1,018
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Recent progress in fish oil-based emulsions by various food-grade stabilizers: Fabrication strategy, interfacial stability mechanism and potential application

, , , , , , , ORCID Icon & show all

References

  • Andajani, P. 2016. Microencapsulated mixture of fish oil and fortified in ice cream. Jurnal Ilmu Dan Teknologi Hasil Ternak 11 (2):1–10. doi: 10.21776/ub.jitek.2016.011.02.1.
  • Bai, L., S. Huan, Z. Li, and D. J. McClements. 2017. Comparison of emulsifying properties of food-grade polysaccharides in oil-in-water emulsions: Gum arabic, beet pectin, and corn fiber gum. Food Hydrocolloids. 66:144–53. doi: 10.1016/j.foodhyd.2016.12.019.
  • Bai, L., S. Lv, W. Xiang, S. Huan, D. J. McClements, and O. J. Rojas. 2019. Oil-in-water Pickering emulsions via microfluidization with cellulose nanocrystals: 1. Formation and stability. Food Hydrocolloids. 96:699–708. doi: 10.1016/j.foodhyd.2019.04.038.
  • Bai, L, and D. J. McClements. 2016. Formation and stabilization of nanoemulsions using biosurfactants: Rhamnolipids. Journal of Colloid and Interface Science 479:71–9. doi: 10.1016/j.jcis.2016.06.047.
  • Blijdenstein, T. B. J., A. J. M. van Winden, T. van Vliet, E. van der Linden, and G. A. van Aken. 2004. Serum separation and structure of depletion- and bridging-flocculated emulsions: A comparison. Colloids and Surfaces A: Physicochemical and Engineering Aspects 245 (1–3):41–8. doi: 10.1016/j.colsurfa.2004.07.002.
  • Boran, G., H. Karaçam, and M. Boran. 2006. Changes in the quality of fish oils due to storage temperature and time. Food Chemistry 98 (4):693–8. doi: 10.1016/j.foodchem.2005.06.041.
  • Calder, P. C, and P. Yaqoob. 2009. Omega-3 polyunsaturated fatty acids and human health outcomes. BioFactors (Oxford, England) 35 (3):266–72. doi: 10.1002/biof.42.
  • Calligaris, S., A. Gulotta, A. Ignat, D. Bermúdez-Aguirre, G. V. Barbosa-Cánovas, and M. C. Nicoli. 2013. Milk pre-treatment by high pressure homogenization in the manufacturing of “queso fresco” fortified with omega-3 fatty acids. LWT - Food Science and Technology 50 (2):629–33. doi: 10.1016/j.lwt.2012.07.035.
  • Cao, W., F. Liu, R. W. Li, Y. Chin, Y. Wang, C. Xue, and Q. Tang. 2022. Docosahexaenoic acid-rich fish oil prevented insulin resistance by modulating gut microbiome and promoting colonic peptide YY expression in diet-induced obesity mice. Food Science and Human Wellness 11 (1):177–88. doi: 10.1016/j.fshw.2021.07.018.
  • Chang, H. W., T. B. Tan, P. Y. Tan, F. Abas, O. M. Lai, Y. Wang, Y. Wang, I. A. Nehdi, and C. P. Tan. 2018. Physical properties and stability evaluation of fish oil-in-water emulsions stabilized using thiol-modified beta-lactoglobulin fibrils-chitosan complex. Food Research International 105:482–91. doi: 10.1016/j.foodres.2017.11.034.
  • Chang, Y, and D. J. McClements. 2015. Interfacial deposition of an anionic polysaccharide (fucoidan) on protein-coated lipid droplets: Impact on the stability of fish oil-in-water emulsions. Food Hydrocolloids. 51:252–60. doi: 10.1016/j.foodhyd.2015.05.014.
  • Chang, Y, and D. J. McClements. 2016a. Characterization of mucin-lipid droplet interactions: Influence on potential fate of fish oil-in-water emulsions under simulated gastrointestinal conditions. Food Hydrocolloids. 56:425–33. doi: 10.1016/j.foodhyd.2015.12.034.
  • Chang, Y, and D. J. McClements. 2016b. Influence of emulsifier type on the in vitro digestion of fish oil-in-water emulsions in the presence of an anionic marine polysaccharide (fucoidan): Caseinate, whey protein, lecithin, or Tween 80. Food Hydrocolloids. 61:92–101. doi: 10.1016/j.foodchem.2016.05.187.
  • Chityala, P. K., H. Khouryieh, K. Williams, and E. Conte. 2016. Effect of xanthan/enzyme-modified guar gum mixtures on the stability of whey protein isolate stabilized fish oil-in-water emulsions. Food Chemistry 212:332–40. doi: 10.1016/j.foodchem.2016.05.187.
  • Chu, B. S., G. T. Rich, M. J. Ridout, R. M. Faulks, M. S. Wickham, and P. J. Wilde. 2009. Modulating pancreatic lipase activity with galactolipids: Effects of emulsion interfacial composition. Langmuir: The ACS Journal of Surfaces and Colloids 25 (16):9352–60. doi: 10.1021/la9008174.
  • Comunian, T. A., R. Ravanfar, M. J. Selig, and A. Abbaspourrad. 2018. Influence of the protein type on the stability of fish oil in water emulsion obtained by glass microfluidic device. Food Hydrocolloids. 77:96–106. doi: 10.1016/j.foodhyd.2017.09.025.
  • Costa, M., S. Losada-Barreiro, A. Vicente, C. Bravo-Diaz, and F. Paiva-Martins. 2022. Unexpected antioxidant efficiency of chlorogenic acid phenolipids in fish oil-in-water nanoemulsions: An example of how relatively low interfacial concentrations can make antioxidants to be inefficient. Molecules 27 (3):861. doi: 10.3390/molecules27030861.
  • Cui, K., X. Li, Q. Chen, Q. Li, S. Gao, P. Tan, K. Mai, and Q. Ai. 2020. Effect of replacement of dietary fish oil with four vegetable oils on prostaglandin E2 synthetic pathway and expression of inflammatory genes in marine fish Larimichthys crocea. Fish & Shellfish Immunology 107 (Pt B):529–36. doi: 10.1016/j.fsi.2020.09.038.
  • de Oliveira, J. N., L. O. Reis, E. D. F. Ferreira, J. Godinho, C. C. Bacarin, L. M. Soares, R. M. W. de Oliveira, and H. Milani. 2017. Postischemic fish oil treatment confers task-dependent memory recovery. Physiology & Behavior 177:196–207. doi: 10.1016/j.physbeh.2017.05.009.
  • Della Giustina, A., M. P. Goldim, L. G. Danielski, D. Florentino, L. Garbossa, L. Joaquim, A. N. Oliveira Junior, K. Mathias, M. E. Fileti, G. F. Zarbato, et al. 2020. Fish oil-rich lipid emulsion modulates neuroinflammation and prevents long-term cognitive dysfunction after sepsis. Nutrition (Burbank, Los Angeles County, California) 70:110417. doi: 10.1016/j.nut.2018.12.003.
  • Deutch-Kolevzon, R., A. Aserin, and N. Garti. 2011. Synergistic cosolubilization of omega-3 fatty acid esters and CoQ10 in dilutable microemulsions. Chemistry and Physics of Lipids 164 (7):654–63. doi: 10.1016/j.chemphyslip.2011.06.010.
  • Dey, T. k., S. Ghosh, M. Ghosh, H. Koley, and P. Dhar. 2012. Comparative study of gastrointestinal absorption of EPA & DHA rich fish oil from nano and conventional emulsion formulation in rats. Food Research International 49 (1):72–9. doi: 10.1016/j.foodres.2012.07.056.
  • Dey, T. K., H. Koley, M. Ghosh, S. Dey, and P. Dhar. 2019. Effects of nano-sizing on lipid bioaccessibility and ex vivo bioavailability from EPA-DHA rich oil in water nanoemulsion. Food Chemistry 275:135–42. doi: 10.1016/j.foodchem.2018.09.084.
  • Di Giorgio, L., P. R. Salgado, and A. N. Mauri. 2019. Encapsulation of fish oil in soybean protein particles by emulsification and spray drying. Food Hydrocolloids. 87:891–901. doi: 10.1016/j.foodhyd.2018.09.024.
  • Ding, M., L. Liu, T. Zhang, N. Tao, X. Wang, and J. Zhong. 2021. Effect of interfacial layer number on the storage stability and in vitro digestion of fish oil-loaded multilayer emulsions consisting of gelatin particle and polysaccharides. Food Chemistry 336:127686. doi: 10.1016/j.foodchem.2020.127686.
  • Ding, M., T. Zhang, H. Zhang, N. Tao, X. Wang, and J. Zhong. 2019. Effect of preparation factors and storage temperature on fish oil-loaded crosslinked gelatin nanoparticle Pickering emulsions in liquid forms. Food Hydrocolloids. 95:326–35. doi: 10.1016/j.foodhyd.2019.04.052.
  • Ding, M., T. Zhang, H. Zhang, N. Tao, X. Wang, and J. Zhong. 2020. Gelatin molecular structures affect behaviors of fish oil-loaded traditional and Pickering emulsions. Food Chemistry 309:125642. doi: 10.1016/j.foodchem.2019.125642.
  • Ellulu, M. S., H. Khaza’ai, Y. Abed, A. Rahmat, P. Ismail, and Y. Ranneh. 2015. Role of fish oil in human health and possible mechanism to reduce the inflammation. Inflammopharmacology 23 (2–3):79–89. doi: 10.1007/s10787-015-0228-1.
  • Okazaki, E., Y. Yamashita, and Y. U. J. I. Omura. 2002. Emulsification of fish oil in surimi by high-speed mixing and improvement of gel-forming ability. Nippon Suisan Gakkaishi 68 (4):547–53. doi: 10.2331/suisan.68.547.
  • Fan, Y., Y. Liu, L. Gao, Y. Zhang, and J. Yi. 2018. Oxidative stability and in vitro digestion of menhaden oil emulsions with whey protein: Effects of EGCG conjugation and interfacial cross-linking. Food Chemistry 265:200–7. doi: 10.1016/j.foodchem.2018.05.098.
  • Feng, J., H. Cai, H. Wang, C. Li, and S. Liu. 2018. Improved oxidative stability of fish oil emulsion by grafted ovalbumin-catechin conjugates. Food Chemistry 241:60–9. doi: 10.1016/j.foodchem.2017.08.055.
  • Freire, M., R. Bou, S. Cofrades, M. T. Solas, and F. Jimenez-Colmenero. 2016. Double emulsions to improve frankfurter lipid content: Impact of perilla oil and pork backfat. Journal of the Science of Food and Agriculture 96 (3):900–8. doi: 10.1002/jsfa.7163.
  • Fu, J., D. An, Y. Song, C. Wang, M. Qiu, and H. Zhang. 2020. Janus nanoparticles for cellular delivery chemotherapy: Recent advances and challenges. Coordination Chemistry Reviews 422:213467. doi: 10.1016/j.ccr.2020.213467.
  • Fontani, G., F. C, A. Felici, F. Alfatti, S. Migliorini, G. L. Lodi Fontani, F. Corradeschi, and A. Felici. 2005. Cognitive and physiological effects of Omega‐3 polyunsaturated fatty acid supplementation in healthy subjects. European Journal of Clinical Investigation 35 (11):691–9. doi: 10.1111/j.1365-2362.2005.01570.x.
  • Garaiova, I., I. A. Guschina, S. F. Plummer, J. Tang, D. Wang, and N. T. Plummer. 2007. A randomised cross-over trial in healthy adults indicating improved absorption of omega-3 fatty acids by pre-emulsification. Nutrition Journal 6 (1):1–9. doi: 10.1186/1475-2891-6-4.
  • Garcia-Moreno, P. J., A. Guadix, E. M. Guadix, and C. Jacobsen. 2016. Physical and oxidative stability of fish oil-in-water emulsions stabilized with fish protein hydrolysates. Food Chemistry 203:124–35. doi: 10.1016/j.foodchem.2016.02.073.
  • García-Moreno, P. J., C. Jacobsen, P. Marcatili, S. Gregersen, M. T. Overgaard, M. L. Andersen, A.-D M. Sørensen, and E. B. Hansen. 2020. Emulsifying peptides from potato protein predicted by bioinformatics: Stabilization of fish oil-in-water emulsions. Food Hydrocolloids. 101:105529. doi: 10.1016/j.foodhyd.2019.105529.
  • Giorgio, L. D., P. R. Salgado, and A. N. Mauri. 2022. Fish oil-in-water emulsions stabilized by soy proteins and cellulose nanocrystals. Carbohydrate Polymer Technologies and Applications 3:100176. doi: 10.1016/j.carpta.2021.100176.
  • Gumus, C. E., E. A. Decker, and D. J. McClements. 2017a. Gastrointestinal fate of emulsion-based ω-3 oil delivery systems stabilized by plant proteins: Lentil, pea, and faba bean proteins. Journal of Food Engineering 207:90–8. doi: 10.1016/j.jfoodeng.2017.03.019.
  • Gumus, C. E., E. A. Decker, and D. J. McClements. 2017b. Impact of legume protein type and location on lipid oxidation in fish oil-in-water emulsions: Lentil, pea, and faba bean proteins. Food Research International (Ottawa, Ontario) 100 (Pt 2):175–85. doi: 10.1016/j.foodres.2017.08.029.
  • Guo, Y., W. C. Huang, Y. Wu, X. Qi, and X. Mao. 2019. Conformational changes of proteins and oil molecules in fish oil/water interfaces of fish oil-in-water emulsions stabilized by bovine serum albumin. Food Chemistry 274:402–6. doi: 10.1016/j.foodchem.2018.08.122.
  • Han, J., Y. Du, W. Shang, J. Yan, H. Wu, B. Zhu, and H. Xiao. 2019. Fabrication of surface-active antioxidant biopolymers by using a grafted scallop (Patinopecten yessoensis) gonad protein isolate-epigallocatechin gallate (EGCG) conjugate: Improving the stability of tuna oil-loaded emulsions. Food & Function 10 (10):6752–66. doi: 10.1039/c9fo01723b.
  • Hasinovic, H., S. E. Friberg, and G. Rong. 2011. A one-step process to a Janus emulsion. Journal of Colloid and Interface Science 354 (1):424–6. doi: 10.1016/j.jcis.2010.10.004.
  • Hermund, D. B., B. Yeşiltaş, P. Honold, R. Jónsdóttir, H. G. Kristinsson, and C. Jacobsen. 2015. Characterisation and antioxidant evaluation of Icelandic F. vesiculosus extracts in vitro and in fish-oil-enriched milk and mayonnaise. Journal of Functional Foods 19:828–41. doi: 10.1016/j.jff.2015.02.020.
  • Horn, A. F., D. Green-Petersen, N. S. Nielsen, U. Andersen, G. Hyldig, L. H. S. Jensen, A. Horsewell, and C. Jacobsen. 2012. Addition of fish oil to cream cheese affects lipid oxidation, sensory stability and microstructure. Agriculture 2 (4):359–75. doi: 10.3390/agriculture2040359.
  • Hosseini, R. S, and A. Rajaei. 2020. Potential Pickering emulsion stabilized with chitosan-stearic acid nanogels incorporating clove essential oil to produce fish-oil-enriched mayonnaise. Carbohydrate Polymers 241:116340. doi: 10.1016/j.carbpol.2020.116340.
  • Hrebień‐Filisińska, A. 2021. Application of natural antioxidants in the oxidative stabilization of fish oils: A mini‐review. Journal of Food Processing and Preservation 45 (4):e15342. doi: 10.1111/jfpp.15342.
  • Hu, Z., Y. Chin, J. Liu, J. Zhou, G. Li, L. Hu, and Y. Hu. 2022. Optimization of fish oil extraction from Lophius litulon liver and fatty acid composition analysis. Fisheries and Aquatic Sciences 25 (2):76–89. doi: 10.47853/FAS.2022.e8.
  • İlyasoğlu, H, and Z. Guo. 2019. Water soluble chitosan-caffeic acid conjugates as a dual functional polymeric surfactant. Food Bioscience 29:118–25. doi: 10.1016/j.fbio.2019.04.007.
  • Jacobsen, C., K. Hartvigsen, P. Lund, A. S. Meyer, J. Adler-Nissen, J. Holstborg, and G. Hølmer. 1999. Oxidation in fish-oil-enriched mayonnaise 1. Assessment of propyl gallate as an antioxidant by discriminant partial least squares regression analysis. European Food Research and Technology 210 (1):13–30. doi: 10.1007/s002170050526.
  • Jamshidi, A., H. Cao, J. Xiao, and J. Simal-Gandara. 2020. Advantages of techniques to fortify food products with the benefits of fish oil. Food Research International (Ottawa, Ontario) 137:109353. doi: 10.1016/j.foodres.2020.109353.
  • Jamshidi, A., B. Shabanpour, P. Pourashouri, and M. Raeisi. 2018. Using WPC-inulin-fucoidan complexes for encapsulation of fish protein hydrolysate and fish oil in W1/O/W2 emulsion: Characterization and nutritional quality. Food Research International (Ottawa, Ontario) 114:240–50. doi: 10.1016/j.foodres.2018.07.066.
  • Jamshidi, A., B. Shabanpour, P. Pourashouri, and M. Raeisi. 2019. Optimization of encapsulation of fish protein hydrolysate and fish oil in W1/O/W2 double emulsion: Evaluation of sensory quality of fortified yogurt. Journal of Food Processing and Preservation 43 (9):e14063. doi: 10.1111/jfpp.14063.
  • Jeyakumari, A., G. Janarthanan, M. K. Chouksey, and G. Venkateshwarlu. 2016. Effect of fish oil encapsulates incorporation on the physico-chemical and sensory properties of cookies. Journal of Food Science and Technology 53 (1):856–63. doi: 10.1007/s13197-015-1981-2.
  • Joyce, P., H. Gustafsson, and C. A. Prestidge. 2018. Enhancing the lipase-mediated bioaccessibility of omega-3 fatty acids by microencapsulation of fish oil droplets within porous silica particles. Journal of Functional Foods 47:491–502. doi: 10.1016/j.jff.2018.06.015.
  • Karahadian, C, and R. C. Lindsay. 1989. Evaluation of compounds contributing characterizing fishy flavors in fish oils. Journal of the American Oil Chemists’ Society 66 (7):953–60. doi: 10.1007/bf02682616.
  • Khunt, D., S. Polaka, M. Shrivas, and M. Misra. 2020. Biodistribution and amyloid beta induced cell line toxicity study of intranasal Rivastigmine microemulsion enriched with fish oil and butter oil. Journal of Drug Delivery Science and Technology 57:101661. 10.1016/j.jddst.2020.101661.
  • Kralova, I, and J. Sjöblom. 2009. Surfactants used in food industry: A review. Journal of Dispersion Science and Technology 30 (9):1363–83. doi: 10.1080/01932690902735561.
  • Laubertová, L., K. Koňariková, H. Gbelcová, Z. Ďuračková, J. Muchová, I. Garaiova, and I. Žitňanová. 2017. Fish oil emulsion supplementation might improve quality of life of diabetic patients due to its antioxidant and anti-inflammatory properties. Nutrition Research (New York, N.Y.) 46:49–58. doi: 10.1016/j.nutres.2017.07.012.
  • Lee, M. C., X. Jiang, J. T. Brenna, and A. Abbaspourrad. 2018. Oleogel-structured composite for the stabilization of omega3 fatty acids in fish oil. Food & Function 9 (11):5598–606. doi: 10.1039/c8fo01446a.
  • Li, J., S. Geng, S. Zhen, X. Lv, and B. Liu. 2022. Fabrication and characterization of oil-in-water emulsions stabilized by whey protein isolate/phloridzin/sodium alginate ternary complex. Food Hydrocolloids. 129:107625. doi: 10.1016/j.foodhyd.2022.107625.
  • Li, J., X. Hu, X. Li, and Z. Ma. 2016. Effects of acetylation on the emulsifying properties of Artemisia sphaerocephala Krasch. polysaccharide. Carbohydrate Polymers 144:531–40. doi: 10.1016/j.carbpol.2016.02.039.
  • Li, Y., M. Li, Y. Qi, L. Zheng, C. Wu, Z. Wang, and F. Teng. 2020. Preparation and digestibility of fish oil nanoemulsions stabilized by soybean protein isolate-phosphatidylcholine. Food Hydrocolloids. 100:105310. doi: 10.1016/j.foodhyd.2019.105310.
  • Li, Y, and D. J. McClements. 2010. New mathematical model for interpreting pH-stat digestion profiles: Impact of lipid droplet characteristics on in vitro digestibility. Journal of Agricultural and Food Chemistry 58 (13):8085–92. doi: 10.1021/jf101325m.
  • Liao, L., Y. Luo, M. Zhao, and Q. Wang. 2012. Preparation and characterization of succinic acid deamidated wheat gluten microspheres for encapsulation of fish oil. Colloids and Surfaces. B, Biointerfaces 92:305–14. doi: 10.1016/j.colsurfb.2011.12.003.
  • Lim, H.-P., K.-W. Ho, C. K. Surjit Singh, C.-W. Ooi, B.-T. Tey, and E.-S. Chan. 2020. Pickering emulsion hydrogel as a promising food delivery system: Synergistic effects of chitosan Pickering emulsifier and alginate matrix on hydrogel stability and emulsion delivery. Food Hydrocolloids. 103:105659. doi: 10.1016/j.foodhyd.2020.105659.
  • Liu, C., R. Pei, L. Peltonen, and M. Heinonen. 2020. Assembling of the interfacial layer affects the physical and oxidative stability of faba bean protein-stabilized oil-in-water emulsions with chitosan. Food Hydrocolloids. 102:105614. doi: 10.1016/j.foodhyd.2019.105614.
  • Liu, J., W. Liu, L. J. Salt, M. J. Ridout, Y. Ding, and P. J. Wilde. 2019. Fish oil emulsions stabilized with caseinate glycated by dextran: Physicochemical stability and gastrointestinal fate. Journal of Agricultural and Food Chemistry 67 (1):452–62. doi: 10.1021/acs.jafc.8b04190.
  • Martin, D., J. A. Nieto‐Fuentes, F. J. Señoráns, G. Reglero, and C. Soler‐Rivas. 2010. Intestinal digestion of fish oils and ω‐3 concentrates under in vitro conditions. European Journal of Lipid Science and Technology 112 (12):1315–22. doi: 10.1002/ejlt.201000329.
  • McClements, D. J, and S. M. Jafari. 2018. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science 251:55–79. doi: 10.1016/j.cis.2017.12.001.
  • Mgbechidinma, C. L., G. Zheng, E. B. Baguya, H. Zhou, S. U. Okon, and C. Zhang. 2022. Fatty acid composition and nutritional analysis of waste crude fish oil obtained by optimized milder extraction methods. Environmental Engineering Research 28 (2):220034. doi: 10.4491/eer.2022.034.
  • Rincón-Cervera, M. Á., R. B.-S, R. A. M. Soares Freitas, S. López-Arana, and A. d C. de Camargo. 2022. Monounsaturated and polyunsaturated fatty acids: Structure, food sources, biological functions, and their preventive role against noncommunicable diseases. Bioactive Food Components Activity in Mechanistic Approach :185–210. London, UK: Elsevier. doi: 10.1016/B978-0-12-823569-0.00005-9.
  • Moayedzadeh, S., A. K. Asl, S. Gunasekaran, and A. Madadlou. 2022. Emulsion gels loaded with pancreatic lipase: Preparation from spontaneously made emulsions and assessment of the rheological, microscopic and cargo release properties. Food Research International (Ottawa, Ontario) 156:111306. doi: 10.1016/j.foodres.2022.111306.
  • Mori Cortes, N., A. N. Califano, and G. Lorenzo. 2019. Physical and chemical stability under environmental stress of microemulsions formulated with fish oil. Food Research International 119:283–90. doi: 10.1016/j.foodres.2019.01.067.
  • Nejadmansouri, M., S. M. H. Hosseini, M. Niakosari, G. H. Yousefi, and M. T. Golmakani. 2016a. Physicochemical properties and oxidative stability of fish oil nanoemulsions as affected by hydrophilic lipophilic balance, surfactant to oil ratio and storage temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects 506:821–32. doi: 10.1016/j.colsurfa.2016.07.075.
  • Nejadmansouri, M., S. M. H. Hosseini, M. Niakosari, G. H. Yousefi, and M. T. Golmakani. 2016b. Physicochemical properties and storage stability of ultrasound-mediated WPI-stabilized fish oil nanoemulsions. Food Hydrocolloids. 61:801–11. doi: 10.1016/j.foodhyd.2016.07.011.
  • Owens, C., K. Griffin, H. Khouryieh, and K. Williams. 2018. Creaming and oxidative stability of fish oil-in-water emulsions stabilized by whey protein-xanthan-locust bean complexes: Impact of pH. Food Chemistry 239:314–22. doi: 10.1016/j.foodchem.2017.06.096.
  • Picone, C. S. F., A. C. Bueno, M. Michelon, and R. L. Cunha. 2017. Development of a probiotic delivery system based on gelation of water-in-oil emulsions. LWT 86:62–8. doi: 10.1016/j.lwt.2017.07.045.
  • Praoboon, N., S. Siriket, N. Taokaenchan, S. Kuimalee, S. Phaisansuthichol, P. Pookmanee, and S. Satienperakul. 2022. Paper-based electrochemiluminescence device for the rapid estimation of trimethylamine in fish via the quenching effect of thioglycolic acid-capped cadmium selenide quantum dots. Food Chemistry 366:130590. doi: 10.1016/j.foodchem.2021.130590.
  • Qiu, C., M. Zhao, E. A. Decker, and D. J. McClements. 2015. Influence of protein type on oxidation and digestibility of fish oil-in-water emulsions: Gliadin, caseinate, and whey protein. Food Chemistry 175:249–57. doi: 10.1016/j.foodchem.2014.11.112.
  • Quan, T. H, and S. Benjakul. 2019. Duck egg albumen hydrolysate-epigallocatechin gallate conjugates: Antioxidant, emulsifying properties and their use in fish oil emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects 579:123711. doi: 10.1016/j.colsurfa.2019.123711.
  • Raatz, S. K., J. B. Redmon, N. Wimmergren, J. V. Donadio, and D. M. Bibus. 2009. Enhanced absorption of n-3 fatty acids from emulsified compared with encapsulated fish oil. Journal of the American Dietetic Association 109 (6):1076–81. doi: 10.1016/j.jada.2009.03.006.
  • Rahimi, P., E. Hosseini, E. Rousta, and H. Bostar. 2021. Digestibility and stability of ultrasound-treated fish oil emulsions prepared by water-soluble bitter almond gum glycated with caseinate. Lwt 148:111697. doi: 10.1016/j.lwt.2021.111697.
  • Ren, Z., Z. Li, Z. Chen, Y. Zhang, X. Lin, W. Weng, H. Yang, and B. Li. 2021. Characteristics and application of fish oil-in-water pickering emulsions structured with tea water-insoluble proteins/κ-carrageenan complexes. Food Hydrocolloids. 114:106562. doi: 10.1016/j.foodhyd.2020.106562.
  • Rice, H. B, and A. Ismail. 2016. Fish oils in human nutrition: History and current status. In Fish and fish oil in health and disease prevention, 75–84. London, UK: Elsevier. doi: 10.1016/b978-0-12-802844-5.00006-3.
  • Roby, M. H. H., M. A. Sarhan, K. A.-H. Selim, and K. I. Khalel. 2013. Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Industrial Crops and Products 43:827–31. doi: 10.1016/j.indcrop.2012.08.029.
  • Ruan, Q., J. Guo, Z. Wan, J. Ren, and X. Yang. 2017. pH switchable Pickering emulsion based on soy peptides functionalized calcium phosphate particles. Food Hydrocolloids. 70:219–28. doi: 10.1016/j.foodhyd.2017.03.023.
  • Ruiz-Álvarez, J. M., T. del Castillo-Santaella, J. Maldonado-Valderrama, A. Guadix, E. M. Guadix, and P. J. García-Moreno. 2022. pH influences the interfacial properties of blue whiting (M. poutassou) and whey protein hydrolysates determining the physical stability of fish oil-in-water emulsions. Food Hydrocolloids. 122:107075. doi: 10.1016/j.foodhyd.2021.107075.
  • Moulik, S. P, and B. K. Paul. 1998. Structure, dynamics and transport properties of microemulsions. Advances in Colloid and Interface Science 78 (2):99–195. doi: 10.1016/S0001-8686(98)00063-3.
  • Salminen, H., S. Aulbach, B. H. Leuenberger, C. Tedeschi, and J. Weiss. 2014. Influence of surfactant composition on physical and oxidative stability of Quillaja saponin-stabilized lipid particles with encapsulated omega-3 fish oil. Colloids and Surfaces. B, Biointerfaces 122:46–55. doi: 10.1016/j.colsurfb.2014.06.045.
  • Salvia-Trujillo, L., E. A. Decker, and D. J. McClements. 2016. Influence of an anionic polysaccharide on the physical and oxidative stability of omega-3 nanoemulsions: Antioxidant effects of alginate. Food Hydrocolloids. 52:690–8. doi: 10.1016/j.foodhyd.2015.07.035.
  • Santos, D. S., J. A. V. Morais, I. A. C. Vanderlei, A. S. Santos, R. B. Azevedo, L. A. Muehlmann, O. R. P. Junior, M. R. Mortari, J. R. da Silva, S. W. da Silva, et al. 2021. Oral delivery of fish oil in oil-in-water nanoemulsion: Development, colloidal stability and modulatory effect on in vivo inflammatory induction in mice. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 133:110980. doi: 10.1016/j.biopha.2020.110980.
  • Sarkar, A., V. Ademuyiwa, S. Stubley, N. H. Esa, F. M. Goycoolea, X. Qin, F. Gonzalez, and C. Olvera. 2018. Pickering emulsions co-stabilized by composite protein/polysaccharide particle-particle interfaces: Impact on in vitro gastric stability. Food Hydrocolloids. 84:282–91. doi: 10.1016/j.foodhyd.2018.06.019.
  • Schuchardt, J. P, and A. Hahn. 2013. Bioavailability of long-chain omega-3 fatty acids. Prostaglandins, Leukotrienes, and Essential Fatty Acids 89 (1):1–8. doi: 10.1016/j.plefa.2013.03.010.
  • Serdaroğlu, M, and B. Öztürk. 2017. Use of olive oil-in-water gelled emulsions in model turkey breast emulsions. IOP Conference Series: Earth and Environmental Science 85:012071. doi: 10.1088/1755-1315/85/1/012071.
  • Serna-Saldivar, S. O., R. Zorrilla, C. De La Parra, G. Stagnitti, and R. Abril. 2006. Effect of DHA containing oils and powders on baking performance and quality of white pan bread. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 61 (3):121–9. doi: 10.1007/s11130-006-0009-5.
  • Sharkawy, A., M. F. Barreiro, and A. E. Rodrigues. 2020. Chitosan-based Pickering emulsions and their applications: A review. Carbohydrate Polymers 250:116885. doi: 10.1016/j.carbpol.2020.116885.
  • Sherratt, S. C. R., M. Lero, and R. P. Mason. 2020. Are dietary fish oil supplements appropriate for dyslipidemia management? A review of the evidence. Current Opinion in Lipidology 31 (2):94–100. doi: 10.1097/MOL.0000000000000665.
  • Shi, M. J., F. Wang, H. Jiang, W. W. Qian, Y. Y. Xie, X. Y. Wei, and T. Zhou. 2020. Effect of enzymatic degraded polysaccharides from Enteromorpha prolifera on the physical and oxidative stability of fish oil-in-water emulsions. Food Chemistry 322:126774. doi: 10.1016/j.foodchem.2020.126774.
  • Skall Nielsen, N., D. Debnath, and C. Jacobsen. 2007. Oxidative stability of fish oil enriched drinking yoghurt. International Dairy Journal 17 (12):1478–85. doi: 10.1016/j.idairyj.2007.04.011.
  • Lee, S. R., C. Macku, and T. Shibamoto. 1991. Isolation and identification of headspace volatiles formed in heated butter. Journal of Agricultural and Food Chemistry 39 (11):1972–5. doi: 10.1021/jf00011a017.
  • Su, Y. R., Y. C. Tsai, C. H. Hsu, A. C. Chao, C. W. Lin, M. L. Tsai, and F. L. Mi. 2015. Effect of grape seed proanthocyanidin-gelatin colloidal complexes on stability and in vitro digestion of fish oil emulsions. Journal of Agricultural and Food Chemistry 63 (46):10200–8. doi: 10.1021/acs.jafc.5b04814.
  • Sugasini, D, and B. R. Lokesh. 2013. Enhanced incorporation of docosahexaenoic acid in serum, heart, and brain of rats given microemulsions of fish oil. Molecular and Cellular Biochemistry 382 (1–2):203–16. doi: 10.1007/s11010-013-1736-1.
  • Sun, M., X. Li, D. J. McClements, M. Xiao, H. Chen, Q. Zhou, S. Xu, Y. Chen, and Q. Deng. 2022. Reducing off-flavors in plant-based omega-3 oil emulsions using interfacial engineering: Coating algae oil droplets with pea protein/flaxseed gum. Food Hydrocolloids. 122:107069. doi: 10.1016/j.foodhyd.2021.107069.
  • Taherian, A. R., M. Britten, H. Sabik, and P. Fustier. 2011. Ability of whey protein isolate and/or fish gelatin to inhibit physical separation and lipid oxidation in fish oil-in-water beverage emulsion. Food Hydrocolloids. 25 (5):868–78. doi: 10.1016/j.foodhyd.2010.08.007.
  • Tang, Q, and G. Huang. 2021. Improving method, properties and application of polysaccharide as emulsifier. Food Chemistry 376:131937. doi: 10.1016/j.foodchem.2021.131937.
  • Telis, V. R. N. 2018. O/W emulsions stabilized by interactions between proteins and polysaccharides. Encyclopedia of Food Chemistry (1):494–8. doi: 10.1016/b978-0-08-100596-5.21483-2.
  • Wei, Z, and Q. Huang. 2019. Developing organogel-based Pickering emulsions with improved freeze-thaw stability and hesperidin bioaccessibility. Food Hydrocolloids. 93:68–77. doi: 10.1016/j.foodhyd.2019.01.050.
  • Kolanowski, W., F. Swiderski, E. Lis, and S. Berger. 2001. Enrichment of spreadable fats with polyunsaturated fatty acids omega-3 using fish oil. International Journal of Food Sciences and Nutrition 52 (6):469–76. doi: 10.1080/09637480020027000-6-1.
  • Wu, L., Z. Liao, M. Liu, X. Yin, X. Li, M. Wang, X. Lu, N. Lv, V. Singh, Z. He, et al. 2016. Fabrication of non-spherical Pickering emulsion droplets by cyclodextrins mediated molecular self-assembly. Colloids and Surfaces A: Physicochemical and Engineering Aspects 490:163–72. doi: 10.1016/j.colsurfa.2015.11.036.
  • Xiang, N., Y. Lyu, and G. Narsimhan. 2016. Characterization of fish oil in water emulsion produced by layer by layer deposition of soy β-conglycinin and high methoxyl pectin. Food Hydrocolloids. 52:678–89. doi: 10.1016/j.foodhyd.2015.08.015.
  • Xu, J., S. Huang, Y. Zhang, Y. Zheng, W. Shi, X. Wang, and J. Zhong. 2022. Effects of antioxidant types on the stabilization and in vitro digestion behaviors of silver carp scale gelatin-stabilized fish oil-loaded emulsions. Colloids and Surfaces B: Biointerfaces 217:112624. doi: 10.1016/j.colsurfb.2022.112624.
  • Xu, J., L. Yang, Y. Nie, M. Yang, W. Wu, Z. Wang, X. Wang, and J. Zhong. 2022. Effect of transglutaminase crosslinking on the structural, physicochemical, functional, and emulsion stabilization properties of three types of gelatins. Lwt 163:113543. doi: 10.1016/j.lwt.2022.113543.
  • Xu, X., Q. Sun, and D. J. McClements. 2020. Effects of anionic polysaccharides on the digestion of fish oil-in-water emulsions stabilized by hydrolyzed rice glutelin. Food Research International (Ottawa, Ontario) 127:108768. doi: 10.1016/j.foodres.2019.108768.
  • Yang, L., X. Qin, J. Kan, X. Liu, and J. Zhong. 2019. Improving the physical and oxidative stability of emulsions using mixed emulsifiers: Casein-octenyl succinic anhydride modified starch combinations. Nanomaterials (Basel) 9 (7):1018. doi: 10.3390/nano9071018.
  • Yao, X., K. Nie, Y. Chen, F. Jiang, Y. Kuang, H. Yan, Y. Fang, H. Yang, K. Nishinari, and G. O. Phillips. 2018. The influence of non-ionic surfactant on lipid digestion of gum Arabic stabilized oil-in-water emulsion. Food Hydrocolloids. 74:78–86. doi: 10.1016/j.foodhyd.2017.07.043.
  • Yesiltas, B., P. J. Garcia-Moreno, A. M. Sorensen, C. C. Akoh, and C. Jacobsen. 2019. Physical and oxidative stability of high fat fish oil-in-water emulsions stabilized with sodium caseinate and phosphatidylcholine as emulsifiers. Food Chemistry 276:110–8. doi: 10.1016/j.foodchem.2018.09.172.
  • Yesiltas, B., A. M. Sorensen, P. J. Garcia-Moreno, S. Anankanbil, Z. Guo, and C. Jacobsen. 2018. Combination of sodium caseinate and succinylated alginate improved stability of high fat fish oil-in-water emulsions. Food Chemistry 255:290–9. doi: 10.1016/j.foodchem.2018.02.074.
  • Yesiltas, B., M. Torkkeli, L. Almasy, Z. Dudas, P. J. Garcia-Moreno, A. M. Sorensen, C. Jacobsen, and M. Knaapila. 2020. Small-angle neutron scattering study of high fat fish oil-in-water emulsion stabilized with sodium caseinate and phosphatidylcholine. Langmuir: The ACS Journal of Surfaces and Colloids 36 (9):2300–6. doi: 10.1021/acs.langmuir.9b03269.
  • Yesiltas, B., M. Torkkeli, L. Almasy, Z. Dudas, A. F. Wacha, R. Dalgliesh, P. J. Garcia-Moreno, A. M. Sorensen, C. Jacobsen, and M. Knaapila. 2019. Interfacial structure of 70% fish oil-in-water emulsions stabilized with combinations of sodium caseinate and phosphatidylcholine. Journal of Colloid and Interface Science 554:183–90. doi: 10.1016/j.jcis.2019.06.103.
  • Yin, X., H. Dong, H. Cheng, C. Ji, and L. Liang. 2022. Sodium caseinate particles with co-encapsulated resveratrol and epigallocatechin-3-gallate for inhibiting the oxidation of fish oil emulsions. Food Hydrocolloids. 124:107308. doi: 10.1016/j.foodhyd.2021.107308.
  • Yu, J., L. Song, H. Xiao, Y. Xue, and C. Xue. 2022. Structuring emulsion gels with peanut protein isolate and fish oil and analyzing the mechanical and microstructural characteristics of surimi gel. Lwt 154:112555. doi: 10.1016/j.lwt.2021.112555.
  • Hu, Z., P. Wu, L. Wang, Z. Wu, and X. D. Chen. 2022. Exploring in vitro release and digestion of commercial DHA microcapsules from algae oil and tuna oil with whey protein and casein as wall materials. Food & Function 13 (2):978–89. doi: 10.1039/D1FO02993B.
  • Zhang, Q.-H., R.-X. Yin, H. Gao, F. Huang, J.-Z. Wu, S.-L. Pan, W.-X. Lin, and D.-Z. Yang. 2017. The prevalence, awareness, treatment, and control of dyslipidemia in northeast China: A population-based cross-sectional survey. Lipids in Health and Disease 16 (1):1–13. doi: 10.1186/s12944-017-0453-2.
  • Zhang, T., M. Ding, L. Tao, L. Liu, N. Tao, X. Wang, and J. Zhong. 2020. Octenyl succinic anhydride modification of bovine bone and fish skin gelatins and their application for fish oil-loaded emulsions. Food Hydrocolloids. 108:106041. doi: 10.1016/j.foodhyd.2020.106041.
  • Zhang, T., M. Ding, N. Tao, X. Wang, and J. Zhong. 2020. Effects of surfactant type and preparation pH on the droplets and emulsion forms of fish oil-loaded gelatin/surfactant-stabilized emulsions. Lwt 117:108654. doi: 10.1016/j.lwt.2019.108654.
  • Zhang, T., M. Ding, X. Wang, and J. Zhong. 2020. Droplet and creaming stability of fish oil-loaded gelatin/surfactant-stabilized emulsions depends on both the adsorption ways of emulsifiers and the adjusted pH. Food Science and Human Wellness 9 (3):280–8. doi: 10.1016/j.fshw.2020.04.002.
  • Zhang, T., M. Ding, H. Zhang, N. Tao, X. Wang, and J. Zhong. 2020. Fish oil-loaded emulsions stabilized by synergetic or competitive adsorption of gelatin and surfactants on oil/water interfaces. Food Chemistry 308:125597. doi: 10.1016/j.foodchem.2019.125597.
  • Zhang, T., R. Sun, M. Ding, L. Tao, L. Liu, N. Tao, X. Wang, and J. Zhong. 2020. Effect of extraction methods on the structural characteristics, functional properties, and emulsion stabilization ability of Tilapia skin gelatins. Food Chemistry 328:127114. doi: 10.1016/j.foodchem.2020.127114.
  • Zhang, Y., J. Xu, T. Zhang, L. Tao, Y. Nie, X. Wang, and J. Zhong. 2022. Effect of carbon numbers and structures of monosaccharides on the glycosylation and emulsion stabilization ability of gelatin. Food Chemistry 389:133128. doi: 10.1016/j.foodchem.2022.133128.
  • Zhao, T., L. Huang, D. Luo, Y. Xie, Y. Zhang, Y. Zhang, W. Jiao, G. Su, and M. Zhao. 2021. Fabrication and characterization of anchovy protein hydrolysates-polyphenol conjugates with stabilizing effects on fish oil emulsion. Food Chemistry 351:129324. doi: 10.1016/j.foodchem.2021.129324.
  • Zheng, M.-Y., F. Liu, Z.-W. Wang, and J.-H. Baoyindugurong. 2011. Formation and characterization of self-assembling fish oil microemulsions. Colloid Journal 73 (3):319–26. doi: 10.1134/S1061933X11030197.
  • Zhong, J., R. Yang, X. Cao, X. Liu, and X. Qin. 2018. Improved physicochemical properties of yogurt fortified with fish oil/gamma-oryzanol by nanoemulsion technology. Molecules 23 (1):56. doi: 10.3390/molecules23010056.
  • Zhu, Y., H. Gao, W. Liu, L. Zou, and D. J. McClements. 2020. A review of the rheological properties of dilute and concentrated food emulsions. Journal of Texture Studies 51 (1):45–55. doi: 10.1111/jtxs.12444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.