres.2021.110321.
  • Zhang, Z., Q. Wei, M. Nie, N. Jiang, C. Liu, C. Liu, D. Li, and L. Xu. 2018. Microstructure and bioaccessibility of different carotenoid species as affected by hot air drying: Study on carrot, sweet potato, yellow bell pepper and broccoli. LWT 96:357–63. doi: 10.1016/j.lwt.2018.05.061.
  • Zhao, C., X. Shen, and M. Guo. 2018. Stability of lutein encapsulated whey protein nano-emulsion during storage. PLoS One 13 (2):e0192511. doi: 10.1371/journal.pone.0192511.
  • Zhao, C., L. Wei, B. Yin, F. Liu, J. Li, X. Liu, J. Wang, and Y. Wang. 2020. Encapsulation of lycopene within oil-in-water nanoemulsions using lactoferrin: Impact of carrier oils on physicochemical stability and bioaccessibility. International Journal of Biological Macromolecules 153:912–20. doi: 10.1016/j.ijbiomac.2020.03.063.
  • Zhou, W., W. Liu, L. Zou, W. Liu, C. Liu, R. Liang, and J. Chen. 2014. Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids and Surfaces. B, Biointerfaces 117:330–7. doi: 10.1016/j.colsurfb.2014.02.036.
  • Zhu, J., C. Wang, J. Gao, H. Wu, and Q. Sun. 2019. Aggregation of fucoxanthin and its effects on binding and delivery properties of whey proteins. Journal of Agricultural and Food Chemistry 67 (37):10412–22. doi: 10.1021/acs.jafc.9b03046.
  • Zimet, P., D. Rosenberg, and Y. D. Livney. 2011. Re-assembled casein micelles and casein nanoparticles as nano-vehicles for ω-3 polyunsaturated fatty acids. Food Hydrocolloids. 25 (5):1270–6. doi: 10.1016/j.foodhyd.2010.11.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.