839
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Bacillus-derived probiotics: metabolites and mechanisms involved in bacteria–host interactions

, , , , & ORCID Icon

References

  • Abdhul, K., M. Ganesh, S. Shanmughapriya, S. Vanithamani, M. Kanagavel, K. Anbarasu, and K. Natarajaseenivasan. 2015. Bacteriocinogenic potential of a probiotic strain Bacillus coagulans [BDU3] from Ngari. International Journal of Biological Macromolecules 79:800–6. doi: 10.1016/j.ijbiomac.2015.06.005.
  • Adorian, T. J., H. Jamali, H. G. Farsani, P. Darvishi, S. Hasanpour, T. Bagheri, and R. Roozbehfar. 2019. Effects of probiotic bacteria Bacillus on growth performance, digestive enzyme activity, and hematological parameters of Asian sea bass, Lates calcarifer (Bloch). Probiotics and Antimicrobial Proteins 11 (1):248–55. doi: 10.1007/s12602-018-9393-z.
  • Ahire, J. J., M. S. Kashikar, and R. S. Madempudi. 2020. Survival and germination of Bacillus clausii UBBC07 spores in in vitro human gastrointestinal tract simulation model and evaluation of clausin production. Frontiers in Microbiology 11:1010. doi: 10.3389/fmicb.2020.01010.
  • Algburi, A., H. M. Al-Hasani, T. K. Ismael, A. Abdelhameed, R. Weeks, A. M. Ermakov, and M. L. Chikindas. 2021. Antimicrobial activity of Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 Against Staphylococcus aureus biofilms isolated from wound infection. Probiotics and Antimicrobial Proteins 13 (1):125–34. doi: 10.1007/s12602-020-09673-4.
  • Angelin, J, and M. Kavitha. 2020. Exopolysaccharides from probiotic bacteria and their health potential. International Journal of Biological Macromolecules 162:853–65. doi: 10.1016/j.ijbiomac.2020.06.190.
  • Antequera-Gómez, M. L., L. Díaz-Martínez, J. A. Guadix, A. M. Sánchez-Tévar, S. Sopeña-Torres, J. Hierrezuelo, H. K. Doan, J. H. J. Leveau, A. de Vicente, and D. Romero. 2021. Sporulation is dispensable for the vegetable-associated life cycle of the human pathogen Bacillus cereus. Microbial Biotechnology 14 (4):1550–65. doi: 10.1111/1751-7915.13816.
  • Arreguin-Nava, M. A., B. D. Graham, B. Adhikari, M. Agnello, C. M. Selby, X. Hernandez-Velasco, C. N. Vuong, B. Solis-Cruz, D. Hernandez-Patlan, J. D. Latorre, et al. 2019. Evaluation of in ovo Bacillus spp. based probiotic administration on horizontal transmission of virulent Escherichia coli in neonatal broiler chickens. Poultry Science 98 (12):6483–91. doi: 10.3382/ps/pez544.
  • Balthazar, C. F., J. F. Guimarães, N. M. Coutinho, T. C. Pimentel, C. S. Ranadheera, A. Santillo, M. Albenzio, A. G. Cruz, and A. S. Sant’Ana. 2022. The future of functional food: Emerging technologies application on prebiotics, probiotics and postbiotics. Comprehensive Reviews in Food Science and Food Safety 21 (3):2560–86. doi: 10.1111/1541-4337.12962.
  • Barnes, A. G., V. Cerovic, P. S. Hobson, and L. S. Klavinskis. 2007. Bacillus subtilis spores: A novel microparticle adjuvant which can instruct a balanced Th1 and Th2 immune response to specific antigen. European Journal of Immunology 37 (6):1538–47. doi: 10.1002/eji.200636875.
  • Barros, C. P., J. T. Guimaraes, E. A. Esmerino, M. C. K. Duarte, M. C. Silva, R. Silva, B. M. Ferreira, A. S. Sant’Ana, M. Q. Freitas, and A. G. Cruz. 2020. Paraprobiotics and postbiotics: Concepts and potential applications in dairy products. Current Opinion in Food Science 32:1–8. doi: 10.1016/j.cofs.2019.12.003.
  • Batra, N., J. Singh, U. C. Banerjee, P. R. Patnaik, and R. C. Sobti. 2002. Production and characterization of a thermostable β‐galactosidase from Bacillus coagulans RCS3. Biotechnology and Applied Biochemistry 36 (1):1–6. doi: 10.1042/ba20010091.
  • Bernardeau, M., M. Lehtinen, S. Forssten, and P. Nurminen. 2017. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. Journal of Food Science and Technology 54 (8):2570–84. doi: 10.1007/s13197-017-2688-3.
  • Berthold-Pluta, A., A. Pluta, and M. Garbowska. 2015. The effect of selected factors on the survival of Bacillus cereus in the human gastrointestinal tract. Microbial Pathogenesis 82:7–14. doi: 10.1016/j.micpath.2015.03.015.
  • Cai, G., Y. Liu, X. Li, and J. Lu. 2019. New levan-type exopolysaccharide from Bacillus amyloliquefaciens as an antiadhesive agent against enterotoxigenic escherichia coli. Journal of Agricultural and Food Chemistry 67 (28):8029–34. doi: 10.1021/acs.jafc.9b03234.
  • Cai, G., D. Wu, X. Li, and J. Lu. 2020. Levan from Bacillus amyloliquefaciens JN4 acts as a prebiotic for enhancing the intestinal adhesion capacity of Lactobacillus reuteri JN101. International Journal of Biological Macromolecules 146:482–7. doi: 10.1016/j.ijbiomac.2019.12.212.
  • Cao, J., Z. Yu, W. Liu, J. Zhao, H. Zhang, Q. Zhai, W, and Chen, 64. 2020. Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases. Journal of Functional Foods 64:103643. doi: 10.1016/j.jff.2019.103643.
  • Cartman, S. T., R. M. La Ragione, and M. J. Woodward. 2008. Bacillus subtilis spores germinate in the chicken gastrointestinal tract. Applied and Environmental Microbiology 74 (16):5254–8. doi: 10.1128/AEM.00580-08.
  • Casula, G, and S. M. Cutting. 2002. Bacillus probiotics: Spore germination in the gastrointestinal tract. Applied and Environmental Microbiology 68 (5):2344–52. doi: 10.1128/AEM.68.5.2344-2352.2002.
  • Cavalini, L., P. Jankoski, A. P. F. Correa, A. Brandelli, and A. S. D. Motta. 2021. Characterization of the antimicrobial activity produced by Bacillus sp. isolated from wetland sediment. Anais da Academia Brasileira de Ciencias 93 (suppl 4):e20201820. doi: 10.1590/0001-3765202120201820.
  • Chen, J. Y, and Y. H. Yu. 2022. Bacillus subtilis-fermented products ameliorate the growth performance, alleviate intestinal inflammatory gene expression, and modulate cecal microbiota community in broilers during the starter phase under dextran sulfate sodium challenge. The Journal of Poultry Science 59 (3):260–71. doi: 10.2141/jpsa.0210139.
  • Chen, Y.-C., S.-D. Huang, J.-H. Tu, J.-S. Yu, A. O. Nurlatifah, W.-C. Chiu, Y.-H. Su, H.-L. Chang, D. A. Putri, and H.-L. Cheng. 2020. Exopolysaccharides of Bacillus amyloliquefaciens modulate glycemic level in mice and promote glucose uptake of cells through the activation of Akt. International Journal of Biological Macromolecules 146:202–11. doi: 10.1016/j.ijbiomac.2019.12.217.
  • Christie, G, and P. Setlow. 2020. Bacillus spore germination: Knowns, unknowns and what we need to learn. Cellular Signalling 74:109729. doi: 10.1016/j.cellsig.2020.109729.
  • Chung, K.-S., J.-S. Shin, J.-H. Lee, S.-E. Park, H.-S. Han, Y. K. Rhee, C.-W. Cho, H.-D. Hong, and K.-T. Lee. 2021. Protective effect of exopolysaccharide fraction from Bacillus subtilis against dextran sulfate sodium-induced colitis through maintenance of intestinal barrier and suppression of inflammatory responses. International Journal of Biological Macromolecules 178:363–72. doi: 10.1016/j.ijbiomac.2021.02.186.
  • Ciprandi, G., A. Scordamaglia, D. Venuti, M. Caria, and G. Canonica. 1986. In vitro effects of Bacillus subtilis on the immune response. Chemioterapia: International Journal of the Mediterranean Society of Chemotherapy 5 (6):404–7.
  • Clements, L. D., B. S. Miller, and U. N. Streips. 2002. Comparative growth analysis of the facultative anaerobes Bacillus subtilis, Bacillus licheniformis, and Escherichia coli. Systematic and Applied Microbiology 25 (2):284–6. doi: 10.1078/0723-2020-00108.
  • Cochrane, S. A, and J. C. Vederas. 2016. Lipopeptides from Bacillus and Paenibacillus spp.: A gold mine of antibiotic candidates. Medicinal Research Reviews 36 (1):4–31. doi: 10.1002/med.21321.
  • De Oliveira, M. J. K., N. K. Sakomura, J. C. de Paula Dorigam, K. Doranalli, L. Soares, and G. d Silva Viana. 2019. Bacillus amyloliquefaciens CECT 5940 alone or in combination with antibiotic growth promoters improves performance in broilers under enteric pathogen challenge. Poultry Science 98 (10):4391–400. doi: 10.3382/ps/pez223.
  • Deleu, M., M. Paquot, and T. Nylander. 2008. Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophysical Journal 94 (7):2667–79. doi: 10.1529/biophysj.107.114090.
  • Drewnowska, J. M., N. Stefanska, M. Czerniecka, G. Zambrowski, and I. Swiecicka. 2020. Potential enterotoxicity of phylogenetically diverse Bacillus cereus sensu lato soil isolates from different geographical locations. Applied and Environmental Microbiology 86 (11): 03032–19. doi: 10.1128/AEM.03032-19.
  • Du, R., S. Jiao, Y. Dai, J. An, J. Lv, X. Yan, J. Wang, and B. Han. 2018. Probiotic Bacillus amyloliquefaciens C-1 improves growth performance, stimulates GH/IGF-1, and regulates the gut microbiota of growth-retarded beef calves. Frontiers in Microbiology 9:2006. doi: 10.3389/fmicb.2018.02006.
  • Du, W., H. Xu, X. Mei, X. Cao, L. Gong, Y. Wu, Y. Li, D. Yu, S. Liu, Y. Wang, et al. 2018. Probiotic Bacillus enhance the intestinal epithelial cell barrier and immune function of piglets. Beneficial Microbes 9 (5):743–54. doi: 10.3920/BM2017.0142.
  • Duc, L. H., H. A. Hong, T. M. Barbosa, A. O. Henriques, and S. M. Cutting. 2004. Characterization of Bacillus probiotics available for human use. Applied and Environmental Microbiology 70 (4):2161–71. doi: 10.1128/AEM.70.4.2161-2171.2004.
  • Elshaghabee, F. M., N. Rokana, R. D. Gulhane, C. Sharma, and H. Panwar. 2017. Bacillus as potential probiotics: Status, concerns, and future perspectives. Frontiers in Microbiology 8:1490. doi: 10.3389/fmicb.2017.01490.
  • Forrester, I, and A. J. Wicken. 1966. The chemical composition of the cell walls of some thermophilic Bacilli. Microbiology 42 (1):147–54. doi: 10.1099/00221287-42-1-147.
  • Frerichs, H., E. Pütz, F. Pfitzner, T. Reich, A. Gazanis, M. Panthöfer, J. Hartmann, O. Jegel, R. Heermann, and W. Tremel. 2020. Nanocomposite antimicrobials prevent bacterial growth through the enzyme-like activity of Bi-doped cerium dioxide (Ce(1-x)Bi(x)O(2-δ)). Nanoscale 12 (41):21344–58. doi: 10.1039/D0NR06165D.
  • Fu, R., D. Chen, G. Tian, P. Zheng, X. Mao, J. Yu, J. He, Z. Huang, Y. Luo, and B. Yu. 2019. Effect of dietary supplementation of Bacillus coagulans or yeast hydrolysates on growth performance, antioxidant activity, cytokines and intestinal microflora of growing-finishing pigs. Animal Nutrition 5 (4):366–72. doi: 10.1016/j.aninu.2019.06.003.
  • Fujiya, M., M. W. Musch, Y. Nakagawa, S. Hu, J. Alverdy, Y. Kohgo, O. Schneewind, B. Jabri, and E. B. Chang. 2007. The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host & Microbe 1 (4):299–308. doi: 10.1016/j.chom.2007.05.004.
  • Ghelardi, E., A. T. Abreu y Abreu, C. B. Marzet, G. Álvarez Calatayud, M. Perez, and A. P. Moschione Castro. 2022. Current progress and future perspectives on the use of Bacillusclausii. Microorganisms 10 (6):1246. doi: 10.3390/microorganisms10061246.
  • Ghelardi, E., F. Celandroni, S. Salvetti, S. Gueye, A. Lupetti, and S. Senesi. 2015. Survival and persistence of Bacillus clausii in the human gastrointestinal tract following oral administration as spore‐based probiotic formulation. Journal of Applied Microbiology 119 (2):552–9. doi: 10.1111/jam.12848.
  • Gong, L., B. Wang, X. Mei, H. Xu, Y. Qin, W. Li, and Y. Zhou. 2018. Effects of three probiotic Bacillus on growth performance, digestive enzyme activities, antioxidative capacity, serum immunity, and biochemical parameters in broilers. Animal Science Journal 89 (11):1561–71. doi: 10.1111/asj.13089.
  • Guo, X., D. Li, W. Lu, X. Piao, and X. Chen. 2006. Screening of Bacillus strains as potential probiotics and subsequent confirmation of the in vivo effectiveness of Bacillus subtilis MA139 in pigs. Antonie Van Leeuwenhoek 90 (2):139–46. doi: 10.1007/s10482-006-9067-9.
  • Halami, P. M. 2019. Sublichenin, a new subtilin-like lantibiotics of probiotic bacterium Bacillus licheniformis MCC 2512T with antibacterial activity. Microbial Pathogenesis 128:139–46. doi: 10.1016/j.micpath.2018.12.044.
  • Härtig, E, and D. Jahn. 2012. Regulation of the anaerobic metabolism in Bacillus subtilis. Advances in Microbial Physiology 61:195–216. doi: 10.1016/B978-0-12-394423-8.00005-6.
  • Hasan, M. T., W. J. Jang, B.-J. Lee, K. W. Kim, S. W. Hur, S. G. Lim, S. C. Bai, and I.-S. Kong. 2019. Heat-killed Bacillus sp. SJ-10 probiotic acts as a growth and humoral innate immunity response enhancer in olive flounder (Paralichthys olivaceus). Fish & Shellfish Immunology 88:424–31. doi: 10.1016/j.fsi.2019.03.018.
  • Hoa, T. T., L. H. Duc, R. Isticato, L. Baccigalupi, E. Ricca, P. H. Van, and S. M. Cutting. 2001. Fate and dissemination of Bacillus subtilis spores in a murine model. Applied and Environmental Microbiology 67 (9):3819–23. doi: 10.1128/AEM.67.9.3819-3823.2001.
  • Huang, J. M., R. M. La Ragione, A. Nunez, and S. M. Cutting. 2008. Immunostimulatory activity of Bacillus spores. FEMS Immunology and Medical Microbiology 53 (2):195–203. doi: 10.1111/j.1574-695X.2008.00415.x.
  • Hu, J., L. Ma, Y. Nie, J. Chen, W. Zheng, X. Wang, C. Xie, Z. Zheng, Z. Wang, T. Yang, et al. 2018a. A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets. Cell Host & Microbe 24 (6):817–32. e8. doi: 10.1016/j.chom.2018.11.006.
  • Hu, L., X. Peng, H. Chen, C. Yan, Y. Liu, Q. Xu, Z. Fang, Y. Lin, S. Xu, B. Feng, et al. 2017. Effects of intrauterine growth retardation and Bacillus subtilis PB6 supplementation on growth performance, intestinal development and immune function of piglets during the suckling period. European Journal of Nutrition 56 (4):1753–65. doi: 10.1007/s00394-016-1223-z.
  • Hu, S., X. Cao, Y. Wu, X. Mei, H. Xu, Y. Wang, X. Zhang, L. Gong, and W. Li. 2018. Effects of probiotic Bacillus as an alternative of antibiotics on digestive enzymes activity and intestinal integrity of piglets. Frontiers in Microbiology 9:2427. doi: 10.3389/fmicb.2018.02427.
  • Huang, D., Y. Chen, H. Chen, X. Deng, J. Huang, S. Lu, P. Li, and B. Du. 2022. Supplementation of Bacillus sp. DU-106 Alleviates Antibiotic-associated diarrhea in association with the regulation of intestinal microbiota in mice. Probiotics and Antimicrobial Proteins 14 (2):372–83. doi: 10.1007/s12602-022-09906-8.
  • Huang, J., N. Xiao, Y. Sun, S. Wu, W. Tian, Y. Lai, P. Li, and B. Du. 2021. Supplementation of Bacillus sp. DU-106 reduces hypercholesterolemia and ameliorates gut dysbiosis in high-fat diet rats. Applied Microbiology and Biotechnology 105 (1):287–99. doi: 10.1007/s00253-020-10977-2.
  • Hyronimus, B., C. L. Marrec, A. H. Sassi, and A. Deschamps. 2000. Acid and bile tolerance of spore-forming lactic acid bacteria. International Journal of Food Microbiology 61 (2-3):193–7. doi: 10.1016/S0168-1605(00)00366-4.
  • Jäger, R., M. Purpura, S. Farmer, H. A. Cash, and D. Keller. 2018. Probiotic Bacillus coagulans GBI-30, 6086 improves protein absorption and utilization. Probiotics and Antimicrobial Proteins 10 (4):611–5. doi: 10.1007/s12602-017-9354-y.
  • Jensen, G. S., H. A. Cash, S. Farmer, and D. Keller. 2017. Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers In Vitro. Journal of Inflammation Research 10 (107):107–17. doi: 10.2147/JIR.S141660.
  • Jones, S. E, and K. L. Knight. 2012. Bacillus subtilis-mediated protection from Citrobacter rodentium-associated enteric disease requires espH and functional flagella. Infection and Immunity 80 (2):710–9. doi: 10.1128/IAI.05843-11.
  • Jones, S. E., M. L. Paynich, D. B. Kearns, and K. L. Knight. 2014. Protection from intestinal inflammation by bacterial exopolysaccharides. Journal of Immunology (Baltimore, Md: 1950) 192 (10):4813–20. doi: 10.4049/jimmunol.1303369.
  • Keller, D., S. Verbruggen, H. Cash, S. Farmer, and K. Venema. 2019. Spores of Bacillus coagulans GBI-30, 6086 show high germination, survival and enzyme activity in a dynamic, computer-controlled in vitro model of the gastrointestinal tract. Beneficial Microbes 10 (1):77–87. doi: 10.3920/BM2018.0037.
  • Khochamit, N., S. Siripornadulsil, P. Sukon, and W. Siripornadulsil. 2015. Antibacterial activity and genotypic–phenotypic characteristics of bacteriocin-producing Bacillus subtilis KKU213: Potential as a probiotic strain. Microbiological Research 170:36–50. doi: 10.1016/j.micres.2014.09.004.
  • Konuray, G, and Z. Erginkaya. 2018. Potential use of Bacillus coagulans in the food industry. Foods 7 (6):92. doi: 10.3390/foods7060092.
  • Kook, S.-Y., Y. Lee, E.-C. Jeong, and S. Kim. 2019. Immunomodulatory effects of exopolysaccharides produced by Bacillus licheniformis and Leuconostoc mesenteroides isolated from Korean kimchi. Journal of Functional Foods 54:211–9. doi: 10.1016/j.jff.2019.01.003.
  • Kuebutornye, F. K. A., E. D. Abarike, Y. Lu, V. Hlordzi, M. E. Sakyi, G. Afriyie, Z. Wang, Y. Li, and C. X. Xie. 2020. Mechanisms and the role of probiotic Bacillus in mitigating fish pathogens in aquaculture. Fish Physiology and Biochemistry 46 (3):819–41. doi: 10.1007/s10695-019-00754-y.
  • La Ragione, R. M., G. Casula, S. M. Cutting, and M. J. Woodward. 2001. Bacillus subtilis spores competitively exclude Escherichia coli O78: K80 in poultry. Veterinary Microbiology 79 (2):133–42. doi: 10.1016/S0378-1135(00)00350-3.
  • Latorre, J., X. Hernandez-Velasco, J. Vicente, R. Wolfenden, B. Hargis, and G. Tellez. 2017. Effects of the inclusion of a Bacillus direct-fed microbial on performance parameters, bone quality, recovered gut microflora, and intestinal morphology in broilers consuming a grower diet containing corn distillers dried grains with solubles. Poultry Science 96 (8):2728–35. doi: 10.3382/ps/pex082.
  • Latorre, J. D., X. Hernandez-Velasco, R. E. Wolfenden, J. L. Vicente, A. D. Wolfenden, A. Menconi, L. R. Bielke, B. M. Hargis, and G. Tellez. 2016. Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity, and biofilm synthesis as direct-fed microbial candidates for poultry. Frontiers in Veterinary Science 3:95. doi: 10.3389/fvets.2016.00095.
  • Lee, J. Y., R. M. Tsolis, and A. J. Bäumler. 2022. The microbiome and gut homeostasis. Science (New York, N.Y.) 377 (6601):eabp9960. doi: 10.1126/science.abp9960.
  • Lee, K. H., K. D. Jun, W. S. Kim, and H. D. Paik. 2001. Partial characterization of polyfermenticin SCD, a newly identified bacteriocin of Bacillus polyfermenticus. Letters in Applied Microbiology 32 (3):146–51. doi: 10.1046/j.1472-765x.2001.00876.x.
  • Lee, N.-K., W.-S. Kim, and H.-D. Paik. 2019. Bacillus strains as human probiotics: Characterization, safety, microbiome, and probiotic carrier. Food Science and Biotechnology 28 (5):1297–305. doi: 10.1007/s10068-019-00691-9.
  • Leser, T., A. Knarreborg, and J. Worm. 2008. Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs. Journal of Applied Microbiology 104 (4):1025–33. doi: 10.1111/j.1365-2672.2007.03633.x.
  • Li, P., W. Tian, Z. Jiang, Z. Liang, X. Wu, and B. Du. 2018. Genomic characterization and probiotic potency of Bacillus sp. DU-106, a highly effective producer of L-lactic acid isolated from fermented yogurt. Frontiers in Microbiology 9:2216. doi: 10.3389/fmicb.2018.02216.
  • Lu, S., X. Liao, L. Zhang, Y. Fang, M. Xiang, and X. Guo. 2021. Nutrient L-alanine-Induced germination of Bacillus improves proliferation of spores and exerts probiotic effects in vitro and in vivo. Frontiers in Microbiology 12:796158. doi: 10.3389/fmicb.2021.796158.
  • Maathuis, A., D. Keller, and S. Farmer. 2010. Survival and metabolic activity of the GanedenBC30 strain of Bacillus coagulans in a dynamic in vitro model of the stomach and small intestine. Beneficial Microbes, 1 (1):31–6. doi: 10.3920/BM2009.0009.
  • Mazzoli, A., G. Donadio, M. Lanzilli, A. Saggese, A. M. Guarino, M. Rivetti, R. Crescenzo, E. Ricca, I. Ferrandino, S. Iossa, et al. 2019. Bacillus megaterium SF185 spores exert protective effects against oxidative stress in vivo and in vitro. Scientific Reports 9 (1):12082. doi: 10.1038/s41598-019-48531-4.
  • McDowell, R. H., E. M. Sands, and H. Friedman. 2022. Bacillus cereus. In StatPearls. St. Petersburg, Florida, USA: StatPearls Publishing. NBK459121.
  • Mi, X. J., T. H. M. Tran, H. R. Park, X. Y. Xu, S. Subramaniyam, H. S. Choi, J. Kim, S. C. Koh, and Y. J. Kim. 2022. Immune-enhancing effects of postbiotic produced by Bacillus velezensis Kh2-2 isolated from Korea foods. Food Research International 152:110911. doi: 10.1016/j.foodres.2021.110911.
  • Mohamed, T. M., W. Sun, G. Z. Bumbie, A. A. Elokil, K. A. F. Mohammed, R. Zebin, P. Hu, L. Wu, and Z. Tang. 2022. Feeding Bacillus subtilis ATCC19659 to broiler chickens enhances growth performance and immune function by modulating intestinal morphology and cecum microbiota. Frontiers in Microbiology 12:798350. doi: 10.3389/fmicb.2021.798350.
  • Molnár, A., B. Podmaniczky, P. Kürti, I. Tenk, R. Glávits, G. Virág, and Z. Szabó. 2011. Effect of different concentrations of Bacillus subtilis on growth performance, carcase quality, gut microflora and immune response of broiler chickens. British Poultry Science 52 (6):658–65. doi: 10.1080/00071668.2011.636029.
  • Moradi, M., R. Molaei, and J. T. Guimarães. 2021. A review on preparation and chemical analysis of postbiotics from lactic acid bacteria. Enzyme and Microbial Technology 143:109722. doi: 10.1016/j.enzmictec.2020.109722.
  • Mun, D., H. Kyoung, M. Kong, S. Ryu, K. B. Jang, J. Baek, K. I. Park, M. Song, and Y. Kim. 2021. Effects of Bacillus-based probiotics on growth performance, nutrient digestibility, and intestinal health of weaned pigs. Journal of Animal Science and Technology 63 (6):1314–27. doi: 10.5187/jast.2021.e109.
  • Muthulakshmi, K, and C. Uma. 2019. Antimicrobial activity of Bacillus subtilis silver nanoparticles. Frontiers in Bioscience (Elite Edition) 11 (1):89–101. doi: 10.2741/E848.
  • Nataraj, B. H., S. A. Ali, P. V. Behare, and H. Yadav. 2020. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microbial Cell Factories 19 (1):1–22. doi: 10.1186/s12934-020-01426-w.
  • Ngalimat, M. S., R. S. R. Yahaya, M. M. A. Baharudin, S. M. Yaminudin, M. Karim, S. A. Ahmad, and S. Sabri. 2021. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms 9 (3):614. doi: 10.3390/microorganisms9030614.
  • Ochoa-Solano, J. L, and J. Olmos-Soto. 2006. The functional property of Bacillus for shrimp feeds. Food Microbiology 23 (6):519–25. doi: 10.1016/j.fm.2005.10.004.
  • Okamoto, K., M. Fujiya, T. Nata, N. Ueno, Y. Inaba, C. Ishikawa, T. Ito, K. Moriichi, H. Tanabe, Y. Mizukami, et al. 2012. Competence and sporulation factor derived from Bacillus subtilis improves epithelial cell injury in intestinal inflammation via immunomodulation and cytoprotection. International Journal of Colorectal Disease 27 (8):1039–46. doi: 10.1007/s00384-012-1416-8.
  • Paynich, M. L., S. E. Jones-Burrage, and K. L. Knight. 2017. Exopolysaccharide from Bacillus subtilis induces anti-inflammatory M2 macrophages that prevent T cell–mediated disease. Journal of Immunology (Baltimore, Md.: 1950) 198 (7):2689–98. doi: 10.4049/jimmunol.1601641.
  • Petrova, P., A. Arsov, I. Ivanov, L. Tsigoriyna, and K. Petrov. 2021. New exopolysaccharides produced by Bacillus licheniformis 24 display substrate-dependent content and antioxidant activity. Microorganisms 9 (10):2127. doi: 10.3390/microorganisms9102127.
  • Piewngam, P., J. Chiou, J. Ling, R. Liu, P. Pupa, Y. Zheng, and M. Otto. 2021. Enterococcal bacteremia in mice is prevented by oral administration of probiotic Bacillus spores. Science Translational Medicine 13 (621):eabf4692. doi: 10.1126/scitranslmed.abf4692.
  • Piewngam, P, and M. Otto. 2020. Probiotics to prevent Staphylococcus aureus disease? Gut Microbes 11 (1):94–101. doi: 10.1080/19490976.2019.1591137.
  • Piewngam, P., Y. Zheng, T. H. Nguyen, S. W. Dickey, H.-S. Joo, A. E. Villaruz, K. A. Glose, E. L. Fisher, R. L. Hunt, B. Li, et al. 2018. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 562 (7728):532–7. doi: 10.1038/s41586-018-0616-y.
  • Pinchuk, I. V., P. Bressollier, B. Verneuil, B. Fenet, I. B. Sorokulova, F. Mégraud, and M. C. Urdaci. 2001. In vitro anti-Helicobacter pylori activity of the probiotic strain Bacillus subtilis 3 is due to secretion of antibiotics. Antimicrobial Agents and Chemotherapy 45 (11):3156–61. doi: 10.1128/AAC.45.11.3156-3161.2001.
  • Rhayat, L., M. Maresca, C. Nicoletti, J. Perrier, K. S. Brinch, S. Christian, E. Devillard, and E. Eckhardt. 2019. Effect of Bacillus subtilis strains on intestinal barrier function and inflammatory response. Frontiers in Immunology 10 (564):564. doi: 10.3389/fimmu.2019.00564.
  • Salminen, S., M. C. Collado, A. Endo, C. Hill, S. Lebeer, E. M. M. Quigley, M. E. Sanders, R. Shamir, J. R. Swann, H. Szajewska, et al. 2021. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews. Gastroenterology & Hepatology 18 (9):649–67. doi: 10.1038/s41575-021-00440-6.
  • Schallmey, M., A. Singh, and O. P. Ward. 2004. Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology 50 (1):1–17. doi: 10.1139/w03-076.
  • Shobharani, P., R. J. Padmaja, and P. M. Halami. 2015. Diversity in the antibacterial potential of probiotic cultures Bacillus licheniformis MCC2514 and Bacillus licheniformis MCC2512. Research in Microbiology 166 (6):546–54. doi: 10.1016/j.resmic.2015.06.003.
  • Song, M., H. A. Hong, J.-M. Huang, C. Colenutt, D. D. Khang, T. V. A. Nguyen, S.-M. Park, B.-S. Shim, H. H. Song, I. S. Cheon, et al. 2012. Killed Bacillus subtilis spores as a mucosal adjuvant for an H5N1 vaccine. Vaccine 30 (22):3266–77. doi: 10.1016/j.vaccine.2012.03.016.
  • Spinosa, M. R., T. Braccini, E. Ricca, M. De Felice, L. Morelli, G. Pozzi, and M. R. Oggioni. 2000. On the fate of ingested Bacillus spores. Research in Microbiology 151 (5):361–8. doi: 10.1016/S0923-2508(00)00159-5.
  • Suez, J., N. Zmora, G. Zilberman-Schapira, U. Mor, M. Dori-Bachash, S. Bashiardes, M. Zur, D. Regev-Lehavi, R. Ben-Zeev Brik, S. Federici, et al. 2018. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174 (6):1406–23. e16. doi: 10.1016/j.cell.2018.08.047.
  • Tagliaferri, T. L., M. Jansen, and H. P. Horz. 2019. Fighting pathogenic bacteria on two fronts: Phages and antibiotics as combined strategy. Frontiers in Cellular Infection and Microbiology 9:22. doi: 10.3389/fcimb.2019.00022.
  • Tajbakhsh, M., A. Karimi, F. Fallah, and M. Akhavan. 2017. Overview of ribosomal and non-ribosomal antimicrobial peptides produced by Gram positive bacteria. Cellular and Molecular Biology (Noisy-le-Grand, France) 63 (10):20–32. doi: 10.14715/cmb/2017.63.10.4.
  • Tam, N. K., N. Q. Uyen, H. A. Hong, L. H. Duc, T. T. Hoa, C. R. Serra, A. O. Henriques, and S. M. Cutting. 2006. The intestinal life cycle of Bacillus subtilis and close relatives. Journal of Bacteriology 188 (7):2692–700. doi: 10.1128/JB.188.7.2692-2700.2006.
  • Urdaci, M. C., P. Bressollier, and I. Pinchuk. 2004. Bacillus clausii probiotic strains: Antimicrobial and immunomodulatory activities. Journal of Clinical Gastroenterology 38 (6 Suppl):S86–S90. doi: 10.1097/01.mcg.0000128925.06662.69.
  • Vinothkanna, A., G. Sathiyanarayanan, P. Balaji, K. Mathivanan, A. Pugazhendhi, Y. Ma, S. Sekar, and R. Thirumurugan. 2021. Structural characterization, functional and biological activities of an exopolysaccharide produced by probiotic Bacillus licheniformis AG-06 from Indian polyherbal fermented traditional medicine. International Journal of Biological Macromolecules 174:144–52. doi: 10.1016/j.ijbiomac.2021.01.117.
  • Vogt, C. M., M. Hilbe, M. Ackermann, C. Aguilar, and C. Eichwald. 2018. Mouse intestinal microbiota reduction favors local intestinal immunity triggered by antigens displayed in Bacillus subtilis biofilm. Microbial Cell Factories 17 (1):187. doi: 10.1186/s12934-018-1030-8.
  • Wang, Y., Y. Wu, Y. Wang, A. Fu, L. Gong, W. Li, and Y. Li. 2017. Bacillus amyloliquefaciens SC06 alleviates the oxidative stress of IPEC-1 via modulating Nrf2/Keap1 signaling pathway and decreasing ROS production. Applied Microbiology and Biotechnology 101 (7):3015–26. doi: 10.1007/s00253-016-8032-4.
  • Watanabe, T., H. Nishio, T. Tanigawa, H. Yamagami, H. Okazaki, K. Watanabe, K. Tominaga, Y. Fujiwara, N. Oshitani, T. Asahara, et al. 2009. Probiotic Lactobacillus casei strain Shirota prevents indomethacin-induced small intestinal injury: Involvement of lactic acid. American Journal of Physiology. Gastrointestinal and Liver Physiology 297 (3):G506–G513. doi: 10.1152/ajpgi.90553.2008.
  • Williams, P. 2007. Bacillus subtilis: a shocking message from a probiotic. Cell Host & Microbe 1 (4):248–9. doi: 10.1016/j.chom.2007.05.010.
  • Wu, Y., B. Wang, L. Tang, Y. Zhou, Q. Wang, L. Gong, J. Ni, and W. Li. 2022. Probiotic Bacillus alleviates oxidative stress-induced liver injury by modulating gut-liver axis in a rat model. Antioxidants 11 (2):291. doi: 10.3390/antiox11020291.
  • Wu, Y., B. Wang, H. Xu, L. Tang, Y. Li, L. Gong, Y. Wang, and W. Li. 2019. Probiotic Bacillus attenuates oxidative stress-induced intestinal injury via p38-mediated autophagy. Frontiers in Microbiology 10 (2185):2185. doi: 10.3389/fmicb.2019.02185.
  • Wu, Z., X. Feng, L. Xie, X. Peng, J. Yuan, and X. Chen. 2012. Effect of probiotic Bacillus subtilis Ch9 for grass carp, Ctenopharyngodon idella (Valenciennes, 1844), on growth performance, digestive enzyme activities and intestinal microflora. Journal of Applied Ichthyology 28 (5):721–7. doi: 10.1111/j.1439-0426.2012.01968.x.
  • Yu, T., J. Kong, L. Zhang, X. Gu, M. Wang, and T. Guo. 2019. New crosstalk between probiotics Lactobacillus plantarum and Bacillus subtilis. Scientific Reports 9 (1):13151. doi: 10.1038/s41598-019-49688-8.
  • Zmora, N., G. Zilberman-Schapira, J. Suez, U. Mor, M. Dori-Bachash, S. Bashiardes, E. Kotler, M. Zur, D. Regev-Lehavi, R. B.-Z. Brik, et al. 2018. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174 (6):1388–405. e21. doi: 10.1016/j.cell.2018.08.041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.