505
Views
2
CrossRef citations to date
0
Altmetric
Reviews

A review of in vitro methods to evaluate the bioaccessibility of phenolic compounds in tropical fruits

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Aguillón-Osma, J., I. Luzardo-Ocampo, M. L. Cuellar-Nuñez, M. E. Maldonado-Celis, N. Loango-Chamorro, and R. Campos-Vega. 2019. Impact of in vitro gastrointestinal digestion on the bioaccessibility and antioxidant capacity of bioactive compounds from passion fruit (passiflora edulis) leaves and juice extracts. Journal of Food Biochemistry 43 (7):1–11. doi: 10.1111/jfbc.12879.
  • Alam, M. A., F. I. Al-Jenoobi, and A. M. Al-Mohizea. 2012. Everted gut sac model as a tool in pharmaceutical research: Limitations and applications. The Journal of Pharmacy and Pharmacology 64 (3):326–36. doi: 10.1111/j.2042-7158.2011.01391.x.
  • Almada-Érix, C. N., C. N. Almada, G. T. Souza Pedrosa, P. C. Lollo, M. Magnani, and A. S. Sant’Ana. 2021. Development of a semi-dynamic in vitro model and its testing using probiotic Bacillus Coagulans GBI-30, 6086 in orange juice and yogurt. Journal of Microbiological Methods 183 (March):106187. doi: 10.1016/j.mimet.2021.106187.
  • Alminger, M., A. M. Aura, T. Bohn, C. Dufour, S. N. El, A. Gomes, S. Karakaya, M. C. Martínez-Cuesta, G. J. Mcdougall, T. Requena, et al. 2014. In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Comprehensive Reviews in Food Science and Food Safety 13 (4):413–36. doi: 10.1111/1541-4337.12081.
  • Araújo, F. F., D. P. Farias, I. A. Neri-Numa, F. L. Dias-Audibert, J. Delafiori, F. G. Souza, R. R. Catharino, C. K. Sacramento, and G. M. Pastore. 2021. Gastrointestinal bioaccessibility and bioactivity of phenolic compounds from Araçá-Boi fruit. LWT 135 (June 2020):110230. doi: 10.1016/j.lwt.2020.110230.
  • Arenas, E. H., and T. P. Trinidad. 2017. Fate of polyphenols in pili (Canarium Ovatum Engl.) pomace after in vitro simulated digestion. Asian Pacific Journal of Tropical Biomedicine 7 (1):53–8. doi: 10.1016/j.apjtb.2016.11.002.
  • Arruda, H. S., I. A. Neri-Numa, L. A. Kido, M. R. Maróstica Júnior, and G. M. Pastore. 2020. Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. Journal of Functional Foods 75 (September):104203. doi: 10.1016/j.jff.2020.104203.
  • Barba, F. J., L. R. B. Mariutti, N. Bragagnolo, A. Z. Mercadante, G. V. Barbosa-Cánovas, and V. Orlien. 2017. Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends in Food Science & Technology 67:195–206. doi: 10.1016/j.tifs.2017.07.006.
  • Blancas-Benitez, F. J., J. Pérez-Jiménez, E. Montalvo-González, G. A. González-Aguilar, and S. G. Sáyago-Ayerdi. 2018. In vitro evaluation of the kinetics of the release of phenolic compounds from guava (Psidium Guajava L.) fruit. Journal of Functional Foods 43 (vember 2017):139–45. doi: 10.1016/j.jff.2018.02.011.
  • Brodkorb, A., L. Egger, M. Alminger, P. Alvito, R. Assunção, S. Ballance, T. Bohn, C. Bourlieu-Lacanal, R. Boutrou, F. Carrière, et al. 2019. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nature Protocols 14 (4):991–1014. doi: 10.1038/s41596-018-0119-1.
  • Buniowska, M., J. M. Carbonell-Capella, A. Frigola, and M. J. Esteve. 2017. Bioaccessibility of bioactive compounds after non-thermal processing of an exotic fruit juice blend sweetened with stevia rebaudiana. Food Chemistry 221:1834–42. doi: 10.1016/j.foodchem.2016.10.093.
  • Cai, Y., W. Qin, S. Ketnawa, and Y. Ogawa. 2020. Impact of particle size of pulverized citrus peel tissue on changes in antioxidant properties of digested fluids during simulated in vitro digestion. Food Science and Human Wellness 9 (1):58–63. doi: 10.1016/j.fshw.2019.12.008.
  • Cardoso, C., C. Afonso, H. Lourenço, S. Costa, and M. L. Nunes. 2015. Bioaccessibility assessment methodologies and their consequences for the risk-benefit evaluation of food. Trends in Food Science & Technology 41 (1):5–23. doi: 10.1016/j.tifs.2014.08.008.
  • Chen, G.-L., S.-G. Chen, F. Chen, Y.-Q. Xie, M.-D. Han, C.-X. Luo, Y.-Y. Zhao, and Y.-Q. Gao. 2016. Nutraceutical potential and antioxidant benefits of selected fruit seeds subjected to an in vitro digestion. Journal of Functional Foods 20:317–31. doi: 10.1016/j.jff.2015.11.003.
  • Cilla, A., M. J. Rodrigo, L. Zacarías, B. Ancos, C. Sánchez-Moreno, R. Barberá, and A. Alegría. 2018. Protective effect of bioaccessible fractions of citrus fruit pulps against H2O2-induced oxidative stress in Caco-2 cells. Food Research International (Ottawa, ON) 103:335–44. doi: 10.1016/j.foodres.2017.10.066.
  • Coles, L. T., P. J. Moughan, and A. J. Darragh. 2005. In vitro digestion and fermentation methods, including gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals. Animal Feed Science and Technology 123–124:421–44. doi: 10.1016/j.anifeedsci.2005.04.021.
  • Cosme, P., A. B. Rodríguez, J. Espino, and M. Garrido. 2020. Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants 9 (12):1263. doi: 10.3390/antiox9121263.
  • Dag, D., M. Kilercioglu, and M. H. Oztop. 2017. Physical and chemical characteristics of encapsulated goldenberry (Physalis Peruviana L.) juice powder. LWT - Food Science and Technology 83:86–94. doi: 10.1016/j.lwt.2017.05.007.
  • Dantas, A. M., I. M. Mafaldo, P. M. L. Oliveira, M. S. Lima, M. Magnani, and G. S. C. Borges. 2019. Bioaccessibility of phenolic compounds in native and exotic frozen pulps explored in Brazil using a digestion model coupled with a simulated intestinal barrier. Food Chemistry 274:202–14. doi: 10.1016/j.foodchem.2018.08.099.
  • de la Rosa, L. A., J. O. Moreno-Escamilla, J. Rodrigo-García, and E. Alvarez-Parrilla. 2019. Phenolic compounds. In: Postharvest physiology and biochemistry of fruits and vegetables, ed E. M. Yahia. Duxford, UK: Elsevier Inc. doi: 10.1016/C2016-0-04653-3.
  • Dutra, R. L. T., A. M. Dantas, D. A. Marques, J. D. F. Batista, B. R. L. A. Meireles, A. M. T. M. Cordeiro, M. Magnani, and G. S. C. Borges. 2017. Bioaccessibility and antioxidant activity of phenolic compounds in frozen pulps of Brazilian exotic fruits exposed to simulated gastrointestinal conditions. Food Research International (Ottawa, ON) 100 (Pt 1):650–7. doi: 10.1016/j.foodres.2017.07.047.
  • FAO, IFAD, UNICEF, WFP, and WHO. 2020. The state of food security and nutrition in the world 2020. Rome: FAO, IFAD, UNICEF, WFP and WHO.
  • FAO. 2020a. Major tropical fruits market review 2019. Romes: FAO.
  • FAO. 2020b. Fruit and vegetables – your dietary essentials. The International Year of Fruits and Vegetables 2021 Background paper. Rome, Italy: FAO. doi: 10.4060/cb2395en.
  • FAO. 2022. “FAOSTATA Data.” Accessed March 29, 2022. http://www.fao.org/faostat/en/?#data.
  • Farias, D. P., F. F. Araújo, I. A. Neri-Numa, F. L. Dias-Audibert, J. Delafiori, R. R. Catharino, and G. M. Pastore. 2021. Effect of in vitro digestion on the bioaccessibility and bioactivity of phenolic compounds in fractions of Eugenia pyriformis fruit. Food Research International (Ottawa, ON) 150 (Pt A):110767. doi: 10.1016/j.foodres.2021.110767.
  • Fitri, A., M. Andriani, A. Sudarman, T. Toharmat, L. Yonekurac, H. Tamura, and N. Ramli. 2016. Screening of antioxidant activities and their bioavailability of tropical fruit byproducts from Indonesia. International Journal of Pharmacy and Pharmaceutical Sciences 8 (6):96–100.
  • Fonteles, T. V., E. G. Alves Filho, M. K. A. Barroso, M. F. D. Linhares, M. C. Rabelo, L. M. A. Silva, E. S. Brito, N. J. Wurlitzer, E. P. R. Pereira, B. M. Ferreira, et al. 2021. Protective effect of inulin on thermally treated acerola juice: In vitro bioaccessibility of bioactive compounds. Food Bioscience 41:101018. doi: 10.1016/j.fbio.2021.101018.
  • Goulas, V., and A. Hadjisolomou. 2019. Dynamic changes in targeted phenolic compounds and antioxidant potency of carob fruit (Ceratonia Siliqua L.) products during in vitro digestion. LWT 101:269–75. doi: 10.1016/j.lwt.2018.11.003.
  • Guergoletto, K. B., A. Costabile, G. Flores, S. Garcia, and G. R. Gibson. 2016. In vitro fermentation of juçara pulp (Euterpe Edulis) by human colonic microbiota. Food Chemistry 196:251–8. doi: 10.1016/j.foodchem.2015.09.048.
  • Guerriero, G., R. Berni, J. A. Muñoz-Sanchez, F. Apone, E. M. Abdel-Salam, A. A. Qahtan, A. A. Alatar, C. Cantini, G. Cai, J. F. Hausman, et al. 2018. Production of plant secondary metabolites: Examples, tips and suggestions for biotechnologists. Genes 9 (6):309. doi: 10.3390/genes9060309.
  • He, Z., Y. Tao, M. Zeng, S. Zhang, G. Tao, F. Qin, and J. Chen. 2016. High pressure homogenization processing, thermal treatment and milk matrix affect in vitro bioaccessibility of phenolics in apple, grape and orange juice to different extents. Food Chemistry 200:107–16. doi: 10.1016/j.foodchem.2016.01.045.
  • Hernández-Maldonado, L. M., F. J. Blancas-Benítez, V. M. Zamora-Gasga, A. P. Cárdenas-Castro, J. Tovar, and S. G. Sáyago-Ayerdi. 2019. In vitro gastrointestinal digestion and colonic fermentation of high dietary fiber and antioxidant-rich mango (Mangifera Indica l.) ‘Ataulfo’-based fruit bars. Nutrients 11 (7):1564. doi: 10.3390/nu11071564.
  • Herrera-Cazares, L. A., F. Hernández-Navarro, A. K. Ramírez-Jiménez, R. Campos-Vega, M. L. L. Reyes-Vega, G. Loarca-Piña, E. Morales-Sánchez, A. Wall-Medrano, and M. Gaytán-Martínez. 2017. Mango-bagasse functional-confectionery: Vehicle for enhancing bioaccessibility and permeability of phenolic compounds. Food & Function 8 (11):3906–16. doi: 10.1039/c7fo00873b.
  • Inada, K. O. P., T. B. R. Silva, L. A. Lobo, R. M. C. P. Domingues, D. Perrone, and M. Monteiro. 2020. Bioaccessibility of phenolic compounds of jaboticaba (Plinia Jaboticaba) peel and seed after simulated gastrointestinal digestion and gut microbiota fermentation. Journal of Functional Foods 67:103851. doi: 10.1016/j.jff.2020.103851.
  • Ismail, B. B., M. Guo, Y. Pu, O. Çavuş, K. A. Ayub, R. B. Watharkar, T. Ding, J. Chen, and D. Liu. 2021. Investigating the effect of in vitro gastrointestinal digestion on the stability, bioaccessibility, and biological activities of baobab (Adansonia Digitata) fruit polyphenolics. LWT 145:111348. doi: 10.1016/j.lwt.2021.111348.
  • Juncal-Guzmán, D. D., L. M. Hernández-Maldonado, J. A. Sánchez-Burgos, G. A. González-Aguilar, V. M. Ruiz-Valdiviezo, J. Tovar, and S. G. Sáyago-Ayerdi. 2021. In vitro gastrointestinal digestion and colonic fermentation of phenolic compounds in UV-C irradiated pineapple (Ananas Comosus) snack-bars. LWT 138:110636. doi: 10.1016/j.lwt.2020.110636.
  • Karaś, M., A. Jakubczyk, U. Szymanowska, U. Złotek, and E. Zielińska. 2017. Digestion and bioavailability of bioactive phytochemicals. International Journal of Food Science & Technology 52 (2):291–305. doi: 10.1111/ijfs.13323.
  • Lafond, M., B. Bouza, S. Eyrichine, F. Rouffineau, L. Saulnier, T. Giardina, E. Bonnin, and A. Preynat. 2015. In vitro gastrointestinal digestion study of two wheat cultivars and evaluation of xylanase supplementation. Journal of Animal Science and Biotechnology 6 (1):5–14. doi: 10.1186/s40104-015-0002-7.
  • Leal, A. R., L. S. Oliveira, J. N. Costa, C. A. N. Alves, P. Mata, and P. H. M. de Sousa. 2022. In vitro bioaccessibility of antioxidant compounds from structured fruits developed with gellan gum and agar. Revista Ciência Agronômica 53:1–10. doi: 10.5935/1806-6690.20220005.
  • Mashitoa, F. M., S. A. Akinola, V. E. Manhevi, C. Garcia, F. Remize, R. M. Slabbert, and D. Sivakumar. 2021. Influence of fermentation of pasteurised papaya puree with different lactic acid bacterial strains on quality and bioaccessibility of phenolic compounds during in vitro digestion. Foods 10 (5):962. doi: 10.3390/foods10050962.
  • Melo, P. S., A. P. Massarioli, J. G. Lazarini, J. C. Soares, M. Franchin, P. L. Rosalen, and S. M. Alencar. 2020. Simulated gastrointestinal digestion of Brazilian Açaí seeds affects the content of flavan-3-Ol derivatives, and their antioxidant and anti-inflammatory activities. Heliyon 6 (10):e05214. doi: 10.1016/j.heliyon.2020.e05214.
  • Mennah-Govela, Y. A., and M. B. Gail. 2017. Fresh-squeezed orange juice properties before and during in vitro digestion as influenced by orange variety and processing method. Journal of Food Science 82 (10):2438–47. doi: 10.1111/1750-3841.13842.
  • Mihaylova, D., I. Desseva, M. Stoyanova, N. Petkova, M. Terzyiska, and A. Lante. 2021. Impact of in vitro gastrointestinal digestion on the bioaccessibility of phytochemical compounds from eight fruit juices. Molecules (Basel, Switzerland) 26 (4):1187. doi: 10.3390/molecules26041187.
  • Minekus, M. 2015. The TNO gastro-intestinal model (TIM). In Impact of food bioactives on health, eds. K. Verhoeckx, P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, A. Mackie, T. Requena, D. Swiatecka, and H. Wichers, 338. Cham, Switzerland: Springer Publisher.
  • Minekus, M., M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrière, R. Boutrou, M. Corredig, D. Dupont, et al. 2014. A standardised static in vitro digestion method suitable for food-an international consensus. Food & Function 5 (6):1113–24. doi: 10.1039/c3fo60702j.
  • Mulet-Cabero, A. I., L. Egger, R. Portmann, O. Ménard, S. Marze, M. Minekus, S. L. Feunteun, A. Sarkar, M. M. L. Grundy, F. Carrière, et al. 2020. A standardised semi-dynamic: in vitro digestion method suitable for food-an international consensus. Food & Function 11 (2):1702–20. doi: 10.1039/c9fo01293a.
  • Mustafa, G., R. Arif, A. Atta, S. Sharif, and A. Jamil. 2017. Contents list available at RAZI publishing bioactive compounds from medicinal plants and their importance in drug discovery in Pakistan. Matrix Science Pharma 1 (1):17–26. doi: 10.26480/msp.01.2017.17.26.
  • Neveu, V., J. Perez-Jiménez, F. Vos, V. Crespy, L. du Chaffaut, L. Mennen, C. Knox, R. Eisner, J. Cruz, D. Wishart, et al. 2010. Phenol-explorer: An online comprehensive database on polyphenol contents in foods. Database 2010:bap024. doi: 10.1093/database/bap024.
  • Nunzio, M. D., B. Ester, A. Taccari, M. D. Rosa, and A. Bordoni. 2020. Impact of processing on the nutritional and functional value of mandarin juice. Journal of the Science of Food and Agriculture 100 (12):4558–64. doi: 10.1002/jsfa.10514.
  • Ordoñez-Díaz, J. L., A. Moreno-Ortega, F. J. Roldán-Guerra, V. Ortíz-Somovilla, J. M. Moreno-Rojas, and G. Pereira-Caro. 2020. In vitro gastrointestinal digestion and colonic catabolism of mango (Mangifera Indica L.) pulp polyphenols. Foods 9 (12):1836. doi: 10.3390/foods9121836.
  • Pereira-Freire, J. A., G. L. S. Oliveira, L. K. F. Lima, C. L. S. Ramos, S. R. Arcanjo-Medeiros, A. C. S. Lima, S. A. Teixeira, G. A. L. Oliveira, N. M. F. Nunes, V. R. Amorim, et al. 2018. In vitro and ex vivo chemopreventive action of mauritia flexuosa products. Evidence-Based Complementary and Alternative Medicine 2018:1–12. doi: 10.1155/2018/2051279.
  • Porto-Luz, R., G. Lima, A. K. O. Soares, B. Silva, R. Fett, M. A. M. Araújo, and R. S. R. Moreira-Araújo. 2020. In vitro bioaccessibility and identification of antioxidant compounds in clarified cashew apple juice ‘cajuína. Brazilian Journal of Development 6 (1):4321–35. doi: 10.34117/bjdv6n1-308.
  • Quan, W., Y. Tao, M. Lu, B. Yuan, J. Chen, M. Zeng, F. Qin, F. Guo, and Z. He. 2018. Stability of the phenolic compounds and antioxidant capacity of five fruit (apple, orange, grape, pomelo and kiwi) juices during in vitro-simulated gastrointestinal digestion. International Journal of Food Science & Technology 53 (5):1131–9. doi: 10.1111/ijfs.13682.
  • Quan, W., Y. Tao, X. Qie, M. Zeng, F. Qin, J. Chen, and Z. He. 2020. Effects of high-pressure homogenization, thermal processing, and milk matrix on the in vitro bioaccessibility of phenolic compounds in pomelo and kiwi juices. Journal of Functional Foods 64 (October 2019):103633. doi: 10.1016/j.jff.2019.103633.
  • Ribas-Agustí, A., O. Martín-Belloso, R. Soliva-Fortuny, and P. Elez-Martínez. 2018. Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Critical Reviews in Food Science and Nutrition 58 (15):2531–48. doi: 10.1080/10408398.2017.1331200.
  • Schulz, M., F. C. Biluca, L. V. Gonzaga, G. S. C. Borges, L. Vitali, G. A. Micke, J. S. Gois, T. S. Almeida, D. L. G. Borges, P. R. M. Miller, et al. 2017. Bioaccessibility of bioactive compounds and antioxidant potential of juçara fruits (Euterpe Edulis Martius) subjected to in vitro gastrointestinal digestion. Food Chemistry 228:447–54. doi: 10.1016/j.foodchem.2017.02.038.
  • Sensoy, I. 2021. Current research in food science. A review on the food digestion in the digestive tract and the used in vitro models. Current Research in Food Science 4 (February):308–19. doi: 10.1016/j.crfs.2021.04.004.
  • Septembre-Malaterre, A., F. Remize, and P. Poucheret. 2018. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Research International (Ottawa, ON) 104:86–99. doi: 10.1016/j.foodres.2017.09.031.
  • Silva, C. P., G. R. Sampaio, R. A. M. S. Freitas, and E. A. F. S. Torres. 2018. Polyphenols from guaraná after in vitro digestion: Evaluation of bioacessibility and inhibition of activity of carbohydrate-hydrolyzing enzymes. Food Chemistry 267:405–9. doi: 10.1016/j.foodchem.2017.08.078.
  • Silva-Espinoza, M. A., E. García-Martínez, and N. Martínez-Navarrete. 2021. Protective capacity of gum arabic, maltodextrin, different starches, and fibers on the bioactive compounds and antioxidant activity of an orange puree (Citrus Sinensis (L.) Osbeck) against freeze-drying and in vitro digestion. Food Chemistry 357:129724. doi: 10.1016/j.foodchem.2021.129724.
  • Souza, M., A. Mesquita, P. Souza, G. Borges, T. Silva, A. Converti, and M. I. Maciel. 2021. New functional non-dairy mixed tropical fruit juice microencapsulated by spray drying: Physicochemical characterization, bioaccessibility, genetic identification and stability. LWT 152:112271. doi: 10.1016/j.lwt.2021.112271.
  • Stinco, C. M., E. Sentandreu, P. Mapelli-Brahm, J. L. Navarro, I. M. Vicario, and A. J. Meléndez-Martínez. 2020. Influence of high pressure homogenization and pasteurization on the in vitro bioaccessibility of carotenoids and flavonoids in orange juice. Food Chemistry 331:127259. doi: 10.1016/j.foodchem.2020.127259.
  • Sun, Y., W. Tao, H. Huang, X. Ye, and P. Sun. 2019. Flavonoids, phenolic acids, carotenoids and antioxidant activity of fresh eating citrus fruits, using the coupled in vitro digestion and human intestinal HepG2 cells model. Food Chemistry 279:321–7. doi: 10.1016/j.foodchem.2018.12.019.
  • Thakur, N., P. Raigond, Y. Singh, T. Mishra, B. Singh, M. K. Lal, and S. Dutt. 2020. Recent updates on bioaccessibility of phytonutrients. Trends in Food Science & Technology 97:366–80. doi: 10.1016/j.tifs.2020.01.019.
  • Velderrain-Rodríguez, G., A. Quirós-Sauceda, G. Mercado-Mercado, J. F. Ayala-Zavala, H. Astiazarán-García, R. M. Robles-Sánchez, A. Wall-Medrano, S. Sayago-Ayerdi, and G. A. González-Aguilar. 2016. Effect of dietary fiber on the bioaccessibility of phenolic compounds of mango, papaya and pineapple fruits by an in vitro digestion model. Food Science and Technology 36 (2):188–94. doi: 10.1590/1678-457X.6729.
  • Verwei, M., M. Minekus, E. Zeijdner, R. Schilderink, and R. Havenaar. 2016. Evaluation of two dynamic in vitro models simulating fasted and fed state conditions in the upper gastrointestinal tract (TIM-1 and Tiny-TIM) for investigating the bioaccessibility of pharmaceutical compounds from oral dosage forms. International Journal of Pharmaceutics 498 (1–2):178–86. doi: 10.1016/j.ijpharm.2015.11.048.
  • Vinholes, J., S. F. Reis, G. Lemos, R. L. Barbieri, V. Freitas, R. C. Franzon, and M. Vizzotto. 2018. Effect of in vitro digestion on the functional properties of psidium cattleianum Sabine (Aracą), Butia Odorata (Barb. Rodr.) Noblick (Butiá) and Eugenia Uniflora L. (Pitanga) fruit extracts. Food & Function 9 (12):6380–90. doi: 10.1039/c8fo01329b.
  • Wongs-Aree, C., and S. Noichinda. 2014. Postharvest physiology and quality maintenance of tropical fruits. In Postharvest handling: A system approach, 275–312. 3rd ed. San Diego, USA. Academic Press, Elsevier Inc. doi: 10.1016/B978-0-12-408137-6.00010-7.
  • Xie, X., C. Chen, and X. Fu. 2021. Study on the bioaccessibility of phenolic compounds and bioactivities of passion fruit juices from different regions in vitro digestion. Journal of Food Processing and Preservation 45 (1): e15056. doi: 10.1111/jfpp.15056.
  • Zheng, G., J. Deng, L. Wen, L. You, Z. Zhao, and L. Zhou. 2018. Release of phenolic compounds and antioxidant capacity of Chinese Hawthorn ‘Crataegus Pinnatifida’ during in vitro digestion. Journal of Functional Foods 40:76–85. doi: 10.1016/j.jff.2017.10.039.
  • Zuñiga, B. S., M. J. Abraham, D. Avila, A. Wall, J. F. Ayala, Z. Javier, H. Paredes, N. J. Salazar, M. A. Villegas, O. Gustavo, et al. 2021. Avocado paste from industrial byproducts as an unconventional source of bioactive compounds: Characterization, in vitro digestion and in silico interactions of its main phenolics with cholesterol. Journal of Food Measurement and Characterization, 15 (6):5460–5476. doi: 10.1007/s11694-021-01117-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.