545
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Abdel-Aziz, M. M., M. S. Al-Omar, H. A. Mohammed, and T. M. Emam. 2020. In vitro and ex vivo antibiofilm activity of a lipopeptide biosurfactant produced by the entomopathogenic Beauveria bassiana strain against Microsporum canis. Microorganisms 8 (2):232. doi: 10.3390/microorganisms8020232.
  • Abebe, G. M. 2020. The role of bacterial biofilm in antibiotic resistance and food contamination. International Journal of Microbiology 2020:1705814. doi: 10.1155/2020/1705814.
  • Abreu, A. C., M. J. Saavedra, L. C. Simões, and M. Simões. 2016. Combinatorial approaches with selected phytochemicals to increase antibiotic efficacy against Staphylococcus aureus biofilms. Biofouling 32 (9):1103–14. doi: 10.1080/08927014.2016.1232402.
  • Adnan, M., M. Patel, S. Deshpande, M. Alreshidi, A. J. Siddiqui, M. N. Reddy, N. Emira, and V. De Feo. 2020. Effect of Adiantum philippense extract on biofilm formation, adhesion with its antibacterial activities against foodborne pathogens, and characterization of bioactive metabolites: An in vitro-in silico approach. Frontiers in Microbiology 11:823. doi: 10.3389/fmicb.2020.00823.
  • Aghayan, S. S., H. Kalalian Mogadam, M. Fazli, D. Darban-Sarokhalil, S. S. Khoramrooz, F. Jabalameli, S. Yaslianifard, and M. Mirzaii. 2017. The effects of berberine and palmatine on efflux pumps inhibition with different gene patterns in Pseudomonas aeruginosa isolated from burn infections. Avicenna Journal of Medical Biotechnology 9 (1):2–7.
  • Allard, N., K. Neil, F. Grenier, and S. Rodrigue. 2022. The type IV pilus of plasmid TP114 displays adhesins conferring conjugation specificity and is important for DNA transfer in the mouse gut microbiota. Microbiology Spectrum 10 (2):e0230321. doi: 10.1128/spectrum.02303-21.
  • Ali, I. A. A., J. P. Matinlinna, C. M. Lévesque, and P. Neelakantan. 2021. Trans-cinnamaldehyde attenuates Enterococcus faecalis virulence and inhibits biofilm formation. Antibiotics (Basel) 10 (6):702. doi: 10.3390/antibiotics10060702.
  • Ali, K., S. Dwivedi, A. Azam, Q. Saquib, M. S. Al-Said, A. A. Alkhedhairy, and J. Musarrat. 2016. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. Journal of Colloid and Interface Science 472:145–56. doi: 10.1016/j.jcis.2016.03.021.
  • AlSheikh, H. M. A., I. Sultan, V. Kumar, I. A. Rather, H. Al-Sheikh, A. Tasleem Jan, and Q. M. R. Haq. 2020. Plant-based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics 9 (8):480. doi: 10.3390/antibiotics9080480.
  • Alvarez-Ordóñez, A., L. M. Coughlan, R. Briandet, and P. D. Cotter. 2019. Biofilms in food processing environments: Challenges and opportunities. Annual Review of Food Science and Technology 10:173–95. doi: 10.1146/annurev-food-032818-121805.
  • Anand, U., M. Carpena, M. Kowalska-Góralska, P. Garcia-Perez, K. Sunita, E. Bontempi, A. Dey, M. A. Prieto, J. Proćków, and J. Simal-Gandara. 2022. Safer plant-based nanoparticles for combating antibiotic resistance in bacteria: A comprehensive review on its potential applications, recent advances, and future perspective. The Science of the Total Environment 821:153472. doi: 10.1016/j.scitotenv.2022.153472.
  • Andrade, M., J. Malheiro, F. Borges, M. J. Saavedra, and M. Simões. 2020. The potential of phytochemical products in biofilm control. In Recent Trends in Biofilm Science and Technology, Eds. M. Simões, A. Borges, & L. C. Simões, 273–93. USA: Academic Press, Elsevier. doi: 10.1016/B978-0-12-819497-3.00012-X.
  • Anokwah, D., E. Asante-Kwatia, A. Y. Mensah, C. A. Danquah, B. K. Harley, I. K. Amponsah, and L. Oberer. 2021. Bioactive constituents with antibacterial, resistance modulation, anti-biofilm formation and efflux pump inhibition properties from Aidia genipiflora stem bark. Clinical Phytoscience 7 (1):28. doi: 10.1186/s40816-021-00266-4.
  • Aparna, V., K. Dineshkumar, N. Mohanalakshmi, D. Velmurugan, and W. Hopper. 2014. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation. PloS One 9 (7):e101840. doi: 10.1371/journal.pone.0101840.
  • Arasoğlu, T., S. Derman, B. Mansuroğlu, D. Uzunoğlu, B. S. Koçyiğit, B. Gümüş, T. Acar, and B. Tuncer. 2017. Preparation, characterization, and enhanced antimicrobial activity: Quercetin-loaded PLGA nanoparticles against foodborne pathogens. Turkish Journal of BIOLOGY 41 (1):127–40. doi: 10.3906/biy-1604-80.
  • Awad, T. S., D. Asker, and B. D. Hatton. 2018. Food-safe modification of stainless steel food-processing surfaces to reduce bacterial biofilms. ACS Applied Materials & Interfaces 10 (27):22902–12. doi: 10.1021/acsami.8b03788.
  • Awadelkareem, A. M., E. Al-Shammari, A. O. Elkhalifa, M. Adnan, A. J. Siddiqui, D. Mahmood, Z. A. A. Azad, M. Patel, K. Mehmood, C. Danciu, et al. 2022. Anti-adhesion and antibiofilm activity of Eruca sativa miller extract targeting cell adhesion proteins of food-borne bacteria as a potential mechanism: Combined in vitro-in silico approach. Plants (Basel) 11 (5):610. doi: 10.3390/plants11050610.
  • Ayo, R. G., J. O. Amupitan, and Y. Zhao. 2007. Cytotoxicity and antimicrobial studies of 1,6,8-trihydroxy-3-methyl-anthraquinone (emodin) isolated from the leaves of Cassia nigricans Vahl. African Journal of Biotechnology 6 (11):1276–9.
  • Azam, A. H, and Y. Tanji. 2019. Bacteriophage-host arm race: An update on the mechanism of phage resistance in bacteria and revenge of the phage with the perspective for phage therapy. Applied Microbiology and Biotechnology 103 (5):2121–31. doi: 10.1007/s00253-019-09629-x.
  • Bai, A. J, and R. R. Vittal. 2014. Quorum sensing inhibitory and anti-biofilm activity of essential oils and their in vivo efficacy in food systems. Food Biotechnology 28 (3):269–92. doi: 10.1080/08905436.2014.932287.
  • Banat, I. M., S. K. Satpute, S. S. Cameotra, R. Patil, and N. V. Nyayanit. 2014. Cost effective technologies and renewable substrates for biosurfactants’ production. Frontiers in Microbiology 5:697. doi: 10.3389/fmicb.2014.00697.
  • Barbieri, R., E. Coppo, A. Marchese, M. Daglia, E. Sobarzo-Sánchez, S. F. Nabavi, and S. M. Nabavi. 2017. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiological Research 196:44–68. doi: 10.1016/j.micres.2016.12.003.
  • Barrera-Ruiz, D. G., G. C. Cuestas-Rosas, R. I. Sánchez-Mariñez, M. L. Álvarez-Ainza, G. M. Moreno-Ibarra, A. K. López-Meneses, M. Plascencia-Jatomea, and M. O. Cortez-Rocha. 2020. Antibacterial activity of essential oils encapsulated in chitosan nanoparticles. Food Science and Technology 40 (Suppl 2):568–73. doi: 10.1590/fst.34519.
  • Basavegowda, N., J. K. Patra, and K. H. Baek. 2020. Essential oils and mono/bi/tri-metallic nanocomposites as alternative sources of antimicrobial agents to combat multidrug-resistant pathogenic microorganisms: An overview. Molecules (Basel) 25 (5):1058. doi: 10.3390/molecules25051058.
  • Batoni, G., G. Maisetta, F. L. Brancatisano, S. Esin, and M. Campa. 2011. Use of antimicrobial peptides against microbial biofilms: Advantages and limits. Current Medicinal Chemistry 18 (2):256–79. doi: 10.2174/092986711794088399.
  • Ben Arfa, A., S. Combes, L. Preziosi-Belloy, N. Gontard, and P. Chalier. 2006. Antimicrobial activity of carvacrol related to its chemical structure. Letters in Applied Microbiology 43 (2):149–54. doi: 10.1111/j.1472-765X.2006.01938.x.
  • Bernal-Mercado, A. T., J. Juarez, M. A. Valdez, J. F. Ayala-Zavala, C. L. Del-Toro-Sánchez, and D. Encinas-Basurto. 2022. Hydrophobic chitosan nanoparticles loaded with carvacrol against Pseudomonas aeruginosa biofilms. Molecules 27 (3):699. doi: 10.3390/molecules27030699.
  • Beuria, T. K., M. K. Santra, and D. Panda. 2005. Sanguinarine blocks cytokinesis in bacteria by inhibiting FtsZ assembly and bundling. Biochemistry 44 (50):16584–93. doi: 10.1021/bi050767.
  • Bhardwaj, A. K, and P. Mohanty. 2012. Bacterial efflux pumps involved in multidrug resistance and their inhibitors: Rejuvinating the antimicrobial chemotherapy. Recent Patents on anti-Infective Drug Discovery 7 (1):73–89. doi: 10.2174/157489112799829710.
  • Bolla, J. M., S. Alibert-Franco, J. Handzlik, J. Chevalier, A. Mahamoud, G. Boyer, K. Kieć-Kononowicz, and J. M. Pagès. 2011. Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria. FEBS Letters 585 (11):1682–90. doi: 10.1016/j.febslet.2011.04.054.
  • Borges, A., A. C. Abreu, C. Dias, M. J. Saavedra, F. Borges, and M. Simões. 2016. New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules 21 (7):877. doi: 10.3390/molecules21070877.
  • Borges, A., A. C. Abreu, C. Ferreira, M. J. Saavedra, L. C. Simões, and M. Simões. 2015. Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens. Journal of Food Science and Technology 52 (8):4737–48. doi: 10.1007/s13197-014-1533-1.
  • Borges, A., M. J. Saavedra, and M. Simões. 2012. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling 28 (7):755–67. doi: 10.1080/08927014.2012.706751.
  • Borges, A., M. J. Saavedra, and M. Simões. 2015. Insights on antimicrobial resistance, biofilms and the use of phytochemicals as new antimicrobial agents. Current Medicinal Chemistry 22 (21):2590–614. doi: 10.2174/0929867322666150530210522.
  • Borges, A., L. C. Simões, C. R. Serra, M. J. Saavedra, and M. Simões. 2013. Activity of allylisothiocyanate and 2-phenylethylisothiocyanate on motility and biofilm prevention of pathogenic bacteria. In Worldwide Research Efforts in the Fighting Against Microbial Pathogens from Basic Research to Technological Developments, Ed. A. Méndez-Vilas, 8−12. USA: Brown Walker Press, Universal Publishers. http://hdl.handle.net/1822/37176.
  • Bose, S. K., M. Chauhan, N. Dhingra, S. Chhibber, and K. Harjai. 2020. Terpinen-4-ol attenuates quorum sensing regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Future Microbiology 15 (2):127–42. doi: 10.2217/fmb-2019-0204.
  • Bouarab Chibane, L., P. Degraeve, H. Ferhout, J. Bouajila, and N. Oulahal. 2019. Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture 99 (4):1457–74. doi: 10.1002/jsfa.9357.
  • Boudaher, E, and C. L. Shaffer. 2019. Inhibiting bacterial secretion systems in the fight against antibiotic resistance. MedChemComm 10 (5):682–92. doi: 10.1039/c9md00076c.
  • Bowler, P., C. Murphy, and R. Wolcott. 2020. Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? Antimicrobial Resistance & Infection Control 9 (1):162. doi: 10.1186/s13756-020-00830-6.
  • Boye, A., J. K. Addo, D. O. Acheampong, A. K. Thomford, E. Asante, R. E. Amoaning, and D. N. Kuma. 2020. The hydroxyl moiety on carbon one (C1) in the monoterpene nucleus of thymol is indispensable for anti-bacterial effect of thymol. Heliyon 6 (3):e03492. doi: 10.1016/j.heliyon.2020.e03492.
  • Bouyahya, A., N. Dakka, A. Et-Touys, J. Abrini, and Y. Bakri. 2017. Medicinal plant products targeting quorum sensing for combating bacterial infections. Asian Pacific Journal of Tropical Medicine 10 (8):729–43. doi: 10.1016/j.apjtm.2017.07.021.
  • Briandet, R., P. Lacroix-Gueu, M. Renault, S. Lecart, T. Meylheuc, E. Bidnenko, K. Steenkeste, M. N. Bellon-Fontaine, and M. P. Fontaine-Aupart. 2008. Fluorescence correlation spectroscopy to study diffusion and reaction of bacteriophages inside biofilms. Applied and Environmental Microbiology 74 (7):2135–43. doi: 10.1128/aem.02304-07.
  • Bridier, A., P. Sanchez-Vizuete, M. Guilbaud, J. C. Piard, M. Naïtali, and R. Briandet. 2015. Biofilm-associated persistence of food-borne pathogens. Food Microbiology 45 (Pt B):167–78. doi: 10.1016/j.fm.2014.04.015.
  • Buckner, M. M. C., M. L. Ciusa, and L. J. V. Piddock. 2018. Strategies to combat antimicrobial resistance: Anti-plasmid and plasmid curing. FEMS Microbiology Reviews 42 (6):781–804. doi: 10.1093/femsre/fuy031.
  • Burt, S. A., R. van der Zee, A. P. Koets, A. M. de Graaff, F. van Knapen, W. Gaastra, H. P. Haagsman, and E. J. Veldhuizen. 2007. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7. Applied and Environmental Microbiology 73 (14):4484–90. doi: 10.1128/AEM.00340-07.
  • Campana, R., L. Casettari, L. Fagioli, M. Cespi, G. Bonacucina, and W. Baffone. 2017. Activity of essential oil-based microemulsions against Staphylococcus aureus biofilms developed on stainless steel surface in different culture media and growth conditions. International Journal of Food Microbiology 241:132–40. doi: 10.1016/j.ijfoodmicro.2016.10.021.
  • Cappitelli, F., A. Polo, and F. Villa. 2014. Biofilm formation in food processing environments is still poorly understood and controlled. Food Engineering Reviews 6 (1–2):29–42. doi: 10.1007/s12393-014-9077-8.
  • Carrascosa, C., D. Raheem, F. Ramos, A. Saraiva, and A. Raposo. 2021. Microbial biofilms in the food industry-A comprehensive review. International Journal of Environmental Research and Public Health 18 (4):2014. doi: 10.3390/ijerph18042014.
  • Carette, J., A. Nachtergael, P. Duez, M. El Jaziri, and T. Rasamiravaka. 2020. Natural compounds inhibiting Pseudomonas aeruginosa biofilm formation by targeting quorum sensing circuitry. In Bacterial Biofilms, Eds. S. Dincer, M. S. Özdenefe, & A. Arkut. London: IntechOpen. doi: 10.5772/intechopen.90833.
  • Casciaro, B., Q. Lin, S. Afonin, M. R. Loffredo, V. de Turris, V. Middel, A. S. Ulrich, Y. Di, and M. L. Mangoni. 2019. Inhibition of Pseudomonas aeruginosa biofilm formation and expression of virulence genes by selective epimerization in the peptide Esculentin-1a(1-21)NH2. The FEBS Journal 286 (19):3874–91. doi: 10.1111/febs.14940.
  • Castellano, P., M. Pérez Ibarreche, M. Blanco Massani, C. Fontana, and G. M. Vignolo. 2017. Strategies for pathogen biocontrol using lactic acid bacteria and their metabolites: A focus on meat ecosystems and industrial environments. Microorganisms 5 (3):38. doi: 10.3390/microorganisms5030038.
  • Castillo, S., N. Heredia, E. Arechiga-Carvajal, and S. García. 2014. Citrus extracts as inhibitors of quorum sensing, biofilm formation and motility of Campylobacter jejuni. Food Biotechnology 28 (2):106–22. doi: 10.1080/08905436.2014.895947.
  • Chan, B. C. L., M. Ip, C. B. S. Lau, S. L. Lui, C. Jolivalt, C. Ganem-Elbaz, M. Litaudon, N. E. Reiner, H. Gong, R. H. See, et al. 2011. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. Journal of Ethnopharmacology 137 (1):767–73. doi: 10.1016/j.jep.2011.06.039.
  • Chipenzi, T., G. Baloyi, T. Mudondo, S. Sithole, G. Fru Chi, and S. Mukanganyama. 2020. An evaluation of the antibacterial properties of tormentic acid congener and extracts from Callistemon viminalis on selected ESKAPE pathogens and effects on biofilm formation. Advances in Pharmacological and Pharmaceutical Sciences 2020:8848606. doi: 10.1155/2020/8848606.
  • Chung, P. Y. 2017. Plant-derived compounds as potential source of novel anti-biofilm agents against Pseudomonas aeruginosa. Current Drug Targets 18 (4):414–20. doi: 10.2174/1389450117666161019102025.
  • Copeland, R. A. 2000. A brief history of enzymology. In Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis, 1–10. 2nd ed. New York: Wiley-VCH. doi: 10.1002/0471220639.ch1.
  • Cui, H., W. Li, C. Li, and L. Lin. 2016. Synergistic effect between Helichrysum italicum essential oil and cold nitrogen plasma against Staphylococcus aureus biofilms on different food-contact surfaces. International Journal of Food Science & Technology 51 (11):2493–501. doi: 10.1111/ijfs.13231.
  • Cui, H., C. Ma, and L. Lin. 2016. Synergetic antibacterial efficacy of cold nitrogen plasma and clove oil against Escherichia coli O157:H7 biofilms on lettuce. Food Control 66:8–16. doi: 10.1016/j.foodcont.2016.01.035.
  • de Carvalho, C. C. C. R, and M. M. R. da Fonseca. 2007. Preventing biofilm formation: Promoting cell separation with terpenes. FEMS Microbiology Ecology 61 (3):406–13. doi: 10.1111/j.1574-6941.2007.00352.x.
  • Delshadi, R., A. Bahrami, E. Assadpour, L. Williams, and S. M. Jafari. 2021. Nano/microencapsulated natural antimicrobials to control the spoilage microorganisms and pathogens in different food products. Food Control 128:108180. doi: 10.1016/j.foodcont.2021.108180.
  • Doughari, J. 2007. Antimicrobial activity of Tamarindus indica Linn. Tropical Journal of Pharmaceutical Research 5 (2):597–603. doi: 10.4314/tjpr.v5i2.14637.
  • Du, W., M. Zhou, Z. Liu, Y. Chen, and R. Li. 2018. Inhibition effects of low concentrations of epigallocatechin gallate on the biofilm formation and hemolytic activity of Listeria monocytogenes. Food Control 85:119–26. doi: 10.1016/j.foodcont.2017.09.011.
  • Dutta, P, and S. Das. 2016. Mammalian antimicrobial peptides: Promising therapeutic targets against infection and chronic inflammation. Current Topics in Medicinal Chemistry 16 (1):99–129. doi: 10.2174/1568026615666150703121819.
  • Dye, K. J., N. J. Vogelaar, P. Sobrado, and Z. Yang. 2021. High-throughput screen for inhibitors of the type IV pilus assembly ATPase PilB. mSphere 6 (2):e00129–121. doi: 10.1128/mSphere.00129-21.
  • Elmasri, W. A., R. Zhu, W. Peng, M. Al-Hariri, F. Kobeissy, P. Tran, A. N. Hamood, M. F. Hegazy, P. W. Paré, and Y. Mechref. 2017. Multitargeted flavonoid inhibition of the pathogenic bacterium Staphylococcus aureus: A proteomic characterization. Journal of Proteome Research 16 (7):2579–86. doi: 10.1021/acs.jproteome.7b00137.
  • Engels, C., M. Knödler, Y. Y. Zhao, R. Carle, M. G. Gänzle, and A. Schieber. 2009. Antimicrobial activity of gallotannins isolated from mango (Mangifera indica L.) kernels. Journal of Agricultural and Food Chemistry 57 (17):7712–8. doi: 10.1021/jf901621m.
  • Fan, X., W. Li, F. Zheng, and J. Xie. 2013. Bacteriophage inspired antibiotics discovery against infection involved biofilm. Critical Reviews in Eukaryotic Gene Expression 23 (4):317–26. doi: 10.1615/critreveukaryotgeneexpr.2013007717.
  • Farha, A. K., Q. Q. Yang, G. Kim, D. Zhang, V. Mavumengwana, O. Habimana, H. B. Li, H. Corke, and R. Y. Gan. 2020. Inhibition of multidrug-resistant foodborne Staphylococcus aureus biofilms by a natural terpenoid (+)-nootkatone and related molecular mechanism. Food Control. 112:107154. doi: 10.1016/j.foodcont.2020.107154.
  • Fechtner, J., S. Cameron, Y. Y. Deeni, S. M. Hapca, K. Kabir, I. U. Mohammed, and A. J. Spiers. 2017. Limitation of biosurfactant strength produced by bacteria. In Biosurfactants: Occurrences, Applications and Research, Ed. C. R. Upton, 125–48. Hauppauge, New York: Nova Science Publishers.
  • Fernández, L, and R. E. W. Hancock. 2012. Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clinical Microbiology Reviews 25 (4):661–81. doi: 10.1128/cmr.00043-12.
  • Friedman, M., P. R. Henika, C. E. Levin, and R. E. Mandrell. 2004. Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice. Journal of Agricultural and Food Chemistry 52 (19):6042–8. doi: 10.1021/jf0495340.
  • Fujita, M., S. Shiota, T. Kuroda, T. Hatano, T. Yoshida, T. Mizushima, and T. Tsuchiya. 2005. Remarkable synergies between baicalein and tetracycline, and baicalein and β-lactams against methicillin-resistant Staphylococcus aureus. Microbiology and Immunology 49 (4):391–6. doi: 10.1111/j.1348-0421.2005.tb03732.x.
  • Gabe, V., T. Kacergius, S. Abu-Lafi, P. Kalesinskas, M. Masalha, M. Falah, B. Abu-Farich, A. Melninkaitis, M. Zeidan, and A. Rayan. 2019. Inhibitory effects of ethyl gallate on Streptococcus mutans biofilm formation by optical profilometry and gene expression analysis. Molecules 24 (3):529. doi: 10.3390/molecules24030529.
  • Galié, S., C. García-Gutiérrez, E. M. Miguélez, C. J. Villar, and F. Lombó. 2018. Biofilms in the food industry: Health aspects and control methods. Frontiers in Microbiology 9:898. doi: 10.3389/fmicb.2018.00898.
  • García-Almendárez, B. E., I. K. O. Cann, S. E. Martin, I. Guerrero-Legarreta, and C. Regalado. 2008. Effect of Lactococcus lactis UQ2 and its bacteriocin on Listeria monocytogenes biofilms. Food Control 19 (7):670–80. doi: 10.1016/j.foodcont.2007.07.015.
  • Gopu, V., C. K. Meena, and P. H. Shetty. 2015. Quercetin influences quorum sensing in food borne bacteria: In-vitro and in-silico evidence. PloS One 10 (8):e0134684. doi: 10.1371/journal.pone.0134684.
  • Górniak, I., R. Bartoszewski, and J. Króliczewski. 2019. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochemistry Reviews 18 (1):241–72. doi: 10.1007/s11101-018-9591-z.
  • Granata, G., S. Stracquadanio, M. Leonardi, E. Napoli, G. Malandrino, V. Cafiso, S. Stefani, and C. Geraci. 2021. Oregano and thyme essential oils encapsulated in chitosan nanoparticles as effective antimicrobial agents against foodborne pathogens. Molecules 26 26 (13):4055. doi: 10.3390/molecules26134055.
  • Grigore-Gurgu, L., F. I. Bucur, D. Borda, E. A. Alexa, C. Neagu, and A. I. Nicolau. 2019. Biofilms formed by pathogens in food and food processing environments. In Bacterial Biofilms, Eds. S. Dincer, M. S. Özdenefe, & A. Arkut. London: IntechOpen. doi: 10.5772/intechopen.90176.
  • Grohmann, E., P. J. Christie, G. Waksman, and S. Backert. 2018. Type IV secretion in Gram-negative and Gram-positive bacteria. Molecular Microbiology 107 (4):455–71. doi: 10.1111/mmi.13896.
  • Guidotti-Takeuchi, M., L. N. de Morais Ribeiro, F. A. L. Dos Santos, D. A. Rossi, F. D. Lucia, and R. T. de Melo. 2022. Essential oil-based nanoparticles as antimicrobial agents in the food industry. Microorganisms 10 (8):1504. doi: 10.3390/microorganisms10081504.
  • Guo, Y., Y. Liu, Z. Zhang, M. Chen, D. Zhang, C. Tian, M. Liu, and G. Jiang. 2020. The antibacterial activity and mechanism of action of luteolin against Trueperella pyogenes. Infection and Drug Resistance 13:1697–711. doi: 10.2147/idr.s253363.
  • Gupta, P., B. Song, C. Neto, and T. A. Camesano. 2016. Atomic force microscopy-guided fractionation reveals the influence of cranberry phytochemicals on adhesion of Escherichia coli. Food & Function 7 (6):2655–66. doi: 10.1039/c6fo00109b.
  • Hadidi, M., S. Pouramin, F. Adinepour, S. Haghani, and S. M. Jafari. 2020. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydrate Polymers 236:116075. doi: 10.1016/j.carbpol.2020.116075.
  • Hasan, S., K. Singh, M. Danisuddin, P. K. Verma, and A. U. Khan. 2014. Inhibition of major virulence pathways of Streptococcus mutans by quercitrin and deoxynojirimycin: A synergistic approach of infection control. PloS One 9 (3):e91736. doi: 10.1371/journal.pone.0091736.
  • Herschend, J., Z. B. V. Damholt, A. M. Marquard, B. Svensson, S. J. Sørensen, P. Hägglund, and M. Burmølle. 2017. A meta-proteomics approach to study the interspecies interactions affecting microbial biofilm development in a model community. Scientific Reports 7 (1):16483. doi: 10.1038/s41598-017-16633-6.
  • Hintz, T., K. K. Matthews, and R. Di. 2015. The use of plant antimicrobial compounds for food preservation. BioMed Research International 2015:246264. doi: 10.1155/2015/246264.
  • Hu, W. S., D. Min Nam, J. S. Kim, and O. K. Koo. 2020. Synergistic anti-biofilm effects of Brassicaceae plant extracts in combination with proteinase K against Escherichia coli O157:H7. Scientific Reports 10 (1):21090. doi: 10.1038/s41598-020-77868-4.
  • Huang, J., L. Yang, Y. Zou, S. Luo, X. Wang, Y. Liang, Y. Du, R. Feng, and Q. Wei. 2021. Antibacterial activity and mechanism of three isomeric terpineols of Cinnamomum longepaniculatum leaf oil. Folia Microbiologica 66 (1):59–67. doi: 10.1007/s12223-020-00818-0.
  • Husain, F. M., I. Ahmad, A. S. Al-Thubiani, H. H. Abulreesh, I. M. AlHazza, and F. Aqil. 2017. Leaf extracts of Mangifera indica L. inhibit quorum sensing − Regulated production of virulence factors and biofilm in test bacteria. Frontiers in Microbiology 8:727. doi: 10.3389/fmicb.2017.00727.
  • Husnah, M., S. Suhartono, and Y. S. Ismail. 2021. A current perspective on antibacterial and antibiofilm properties of waru (Hibiscus tiliaceus L.). IOP Conference Series: Earth and Environmental Science 711 (1):12019. doi: 10.1088/1755-1315/711/1/012019.
  • Iannitelli, A., R. Grande, A. Di Stefano, M. Di Giulio, P. Sozio, L. J. Bessa, S. Laserra, C. Paolini, F. Protasi, and L. Cellini. 2011. Potential antibacterial activity of carvacrol-loaded poly(DL-lactide-co-glycolide) (PLGA) nanoparticles against microbial biofilm. International Journal of Molecular Sciences 12 (8):5039–51. doi: 10.3390/ijms12085039.
  • Jakobsen, T. H., A. N. Warming, R. M. Vejborg, J. A. Moscoso, M. Stegger, F. Lorenzen, M. Rybtke, J. B. Andersen, R. Petersen, P. S. Andersen, et al. 2017. A broad range quorum sensing inhibitor working through sRNA inhibition. Scientific Reports 7 (1):9857. doi: 10.1038/s41598-017-09886-8.
  • Jeon, J. G., S. Pandit, J. Xiao, S. Gregoire, M. L. Falsetta, M. I. Klein, and H. Koo. 2011. Influences of trans-trans farnesol, a membrane-targeting sesquiterpenoid, on Streptococcus mutans physiology and survival within mixed-species oral biofilms. International Journal of Oral Science 3 (2):98–106. doi: 10.4248/IJOS11038.
  • Joshi, J. R., N. Khazanov, H. Senderowitz, S. Burdman, A. Lipsky, and I. Yedidia. 2016. Plant phenolic volatiles inhibit quorum sensing in pectobacteria and reduce their virulence by potential binding to ExpI and ExpR proteins. Scientific Reports 6:38126. doi: 10.1038/srep38126.
  • Kearns, D. B. 2010. A field guide to bacterial swarming motility. Nature Reviews. Microbiology 8 (9):634–44. doi: 10.1038/nrmicro2405.
  • Kenganora, M., S. Rudraswamy, L. S. P. Hombarvalli, and N. Doggalli. 2021. Phytochemicals – A novel therapeutic approach to control oral biofilm. Pharmacognosy Journal 13 (3):730–6. doi: 10.5530/pj.2021.13.93.
  • Khameneh, B., M. Iranshahy, V. Soheili, and B. S. Fazly Bazzaz. 2019. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrobial Resistance and Infection Control 8:118. doi: 10.1186/s13756-019-0559-6.
  • Khare, T., U. Anand, A. Dey, Y. G. Assaraf, Z. S. Chen, Z. Liu, and V. Kumar. 2021. Exploring phytochemicals for combating antibiotic resistance in microbial pathogens. Frontiers in Pharmacology 12:720726. doi: 10.3389/fphar.2021.720726.
  • Kim, Y. K., P. K. Roy, M. Ashrafudoulla, S. Nahar, S. H. Toushik, M. I. Hossain, M. F. R. Mizan, S. H. Park, and S. D. Ha. 2022. Antibiofilm effects of quercetin against Salmonella enterica biofilm formation and virulence, stress response, and quorum-sensing gene expression. Food Control 137:108964. doi: 10.1016/j.foodcont.2022.108964.
  • Klančnik, A., K. Šimunović, M. Sterniša, D. Ramić, S. S. Možina, and F. Bucar. 2021. Anti-adhesion activity of phytochemicals to prevent Campylobacter jejuni biofilm formation on abiotic surfaces. Phytochemistry Reviews 20 (1):55–84. doi: 10.1007/s11101-020-09669-6.
  • Kostoglou, D., I. Protopappas, and E. Giaouris. 2020. Common plant-derived terpenoids present increased anti-biofilm potential against Staphylococcus bacteria compared to a quaternary ammonium biocide. Foods 9 (6):697. doi: 10.3390/foods9060697.
  • Kot, B., H. Sytykiewicz, I. Sprawka, and M. Witeska. 2019. Effect of trans-cinnamaldehyde on methicillin-resistant Staphylococcus aureus biofilm formation: Metabolic activity assessment and analysis of the biofilm-associated genes expression. International Journal of Molecular Sciences 21 (1):102. doi: 10.3390/ijms21010102.
  • Kumar, A., I. A. Khan, S. Koul, J. L. Koul, S. C. Taneja, I. Ali, S. Sharma, Z. M. Mirza, M. Kumar, P. L. Sangwan, et al. 2008. Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus. The Journal of Antimicrobial Chemotherapy 61 (6):1270–6. doi: 10.1093/jac/dkn088.
  • Kumar, L., S. Chhibber, and K. Harjai. 2013. Zingerone inhibit biofilm formation and improve antibiofilm efficacy of ciprofloxacin against Pseudomonas aeruginosa PAO1. Fitoterapia 90:73–8. doi: 10.1016/j.fitote.2013.06.017.
  • Kumar, S., M. M. Mukherjee, and M. F. Varela. 2013. Modulation of bacterial multidrug resistance efflux pumps of the major facilitator superfamily. International Journal of Bacteriology 2013:1–15. doi: 10.1155/2013/204141.
  • Kurinčič, M., A. Klančnik, and S. Smole Možina. 2012. Effects of efflux pump inhibitors on erythromycin, ciprofloxacin, and tetracycline resistance in Campylobacter spp. isolates. Microbial Drug Resistance (Larchmont, N.Y.) 18 (5):492–501. doi: 10.1089/mdr.2012.0017.
  • Kwapong, A. A., S. Soares, S. P. Teo, P. Stapleton, and S. Gibbons. 2020. Myristica lowiana phytochemicals as inhibitor of plasmid conjugation in Escherichia coli. Evidence-Based Complementary and Alternative Medicine: eCAM 2020:1604638. doi: 10.1155/2020/1604638.
  • Lahiri, D., S. Dash, R. Dutta, and M. Nag. 2019. Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. Journal of Biosciences 44 (2):52. doi: 10.1007/s12038-019-9868-4.
  • Lal, A. F., S. Singh, F. C. Franco, and S. Bhatia. 2021. Potential of polyphenols in curbing quorum sensing and biofilm formation in Gram-negative pathogens. Asian Pacific Journal of Tropical Biomedicine 11 (6):231–43. doi: 10.4103/2221-1691.314044.
  • Lamm, K. W., N. L. Randall, and F. Diez-Gonzalez. 2021. Critical food safety issues facing the food industry: A Delphi analysis. Journal of Food Protection 84 (4):680–7. doi: 10.4315/jfp-20-372.
  • Latha, C., V. D. Shriram, S. S. Jahagirdar, P. K. Dhakephalkar, and S. R. Rojatkar. 2009. Antiplasmid activity of 1’-acetoxychavicol acetate from Alpinia galanga against multi-drug resistant bacteria. Journal of Ethnopharmacology 123 (3):522–5. doi: 10.1016/j.jep.2009.03.028.
  • Lee, J. H., Y. G. Kim, H. S. Cho, S. Y. Ryu, M. H. Cho, and J. Lee. 2014. Coumarins reduce biofilm formation and the virulence of Escherichia coli O157:H7. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 21 (8–9):1037–42. doi: 10.1016/j.phymed.2014.04.008.
  • Lee, J. H., Y. G. Kim, S. Y. Ryu, M. H. Cho, and J. Lee. 2014. Ginkgolic acids and Ginkgo biloba extract inhibit Escherichia coli O157:H7 and Staphylococcus aureus biofilm formation. International Journal of Food Microbiology 174:47–55. doi: 10.1016/j.ijfoodmicro.2013.12.030.
  • Lee, J. H., Y. G. Kim, S. Y. Ryu, and J. Lee. 2016. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus. Scientific Reports 6:19267. doi: 10.1038/srep19267.
  • Lee, J. H., J. H. Park, H. S. Cho, S. W. Joo, M. H. Cho, and J. Lee. 2013. Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling 29 (5):491–9. doi: 10.1080/08927014.2013.788692.
  • Lee, J. H., S. C. Regmi, J. A. Kim, M. H. Cho, H. Yun, C. S. Lee, and J. Lee. 2011. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infection and Immunity 79 (12):4819–27. doi: 10.1128/iai.05580-11.
  • Lim, J. H., S. H. Song, H. S. Park, J. R. Lee, and S. M. Lee. 2017. Spontaneous detachment of Streptococcus mutans biofilm by synergistic effect between zwitterion and sugar alcohol. Scientific Reports 7 (1):8107. doi: 10.1038/s41598-017-08558-x.
  • Lin, B., B. J. Johnson, R. A. Rubin, A. P. Malanoski, and F. S. Ligler. 2011. Iron chelation by cranberry juice and its impact on Escherichia coli growth. BioFactors (Oxford, England) 37 (2):121–30. doi: 10.1002/biof.110.
  • Lin, M. H., J. C. Shu, H. Y. Huang, and Y. C. Cheng. 2012. Involvement of iron in biofilm formation by Staphylococcus aureus. PloS One 7 (3):e34388. doi: 10.1371/journal.pone.0034388.
  • Liu, F., P. Jin, Z. Sun, L. Du, D. Wang, T. Zhao, and M. P. Doyle. 2021. Carvacrol oil inhibits biofilm formation and exopolysaccharide production of Enterobacter cloacae. Food Control 119:107473. doi: 10.1016/j.foodcont.2020.107473.
  • Lorenzi, V., A. Muselli, A. F. Bernardini, L. Berti, J. M. Pagès, L. Amaral, and J. M. Bolla. 2009. Geraniol restores antibiotic activities against multidrug-resistant isolates from Gram-negative species. Antimicrobial Agents and Chemotherapy 53 (5):2209–11. doi: 10.1128/aac.00919-08.
  • Lou, Z., K. S. Letsididi, F. Yu, Z. Pei, H. Wang, and R. Letsididi. 2019. Inhibitive effect of eugenol and its nanoemulsion on quorum sensing-mediated virulence factors and biofilm formation by Pseudomonas aeruginosa. Journal of Food Protection 82 (3):379–89. doi: 10.4315/0362-028x.Jfp-18-196.
  • Lu, L., W. Hu, Z. Tian, D. Yuan, G. Yi, Y. Zhou, Q. Cheng, J. Zhu, and M. Li. 2019. Developing natural products as potential anti-biofilm agents. Chinese Medicine 14:11. doi: 10.1186/s13020-019-0232-2.
  • Luciano, F. B, and R. A. Holley. 2009. Enzymatic inhibition by allyl isothiocyanate and factors affecting its antimicrobial action against Escherichia coli O157:H7. International Journal of Food Microbiology 131 (2–3):240–5. doi: 10.1016/j.ijfoodmicro.2009.03.005.
  • Malheiro, J., I. Gomes, A. Borges, M. M. S. M. Bastos, J. Y. Maillard, F. Borges, and M. Simões. 2016. Phytochemical profiling as a solution to palliate disinfectant limitations. Biofouling 32 (9):1007–16. doi: 10.1080/08927014.2016.1220550.
  • Malheiro, J. F., J. Y. Maillard, F. Borges, and M. Simões. 2019. Biocide potentiation using cinnamic phytochemicals and derivatives. Molecules 24 (21):3918. doi: 10.3390/molecules24213918.
  • Malheiro, J. F., C. Oliveira, F. Cagide, F. Borges, M. Simões, and J. Y. Maillard. 2020. Surface wiping test to study biocide–cinnamaldehyde combination to improve efficiency in surface disinfection. International Journal of Molecular Sciences 21 (21):7852. doi: 10.3390/ijms21217852.
  • Mathur, H., D. Field, M. C. Rea, P. D. Cotter, C. Hill, and R. P. Ross. 2018. Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms and Microbiomes 4:9. doi: 10.1038/s41522-018-0053-6.
  • Memariani, H., M. Memariani, and A. Ghasemian. 2019. An overview on anti-biofilm properties of quercetin against bacterial pathogens. World Journal of Microbiology & Biotechnology 35 (9):143. doi: 10.1007/s11274-019-2719-5.
  • Mevo, S. I. U., M. Ashrafudoulla, M. F. R. Mizan, S. H. Park, and S. D. Ha. 2021. Promising strategies to control persistent enemies: Some new technologies to combat biofilm in the food industry—A review. Comprehensive Reviews in Food Science and Food Safety 20 (6):5938–64. doi: 10.1111/1541-4337.12852.
  • Miao, J., S. Lin, T. Soteyome, B. M. Peters, Y. Li, H. Chen, J. Su, L. Li, B. Li, Z. Xu, et al. 2019. Biofilm formation of Staphylococcus aureus under food heat processing conditions: First report on CML production within biofilm. Scientific Reports 9 (1):1312. doi: 10.1038/s41598-018-35558-2.
  • Ming, D., D. Wang, F. Cao, H. Xiang, D. Mu, J. Cao, B. Li, L. Zhong, X. Dong, X. Zhong, et al. 2017. Kaempferol inhibits the primary attachment phase of biofilm formation in Staphylococcus aureus. Frontiers in Microbiology 8:2263. doi: 10.3389/fmicb.2017.02263.
  • Mizan, M. F. R., M. Ashrafudoulla, M. I. Hossain, H. R. Cho, and S. D. Ha. 2020. Effect of essential oils on pathogenic and biofilm-forming Vibrio parahaemolyticus strains. Biofouling 36 (4):467–78. doi: 10.1080/08927014.2020.1772243.
  • Mombeshora, M., G. F. Chi, and S. Mukanganyama. 2021. Antibiofilm activity of extract and a compound isolated from Triumfetta welwitschii against Pseudomonas aeruginosa. Biochemistry Research International 2021:9946183. doi: 10.1155/2021/9946183.
  • Monte, J., A. C. Abreu, A. Borges, L. C. Simões, and M. Simões. 2014. Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms. Pathogens (Basel, Switzerland) 3 (2):473–98. doi: 10.3390/pathogens3020473.
  • Moreno, S., E. M. Galván, N. Vázquez, G. Fiorilli, and P. A. Cáceres Guido. 2015. Antibacterial efficacy of Rosmarinus officinalis phytochemicals against nosocomial multidrug-resistant bacteria grown in planktonic culture and biofilm. In The Battle Against Microbial Pathogens: Basic Science, Technological Advances and Educational Programs, Ed. A. Méndez-Vilas. 1st ed., 3–8. Spain: Formatex Research Center.
  • Morens, D. M, and A. S. Fauci. 2013. Emerging infectious diseases: Threats to human health and global stability. PLoS Pathogens 9 (7):e1003467. doi: 10.1371/journal.ppat.1003467.
  • Možina, S. S., M. Kurinčič, A. Klančnik, and A. Mavri. 2011. Campylobacter and its multi-resistance in the food chain. Trends in Food Science & Technology 22 (2–3):91–8. doi: 10.1016/j.tifs.2010.09.003.
  • Mu, Y., H. Zeng, and W. Chen. 2021. Quercetin inhibits biofilm formation by decreasing the production of EPS and altering the composition of EPS in Staphylococcus epidermidis. Frontiers in Microbiology 12:631058. doi: 10.3389/fmicb.2021.631058.
  • Muñoz-Cazares, N., R. García-Contreras, M. Pérez-López, and I. Castillo-Juárez. 2017. Phenolic compounds with anti-virulence properties. In Phenolic Compounds: Biological Activity, Eds. M. Soto-Hernández, M. Palma-Tenango, & M. del Rosario Garcia-Mateos, 139–67. IntechOpen, London. doi: http://dx.doi.org/10.5772/66367.
  • Myszka, K., M. T. Schmidt, M. Majcher, W. Juzwa, M. Olkowicz, and K. Czaczyk. 2016. Inhibition of quorum sensing-related biofilm of Pseudomonas fluorescens KM121 by Thymus vulgare essential oil and its major bioactive compounds. International Biodeterioration & Biodegradation 114:252–9. doi: 10.1016/j.ibiod.2016.07.006.
  • Nadaf, N. H., R. S. Parulekar, R. S. Patil, T. K. Gade, A. A. Momin, S. R. Waghmare, M. J. Dhanavade, A. U. Arvindekar, and K. D. Sonawane. 2018. Biofilm inhibition mechanism from extract of Hymenocallis littoralis leaves. Journal of Ethnopharmacology 222:121–32. doi: 10.1016/j.jep.2018.04.031.
  • Nahar, S., M. F. R. Mizan, A. J. Ha, and S. D. Ha. 2018. Advances and future prospects of enzyme-based biofilm prevention approaches in the food industry. Comprehensive Reviews in Food Science and Food Safety 17 (6):1484–502. doi: 10.1111/1541-4337.12382.
  • Nazzaro, F., F. Fratianni, L. De Martino, R. Coppola, and V. De Feo. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel, Switzerland) 6 (12):1451–74. doi: 10.3390/ph6121451.
  • Ni, P., L. Wang, B. Deng, S. Jiu, C. Ma, C. Zhang, A. Almeida, D. Wang, W. Xu, and S. Wang. 2020. Combined application of bacteriophages and carvacrol in the control of Pseudomonas syringae pv. actinidiae planktonic and biofilm forms. Microorganisms 8 (6):837. doi: 10.3390/microorganisms8060837.
  • Nowicki, D., M. Maciąg-Dorszyńska, K. Bogucka, A. Szalewska-Pałasz, and A. Herman-Antosiewicz. 2019. Various modes of action of dietary phytochemicals, sulforaphane and phenethyl isothiocyanate, on pathogenic bacteria. Scientific Reports 9 (1):13677. doi: 10.1038/s41598-019-50216-x.
  • Nowicki, D., M. Maciąg-Dorszyńska, W. Kobiela, A. Herman-Antosiewicz, A. Węgrzyn, A. Szalewska-Pałasz, and G. Węgrzyn. 2014. Phenethyl isothiocyanate inhibits Shiga toxin production in enterohemorrhagic Escherichia coli by stringent response induction. Antimicrobial Agents and Chemotherapy 58 (4):2304–15. doi: 10.1128/aac.02515-13.
  • Nowicki, D., O. Rodzik, A. Herman-Antosiewicz, and A. Szalewska-Pałasz. 2016. Isothiocyanates as effective agents against enterohemorrhagic Escherichia coli: Insight to the mode of action. Scientific Reports 6:22263. doi: 10.1038/srep22263.
  • Ołdak, E, and E. A. Trafny. 2005. Secretion of proteases by Pseudomonas aeruginosa biofilms exposed to ciprofloxacin. Antimicrobial Agents and Chemotherapy 49 (8):3281–3288. doi: 10.1128/aac.49.8.3281-3288.2005.
  • Oliveira, M. M. M. d., D. F. Brugnera, M. d G. Cardoso, E. Alves, and R. H. Piccoli. 2010. Disinfectant action of Cymbopogon sp. essential oils in different phases of biofilm formation by Listeria monocytogenes on stainless steel surface. Food Control 21 (4):549–53. doi: 10.1016/j.foodcont.2009.08.003.
  • Oluwatuyi, M., G. W. Kaatz, and S. Gibbons. 2004. Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry 65 (24):3249–54. doi: 10.1016/j.phytochem.2004.10.009.
  • Oulahal, N, and P. Degraeve. 2021. Phenolic-rich plant extracts with antimicrobial activity: An alternative to food preservatives and biocides? Frontiers in Microbiology 12:753518. doi: 10.3389/fmicb.2021.753518.
  • Ouyang, J., F. Sun, W. Feng, Y. Sun, X. Qiu, L. Xiong, Y. Liu, and Y. Chen. 2016. Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. Journal of Applied Microbiology 120 (4):966–74. doi: 10.1111/jam.13073.
  • Oyedemi, B. O., V. Shinde, K. Shinde, D. Kakalou, P. D. Stapleton, and S. Gibbons. 2016. Novel R-plasmid conjugal transfer inhibitory and antibacterial activities of phenolic compounds from Mallotus philippensis (Lam.) Mull. Arg. Journal of Global Antimicrobial Resistance 5:15–21. doi: 10.1016/j.jgar.2016.01.011.
  • Pandey, R. P., R. Mukherjee, and C. M. Chang. 2022. Emerging concern with imminent therapeutic strategies for treating resistance in biofilm. Antibiotics (Basel) 11 (4):476. doi: 10.3390/antibiotics11040476.
  • Papuc, C., G. V. Goran, C. N. Predescu, V. Nicorescu, and G. Stefan. 2017. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Comprehensive Reviews in Food Science and Food Safety 16 (6):1243–68. doi: 10.1111/1541-4337.12298.
  • Parai, D., M. Banerjee, P. Dey, A. Chakraborty, E. Islam, and S. K. Mukherjee. 2018. Effect of reserpine on Pseudomonas aeruginosa quorum sensing mediated virulence factors and biofilm formation. Biofouling 34 (3):320–34. doi: 10.1080/08927014.2018.1437910.
  • Parai, D., E. Islam, J. Mitra, and S. K. Mukherjee. 2017. Effect of Bacoside A on growth and biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. Canadian Journal of Microbiology 63 (2):169–78. doi: 10.1139/cjm-2016-0365.
  • Pérez-Martínez, I, and D. Haas. 2011. Azithromycin inhibits expression of the GacA-dependent small RNAs RsmY and RsmZ in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy 55 (7):3399–405. doi: 10.1128/AAC.01801-10.
  • Patra, A. K. 2012. An overview of antimicrobial properties of different classes of phytochemicals. In Dietary Phytochemicals and Microbes, Ed. A. K. Patra, 1–32. Dordrecht: Springer. doi: 10.1007/978-94-007-3926-0_1.
  • Pimentel-Filho, N. d J., M. C. d F. Martins, G. B. Nogueira, H. C. Mantovani, and M. C. D. Vanetti. 2014. Bovicin HC5 and nisin reduce Staphylococcus aureus adhesion to polystyrene and change the hydrophobicity profile and Gibbs free energy of adhesion. International Journal of Food Microbiology 190:1–8. doi: 10.1016/j.ijfoodmicro.2014.08.004.
  • Ponnusamy, K., D. Paul, and J. H. Kweon. 2009. Inhibition of quorum sensing mechanism and Aeromonas hydrophila biofilm formation by vanillin. Environmental Engineering Science 26 (8):1359–63. doi: 10.1089/ees.2008.0415.
  • Powell, L. C., M. F. Pritchard, E. L. Ferguson, K. A. Powell, S. U. Patel, P. D. Rye, S. M. Sakellakou, N. J. Buurma, C. D. Brilliant, J. M. Copping, et al. 2018. Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides. NPJ Biofilms and Microbiomes 4 (1):13. doi: 10.1038/s41522-018-0056-3.
  • Prateeksha, S. K. B., and B. N. Singh. 2019. Nanoemulsion-loaded hydrogel coatings for inhibition of bacterial virulence and biofilm formation on solid surfaces. Scientific Reports 9 (1):6520. doi: 10.1038/s41598-019-43016-w.
  • Qian, W., Y. Fu, M. Liu, J. Zhang, W. Wang, J. Li, Q. Zeng, T. Wang, and Y. Li. 2021. Mechanisms of action of luteolin against single- and dual-species of Escherichia coli and Enterobacter cloacae and its antibiofilm activities. Applied Biochemistry and Biotechnology 193 (5):1397–414. doi: 10.1007/s12010-020-03330-w.
  • Qian, W., M. Liu, Y. Fu, J. Zhang, W. Liu, J. Li, X. Li, Y. Li, and T. Wang. 2020. Antimicrobial mechanism of luteolin against Staphylococcus aureus and Listeria monocytogenes and its antibiofilm properties. Microbial Pathogenesis 142:104056. doi: 10.1016/j.micpath.2020.104056.
  • Raad, I. I., X. Fang, X. M. Keutgen, Y. Jiang, R. Sherertz, and R. Hachem. 2008. The role of chelators in preventing biofilm formation and catheter-related bloodstream infections. Current Opinion in Infectious Diseases 21 (4):385–92. doi: 10.1097/qco.0b013e32830634d8.
  • Rajasekaran, R, and Y. Gebrekidan. 2018. A review on antibacterial phytochemical constitutions present in Aerva lanata and their mode of action against bacterial biofilm. International Journal of Pharmaceutical & Biological Archives 9 (1):16–30.
  • Rasch, M., J. B. Andersen, K. F. Nielsen, L. R. Flodgaard, H. Christensen, M. Givskov, and L. Gram. 2005. Involvement of bacterial quorum-sensing signals in spoilage of bean sprouts. Applied and Environmental Microbiology 71 (6):3321–3330. doi: 10.1128/aem.71.6.3321-3330.2005.
  • Romero, C. M., C. G. Vivacqua, M. B. Abdulhamid, M. D. Baigori, A. C. Slanis, M. C. G. de Allori, and M. L. Tereschuk. 2016. Biofilm inhibition activity of traditional medicinal plants from Northwestern Argentina against native pathogen and environmental microorganisms. Revista da Sociedade Brasileira de Medicina Tropical 49 (6):703–12. doi: 10.1590/0037-8682-0452-2016.
  • Rossi, C., C. Chaves-López, A. Serio, M. Casaccia, F. Maggio, and A. Paparella. 2022. Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: An updated review. Critical Reviews in Food Science and Nutrition 62 (8):2172–91. doi: 10.1080/10408398.2020.1851169.
  • Roy, R., M. Tiwari, G. Donelli, and V. Tiwari. 2018. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 9 (1):522–54. doi: 10.1080/21505594.2017.1313372.
  • Saak, C. C., C. B. Dinh, and R. J. Dutton. 2020. Experimental approaches to tracking mobile genetic elements in microbial communities. FEMS Microbiology Reviews 44 (5):606–30. doi: 10.1093/femsre/fuaa025.
  • Sadekuzzaman, M., S. Yang, M. F. R. Mizan, and S. D. Ha. 2015. Current and recent advanced strategies for combating biofilms. Comprehensive Reviews in Food Science and Food Safety 14 (4):491–509. doi: 10.1111/1541-4337.12144.
  • Sakarikou, C., D. Kostoglou, M. Simões, and E. Giaouris. 2020. Exploitation of plant extracts and phytochemicals against resistant Salmonella spp. in biofilms. Food Research International (Ottawa, Ont.) 128:108806. doi: 10.1016/j.foodres.2019.108806.
  • Saladino, F., K. Bordin, F. B. Luciano, M. F. Franzón, J. Mañes, and G. Meca. 2017. Antimicrobial activity of the glucosinolates. In Glucosinolates, Eds. J. M. Mérillon & K. G. Ramawat, 249–74. Cham: Springer International Publishing. doi: 10.1007/978-3-319-25462-3_18.
  • Saleemi, M. A., N. K. Palanisamy, and E. H. Wong. 2018. Alternative approaches to combat medicinally important biofilm-forming pathogens. In Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods, Ed. S. Kırmusaoğlu, 29–49. London: IntechOpen. doi: 10.5772/intechopen.80341.
  • Sampathkumar, S. J., P. Srivastava, S. Ramachandran, K. Sivashanmugam, and K. M. Gothandam. 2019. Lutein: A potential antibiofilm and antiquorum sensing molecule from green microalga Chlorella pyrenoidosa. Microbial Pathogenesis 135:103658. doi: 10.1016/j.micpath.2019.103658.
  • Sarabhai, S., P. Sharma, and N. Capalash. 2013. Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLoS One 8 (1):e53441. doi: 10.1371/journal.pone.0053441.
  • Satpute, S. K., N. S. Mone, P. Das, I. M. Banat, and A. G. Banpurkar. 2019. Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC Microbiology 19 (1):39. doi: 10.1186/s12866-019-1412-z.
  • Satputea, S. K., A. G. Banpurkar, I. M. Banat, J. N. Sangshetti, R. H. Patil, and W. N. Gade. 2016. Multiple roles of biosurfactants in biofilms. Current Pharmaceutical Design 22 (11):1429–48. doi: 10.2174/1381612822666160120152704.
  • Schelz, Z., J. Molnar, and J. Hohmann. 2006. Antimicrobial and antiplasmid activities of essential oils. Fitoterapia 77 (4):279–85. doi: 10.1016/j.fitote.2006.03.013.
  • Seukep, A. J., V. Kuete, L. Nahar, S. D. Sarker, and M. Guo. 2020. Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. Journal of Pharmaceutical Analysis 10 (4):277–90. doi: 10.1016/j.jpha.2019.11.002.
  • Shahid, A., M. Rasool, N. Akhter, B. Aslam, A. Hassan, S. Sana, M. H. Rasool, and M. Khurshid. 2019. Innovative strategies for the control of biofilm formation in clinical settings. In Bacterial Biofilms, Eds. S. Dincer, M. S. Özdenefe, & A. Arkut, London: IntechOpen. doi: http://dx.doi.org/10.5772/intechopen.89310.
  • Shahidi, F, and Y. Pan. 2022. Influence of food matrix and food processing on the chemical interaction and bioaccessibility of dietary phytochemicals: A review. Critical Reviews in Food Science and Nutrition 62 (23):6421–45. doi: 10.1080/10408398.2021.1901650.
  • Shamprasad, B. R., R. Lotha, S. Nagarajan, and A. Sivasubramanian. 2022. Metal nanoparticles functionalized with nutraceutical Kaempferitrin from edible Crotalaria juncea, exert potent antimicrobial and antibiofilm effects against Methicillin-resistant Staphylococcus aureus. Scientific Reports 12 (1):7061. doi: 10.1038/s41598-022-11004-2.
  • Sharma, A., V. K. Gupta, and R. Pathania. 2019. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. The Indian Journal of Medical Research 149 (2):129–45. doi: 10.4103/ijmr.ijmr_2079_17.
  • Sharma, G., S. Dang, K. Aruna, M. Kalia, and R. Gabrani. 2020. Synergistic antibacterial and anti-biofilm activity of nisin like bacteriocin with curcumin and cinnamaldehyde against ESBL and MBL producing clinical strains. Biofouling 36 (6):710–24. doi: 10.1080/08927014.2020.1804553.
  • Silva, C. C. G., S. P. M. Silva, and S. C. Ribeiro. 2018. Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology 9:594. doi: 10.3389/fmicb.2018.00594.
  • Silva, N. B. S., L. de Andrade Marques, and D. von Dolinger de Brito Röder. 2020. Antibiofilm activity of natural products: Promising strategies for combating microbial biofilms. Annals of Public Health Reports 4 (1):92–9. doi: http://doi.org/10.36959/856/502.
  • Simões, M., M. Lemos, and L. C. Simões. 2012. Phytochemicals against drug-resistant microbes. In Dietary Phytochemicals and Microbes, Ed. A. K. Patra, 185−205. Dordrecht: Springer. doi: 10.1007/978-94-007-3926-0_6.
  • Simões, M., L. C. Simões, and M. J. Vieira. 2010. A review of current and emergent biofilm control strategies. LWT – Food Science and Technology 43 (4):573–83. doi: 10.1016/j.lwt.2009.12.008.
  • Šimunović, K., F. Bucar, A. Klančnik, F. Pompei, A. Paparella, and S. Smole Možina. 2020. In vitro effect of the common culinary herb winter savory (Satureja montana) against the infamous food pathogen Campylobacter jejuni. Foods 9 (4):537. doi: 10.3390/foods9040537.
  • Siriwong, S., Y. Teethaisong, K. Thumanu, B. Dunkhunthod, and G. Eumkeb. 2016. The synergy and mode of action of quercetin plus amoxicillin against amoxicillin-resistant Staphylococcus epidermidis. BMC Pharmacology and Toxicology 17 (1):39. doi: 10.1186/s40360-016-0083-8.
  • Siriwong, S., K. Thumanu, T. Hengpratom, and G. Eumkeb. 2015. Synergy and mode of action of ceftazidime plus quercetin or luteolin on Streptococcus pyogenes. Evidence-Based Complementary and Alternative Medicine: eCAM 2015:759459. doi: 10.1155/2015/759459.
  • Siriyong, T., P. Srimanote, S. Chusri, B. Yingyongnarongkul, C. Suaisom, V. Tipmanee, and S. P. Voravuthikunchai. 2017. Conessine as a novel inhibitor of multidrug efflux pump systems in Pseudomonas aeruginosa. BMC Complementary and Alternative Medicine 17 (1):405. doi: 10.1186/s12906-017-1913-y.
  • Skalicka-Woźniak, K., M. Walasek, T. M. Aljarba, P. Stapleton, S. Gibbons, J. Xiao, and J. J. Łuszczki. 2018. The anticonvulsant and anti-plasmid conjugation potential of Thymus vulgaris chemistry: An in vivo murine and in vitro study. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 120:472–8. doi: 10.1016/j.fct.2018.07.045.
  • Somerton, B., D. Lindsay, J. Palmer, J. Brooks, and S. Flint. 2015. Changes in sodium, calcium, and magnesium ion concentrations that inhibit Geobacillus biofilms have no effect on Anoxybacillus flavithermus biofilms. Applied and Environmental Microbiology 81 (15):5115–22. doi: 10.1128/aem.01037-15.
  • Song, X., Y. X. Xia, Z. D. He, and H. J. Zhang. 2018. A review of natural products with anti-biofilm activity. Current Organic Chemistry 22 (8):789–817. doi: http://dx.doi.org/10.2174/1385272821666170620110041.
  • Song, Y. J., H. H. Yu, Y. J. Kim, N. K. Lee, and H. D. Paik. 2019. Anti-biofilm activity of grapefruit seed extract against Staphylococcus aureus and Escherichia coli. Journal of Microbiology and Biotechnology 29 (8):1177–83. doi: 10.1041/jmb.1905.05022.
  • Srey, S., I. K. Jahid, and S. D. Ha. 2013. Biofilm formation in food industries: A food safety concern. Food Control. 31 (2):572–85. doi: 10.1016/j.foodcont.2012.12.001.
  • Su, F, and J. Wang. 2018. Berberine inhibits the MexXY-OprM efflux pump to reverse imipenem resistance in a clinical carbapenem-resistant Pseudomonas aeruginosa isolate in a planktonic state. Experimental and Therapeutic Medicine 15 (1):467–72. doi: 10.3892/etm.2017.5431.
  • Su, T., Y. Qiu, X. Hua, B. Ye, H. Luo, D. Liu, P. Qu, and Z. Qiu. 2020. Novel opportunity to reverse antibiotic resistance: To explore traditional Chinese medicine with potential activity against antibiotics-resistance bacteria. Frontiers in Microbiology 11:610070. doi: 10.3389/fmicb.2020.610070.
  • Sudano Roccaro, A., A. R. Blanco, F. Giuliano, D. Rusciano, and V. Enea. 2004. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrobial Agents and Chemotherapy 48 (6):1968–73. doi: 10.1128/aac.48.6.1968-1973.2004.
  • Sulaeman, S., M. Hernould, A. Schaumann, L. Coquet, J. M. Bolla, E. Dé, and O. Tresse. 2012. Enhanced adhesion of Campylobacter jejuni to abiotic surfaces is mediated by membrane proteins in oxygen-enriched conditions. PloS One 7 (9):e46402. doi: 10.1371/journal.pone.0046402.
  • Suriyanarayanan, B, and R. Sarojini Santhosh. 2015. Docking analysis insights quercetin can be a non-antibiotic adjuvant by inhibiting Mmr drug efflux pump in Mycobacterium sp. and its homologue EmrE in Escherichia coli. Journal of Biomolecular Structure & Dynamics 33 (8):1819–34. doi: 10.1080/07391102.2014.974211.
  • Tian, F., J. Li, A. Nazir, and Y. Tong. 2021. Bacteriophage – A promising alternative measure for bacterial biofilm control. Infection and Drug Resistance 14:205–17. doi: 10.2147/idr.S290093.
  • Tiwari, V., D. Tiwari, V. Patel, and M. Tiwari. 2017. Effect of secondary metabolite of Actinidia deliciosa on the biofilm and extra-cellular matrix components of Acinetobacter baumannii. Microbial Pathogenesis 110:345–51. doi: 10.1016/j.micpath.2017.07.013.
  • Toushik, S. H., M. F. R. Mizan, M. I. Hossain, and S. D. Ha. 2020. Fighting with old foes: The pledge of microbe-derived biological agents to defeat mono- and mixed-bacterial biofilms concerning food industries. Trends in Food Science & Technology 99:413–25. doi: 10.1016/j.tifs.2020.03.019.
  • Tripathy, D. B, and A. Mishra. 2016. Sustainable biosurfactants. In Sustainable Inorganic Chemistry, Ed. D. A. Atwood, 175–92. New Jersey, USA: Wiley. doi: 10.1002/9781119951438.eibc2433
  • Trung, H. T., H. T. T. Huynh, L. N. T. Thuy, H. N. Van Minh, M. N. T. Nguyen, and M. N. L. Thi. 2020. Growth-inhibiting, bactericidal, antibiofilm, and urease inhibitory activities of Hibiscus rosa sinensis L. flower constituents toward antibiotic sensitive- and resistant-strains of Helicobacter pylori. ACS Omega. 5 (32):20080–9. doi: 10.1021/acsomega.0c01640.
  • Uçar, A., M. V. Yilmaz, and F. P. Çakıroğlu. 2016. Food safety – problems and solutions. In Significance, Prevention and Control of Food Related Diseases, Ed. H. A. Makun, 3–15. London: IntechOpen. doi: 10.5772/63176.
  • Ultee, A., M. H. Bennik, and R. Moezelaar. 2002. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Applied and Environmental Microbiology 68 (4):1561–8. doi: 10.1128/aem.68.4.1561-1568.2002.
  • Upadhyay, A., K. Arsi, B. R. Wagle, I. Upadhyaya, S. Shrestha, A. M. Donoghue, and D. J. Donoghue. 2017. Trans-cinnamaldehyde, carvacrol, and eugenol reduce Campylobacter jejuni colonization factors and expression of virulence genes in vitro. Frontiers in Microbiology 8:713. doi: 10.3389/fmicb.2017.00713.
  • Upadhyay, A., I. Upadhyaya, A. Kollanoor-Johny, and K. Venkitanarayanan. 2014. Combating pathogenic microorganisms using plant-derived antimicrobials: A minireview of the mechanistic basis. BioMed Research International 2014:761741. doi: 10.1155/2014/761741.
  • Vale, J., M. Ribeiro, A. C. Abreu, I. Soares-Silva, and M. Simões. 2019. The use of selected phytochemicals with EDTA against Escherichia coli and Staphylococcus epidermidis single- and dual-species biofilms. Letters in Applied Microbiology 68 (4):313–20. doi: 10.1111/lam.13137.
  • Valverde, J. 2013. Industrial applications of phytochemicals. In Handbook of Plant Food Phytochemicals, Eds. B. Tiwari, N. P. Brunton, & C. S. Brennan, 473–501. New Jersey, USA: Wiley-Blackwell. doi: 10.1002/9781118464717.ch21.
  • Van Meervenne, E., R. De Weirdt, E. Van Coillie, F. Devlieghere, L. Herman, and N. Boon. 2014. Biofilm models for the food industry: Hot spots for plasmid transfer? Pathogens and Disease 70 (3):332–8. doi: 10.1111/2049-632x.12134.
  • Vandeputte, O. M., M. Kiendrebeogo, T. Rasamiravaka, C. Stévigny, P. Duez, S. Rajaonson, B. Diallo, A. Mol, M. Baucher, and M. El Jaziri. 2011. The flavanone naringenin reduces the production of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Microbiology (Reading, England) 157 (Pt 7):2120–32. doi: 10.1099/mic.0.049338-0.
  • Vázquez-Sánchez, D., J. A. Galvão, M. R. Mazine, E. Micotti da Gloria, and T. M. F. de Souza Vieira. 2019. Anti-biofilm efficacy of single and binary treatments based on plant essential oils against Escherichia coli persistent in food-processing facilities. Food Science and Technology International = Ciencia y Tecnologia de Los Alimentos Internacional 25 (5):385–93. doi: 10.1177/1082013219826817.
  • Venkatramanan, M., P. Sankar Ganesh, R. Senthil, J. Akshay, A. Veera Ravi, K. Langeswaran, J. Vadivelu, S. Nagarajan, K. Rajendran, and E. M. Shankar. 2020. Inhibition of quorum sensing and biofilm formation in Chromobacterium violaceum by fruit extracts of Passiflora edulis. ACS Omega 5 (40):25605–16. doi: 10.1021/acsomega.0c02483.
  • Vidakovic, L., P. K. Singh, R. Hartmann, C. D. Nadell, and K. Drescher. 2018. Dynamic biofilm architecture confers individual and collective mechanisms of viral protection. Nature Microbiology 3 (1):26–31. doi: 10.1038/s41564-017-0050-1.
  • Villalobos-Delgado, L. H., G. V. Nevárez-Moorillon, I. Caro, E. J. Quinto, and J. Mateo. 2019. Natural antimicrobial agents to improve foods shelf life. In Food Quality and Shelf Life, ed. C. M. Galanakis, 125–57. Massachusetts, USA: Academic Press, Elsevier. doi: 10.1016/B978-0-12-817190-5.00004-5.
  • Wagle, B. R., A. Upadhyay, I. Upadhyaya, S. Shrestha, K. Arsi, R. Liyanage, K. Venkitanarayanan, D. J. Donoghue, and A. M. Donoghue. 2019. Trans-cinnamaldehyde, eugenol and carvacrol reduce Campylobacter jejuni biofilms and modulate expression of select genes and proteins. Frontiers in Microbiology 10:1837. doi: 10.3389/fmicb.2019.01837.
  • Wang, S., J. Yao, B. Zhou, J. Yang, M. T. Chaudry, M. Wang, F. Xiao, Y. Li, and W. Yin. 2018. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. Journal of Food Protection 81 (1):68–78. doi: 10.4315/0362-028X.JFP-17-214.
  • Wang, Y., S. M. Lee, and G. A. Dykes. 2013. Potential mechanisms for the effects of tea extracts on the attachment, biofilm formation and cell size of Streptococcus mutans. Biofouling 29 (3):307–18. doi: 10.1080/08927014.2013.774377.
  • World Health Organization. 2020. Antibiotic resistance. https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance
  • World Health Organization. 2022. Food safety. https://www.who.int/news-room/fact-sheets/detail/food-safety
  • Wijesundara, N. M, and H. P. V. Rupasinghe. 2018. Essential oils from Origanum vulgare and Salvia officinalis exhibit antibacterial and anti-biofilm activities against Streptococcus pyogenes. Microbial Pathogenesis 117:118–27. doi: 10.1016/j.micpath.2018.02.026.
  • Xu, S., T. Sun, Q. Xu, C. Duan, Y. Dai, L. Wang, and Q. Song. 2018. Preparation and antibiofilm properties of zinc oxide/porous anodic alumina composite films. Nanoscale Research Letters 13 (1):201. doi: 10.1186/s11671-018-2568-4.
  • Xu, W., A. L. Flores-Mireles, Z. T. Cusumano, E. Takagi, S. J. Hultgren, and M. G. Caparon. 2017. Host and bacterial proteases influence biofilm formation and virulence in a murine model of enterococcal catheter-associated urinary tract infection. NPJ Biofilms and Microbiomes 3 (1):28. doi: 10.1038/s41522-017-0036-z.
  • Yan, X., S. Gu, X. Cui, Y. Shi, S. Wen, H. Chen, and J. Ge. 2019. Antimicrobial, anti-adhesive and anti-biofilm potential of biosurfactants isolated from Pediococcus acidilactici and Lactobacillus plantarum against Staphylococcus aureus CMCC26003. Microbial Pathogenesis 127:12–20. doi: 10.1016/j.micpath.2018.11.039.
  • Yang, L., K. B. Barken, M. E. Skindersoe, A. B. Christensen, M. Givskov, and T. Tolker-Nielsen. 2007. Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. Microbiology (Reading, England) 153 (Pt 5):1318–28. doi: 10.1099/mic.0.2006/004911-0.
  • Yang, L., W. Ding, Y. Xu, D. Wu, S. Li, J. Chen, and B. Guo. 2016. New insights into the antibacterial activity of hydroxycoumarins against Ralstonia solanacearum. Molecules (Basel, Switzerland) 21 (4):468. doi: 10.3390/molecules21040468.
  • Yap, P. S., K. Yusoff, S. H. E. Lim, C. M. Chong, and K. S. Lai. 2021. Membrane disruption properties of essential oils—A double-edged sword? Processes 9 (4):595. doi: 10.3390/pr9040595.
  • Yasir, M., M. D. P. Willcox, and D. Dutta. 2018. Action of antimicrobial peptides against bacterial biofilms. Materials (Basel) 11 (12):2468. doi: 10.3390/ma11122468.
  • Yin, L., Y. Zhang, F. Azi, J. Zhou, X. Liu, Y. Dai, Z. Wang, M. Dong, and X. Xia. 2022. Inhibition of biofilm formation and quorum sensing by soy isoflavones in Pseudomonas aeruginosa. Food Control 133 (B):108629. doi: 10.1016/j.foodcont.2021.108629.
  • Yuan, L., M. F. Hansen, H. L. Røder, N. Wang, M. Burmølle, and G. He. 2020. Mixed-species biofilms in the food industry: Current knowledge and novel control strategies. Critical Reviews in Food Science and Nutrition 60 (13):2277–93. doi: 10.1080/10408398.2019.1632790.
  • Zhang, J., X. Rui, L. Wang, Y. Guan, X. Sun, and M. Dong. 2014. Polyphenolic extract from Rosa rugosa tea inhibits bacterial quorum sensing and biofilm formation. Food Control 42:125–31. doi: 10.1016/j.foodcont.2014.02.001.
  • Zhang, Z., X. Lyu, Q. Xu, C. Li, M. Lu, T. Gong, B. Tang, L. Wang, W. Zeng, and Y. Li. 2020. Utilization of the extract of Cedrus deodara (Roxb. ex D.Don) G. Don against the biofilm formation and the expression of virulence genes of cariogenic bacterium Streptococcus mutans. Journal of Ethnopharmacology 257:112856. doi: 10.1016/j.jep.2020.112856.
  • Zhang, Z., J. Zeng, X. Zhou, Q. Xu, C. Li, Y. Liu, C. Zhang, L. Wang, W. Zeng, and Y. Li. 2021. Activity of Ligustrum robustum (Roxb.) Blume extract against the biofilm formation and exopolysaccharide synthesis of Streptococcus mutans. Molecular Oral Microbiology 36 (1):67–79. doi: 10.1111/omi.12328.
  • Zhao, W. H., Z. Q. Hu, Y. Hara, and T. Shimamura. 2002. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 46 (7):2266–2268. doi: 10.1128/aac.46.7.2266-2268.2002.
  • Zhao, X., F. Zhao, J. Wang, and N. Zhong. 2017. Biofilm formation and control strategies of foodborne pathogens: Food safety perspectives. RSC Advances 7 (58):36670–83. doi: 10.1039/C7RA02497E.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.