582
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Mechanisms of carotenoid intestinal absorption and the regulation of dietary lipids: lipid transporter-mediated transintestinal epithelial pathways

, &

References

  • Agarwal, S, and A. V. Rao. 2000. Tomato lycopene and its role in human health and chronic diseases. CMAJ: Canadian Medical Association Journal  163 (6):739–44.
  • Ahmed, R. A. M., K. Murao, H. Imachi, X. Yu, J. Li, N. C. W. Wong, and T. Ishida. 2009. Human scavenger receptor class B type 1 is regulated by activators of peroxisome proliferators-activated receptor-gamma in hepatocytes. Endocrine 35 (2):233–42. doi: 10.1007/s12020-008-9142-2.
  • Ahn, H, and J. Park. 2016. Liposomal delivery systems for intestinal lymphatic drug transport. Biomaterials Research 20 (1):36. doi: http://doi.org/10.1186/s40824-016-0083-1.
  • Allaire, J. M., S. M. Crowley, H. T. Law, S. Chang, H. Ko, and B. A. Vallance. 2018. The intestinal epithelium: Central coordinator of mucosal immunity. Trends in Immunology 39 (9):677–96. doi:10.1016/j.it.2018.04.002.
  • Alvaro, A., R. Rosales, L. Masana, and J. Vallvé. 2010. Polyunsaturated fatty acids down-regulate in vitro expression of the key intestinal cholesterol absorption protein NPC1L1: No effect of monounsaturated nor saturated fatty acids. The Journal of Nutritional Biochemistry 21 (6):518–25. doi: http://doi.org/10.1016/j.jnutbio.2009.02.010.
  • Amengual, J., M. Golczak, K. Palczewski, and J. von Lintig. 2012. Lecithin: Retinol acyltransferase is critical for cellular uptake of vitamin A from serum retinol-binding protein. The Journal of Biological Chemistry 287 (29):24216–27. doi: http://doi.org/10.1074/jbc.M112.353979.
  • Amengual, J., G. P. Lobo, M. Golczak, H. N. M. Li, T. Klimova, C. L. Hoppel, A. Wyss, K. Palczewski, and J. von Lintig. 2011. A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 25 (3):948–59. doi: http://doi.org/10.1096/fj.10-173906.
  • Amengual, J., M. A. K. Widjaja-Adhi, S. Rodriguez-Santiago, S. Hessel, M. Golczak, K. Palczewski, and J. von Lintig. 2013. Two carotenoid oxygenases contribute to mammalian provitamin A metabolism. The Journal of Biological Chemistry 288 (47):34081–96. doi: http://doi.org/10.1074/jbc.M113.501049.
  • Armstrong, G. A. 1997. Genetics of eubacterial carotenoid biosynthesis: A colorful tale. Annual Review of Microbiology 51 (1):629–59. doi: http://doi.org/10.1146/annurev.micro.51.1.629.
  • Avalos, J., M. Carmen Limón, D. E. Naretto Rangel, and D. E. Naretto Rangel. 2015. Biological roles of fungal carotenoids. Current Genetics 61 (3):309–24. doi: http://doi.org/10.1007/s00294-014-0454-x.
  • Aziz, E., R. Batool, W. Akhtar, S. Rehman, T. Shahzad, A. Malik, M. A. Shariati, A. Laishevtcev, S. Plygun, M. Heydari, et al. 2020. Xanthophyll: Health benefits and therapeutic insights. Life Sciences 240:117104. doi: http://doi.org/10.1016/j.lfs.2019.117104.
  • Babino, D., G. Palczewski, M. A. K. Widjaja-Adhi, P. D. Kiser, M. Golczak, and J. Von Lintig. 2015. Characterization of the role of β-carotene 9,10-dioxygenase in macular pigment metabolism. The Journal of Biological Chemistry 290 (41):24844–57. doi: http://doi.org/10.1074/jbc.M115.668822.
  • Bajka, B. H., N. M. Rigby, K. L. Cross, A. Macierzanka, and A. R. Mackie. 2015. The influence of small intestinal mucus structure on particle transport ex vivo. Colloids and Surfaces. B, Biointerfaces 135:73–80. doi:10.1016/j.colsurfb.2015.07.038.
  • Bansil, R, and B. S. Turner. 2006. Mucin structure, aggregation, physiological functions and biomedical applications. Current Opinion in Colloid & Interface Science 11 (2-3):164–70. doi:10.1016/j.cocis.2005.11.001.
  • Bansil, R, and B. S. Turner. 2018. The biology of mucus: Composition, synthesis and organization. Advanced Drug Delivery Reviews 124:3–15. doi:10.1016/j.addr.2017.09.023.
  • Belury, M. A., S. Y. Moya-Camarena, M. Lu, L. Shi, L. M. Leesnitzer, and S. G. Blanchard. 2002. Conjugated linoleic acid is an activator and ligand for peroxisome proliferator-activated receptor-Gamma (PPARγ). Nutrition Research 22 (7):817–24. doi: http://doi.org/10.1016/S0271-5317(02)00393-7.
  • Bhat, I., V. Baskaran, and B. S. Mamatha. 2022. Influence of fatty acids in edible oils on lutein micellization and permeation in a simulated digestion model. Food Bioscience 46:101423. doi: http://doi.org/10.1016/j.fbio.2021.101423.
  • Bietrix, F., D. Yan, M. Nauze, C. Rolland, J. Bertrand-Michel, C. Coméra, S. Schaak, R. Barbaras, A. K. Groen, B. Perret, et al. 2006. Accelerated lipid absorption in mice overexpressing intestinal SR-BI. The Journal of Biological Chemistry 281 (11):7214–9. doi:10.1074/jbc.M508868200.
  • Blaner, W. S., P. Brun, R. M. Calderon, and M. Golczak. 2020. Retinol-binding protein 2 (RBP2): biology and pathobiology. Critical Reviews in Biochemistry and Molecular Biology 55 (2):197–218. doi: http://doi.org/10.1080/10409238.2020.1768207.
  • Bohn, T., C. Desmarchelier, S. N. El, J. Keijer, E. van Schothorst, R. Rühl, and P. Borel. 2019. β-Carotene in the human body: Metabolic bioactivation pathways – from digestion to tissue distribution and excretion. The Proceedings of the Nutrition Society 78 (1):68–87. doi: http://doi.org/10.1017/S0029665118002641.
  • Bonet, M. L., J. Ribot, S. Galmés, F. Serra, and A. Palou. 2020. Carotenoids and carotenoid conversion products in adipose tissue biology and obesity: Pre-clinical and human studies. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1865 (11):158676–1981. doi:10.1016/j.bbalip.2020.158676.
  • Borel, P. 2012. Genetic variations involved in interindividual variability in carotenoid status. Molecular Nutrition & Food Research 56 (2):228–40. doi: http://doi.org/10.1002/mnfr.201100322.
  • Borel, P., G. Lietz, A. Goncalves, D. E. F. Szabo, S. Lecompte, P. Curtis, L. Goumidi, M. J. Caslake, E. A. Miles, C. Packard, et al. 2013. CD36 and SR-BI are involved in cellular uptake of provitamin A carotenoids by Caco-2 and HEK cells, and some of their genetic variants are associated with plasma concentrations of these micronutrients in humans. The Journal of Nutrition 143 (4):448–56. doi: 10.3945/jn.112.172734.
  • Boulet, L., B. Alex, N. Clavey, J. Martinez, and V. Ducros. 2020. Simultaneous analysis of retinol, six carotenoids, two tocopherols, and coenzyme Q10 from human plasma by HPLC. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1151:122158. doi: 10.1016/j.jchromb.2020.122158.
  • Britton, G. 1995. Structure and properties of carotenoids in relation to function. FASEB Journal : official Publication of the Federation of American Societies for Experimental Biology 9 (15):1551–8. doi: 10.1096/fasebj.9.15.8529834.
  • Bruce, A., and A. De Peyster Shayne. 2005. Encyclopedia of toxicology second edition 2005. New York: Academic Press.
  • Brush, A. H. 1990. Metabolism of carotenoid pigments in birds. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 4 (12):2969–77. doi: 10.1096/fasebj.4.12.2394316.
  • Bugnicourt, L, and C. Ladavière. 2017. A close collaboration of chitosan with lipid colloidal carriers for drug delivery applications. Journal of Controlled Release: Official Journal of the Controlled Release Society 256:121–40. doi: http://doi.org/10.1016/j.jconrel.2017.04.018.
  • Bungard, R. A., A. V. Ruban, J. M. Hibberd, M. C. Press, P. Horton, and J. D. Scholes. 1999. Unusual carotenoid composition and a new type of xanthophyll cycle in plants. Proceedings of the National Academy of Sciences of the United States of America 96 (3):1135–9. doi: http://doi.org/10.1073/pnas.96.3.1135.
  • Cai, S. F., R. J. Kirby, P. N. Howles, and D. Y. Hui. 2001. Differentiation-dependent expression and localization of the class B type I scavenger receptor in intestine. Journal of Lipid Research 42 (6):902–9. doi: http://doi.org/10.1016/S0022-2275(20)31613-8.
  • Caliph, S. M., W. N. Charman, and C. J. H. Porter. 2000. Effect of short‐, medium‐, and long‐chain fatty acid‐based vehicles on the absolute oral bioavailability and intestinal lymphatic transport of halofantrine and assessment of mass balance in lymph‐cannulated and non‐cannulated rats. Journal of Pharmaceutical Sciences 89 (8):1073–84. doi: http://doi.org/10.1002/1520-6017(200008)89:8 < 1073::AID-JPS12 > 3.0.CO;2-V.
  • Cervantes-Paz, B., C. I. Victoria-Campos, and J. D. J. Ornelas-Paz. 2016. Absorption of carotenoids and mechanisms involved in their health-related properties. Sub-Cellular Biochemistry 79:415–54. doi: 10.1007/978-3-319-39126-7_16.
  • Chang, Y, and D. J. McClements. 2016. Characterization of mucin – Lipid droplet interactions: Influence on potential fate of fish oil-in-water emulsions under simulated gastrointestinal conditions. Food Hydrocolloids 56:425–33. doi: http://doi.org/10.1016/j.foodhyd.2015.12.034.
  • Cheema, M., K. J. Palin, and S. S. Davis. 1987. Lipid vehicles for intestinal lymphatic drug absorption. The Journal of Pharmacy and Pharmacology 39 (1):55–6. doi: http://doi.org/10.1111/j.2042-7158.1987.tb07164.x.
  • Chen, H., E. D. H. Mansfield, A. Woods, V. V. Khutoryanskiy, B. Forbes, and S. A. Jones. 2019. Mucus penetrating properties of soft, distensible lipid nanocapsules. European Journal of Pharmaceutics and Biopharmaceutics 139:76–84. doi: http://doi.org/10.1016/j.ejpb.2019.02.020.
  • Chen, M., F. Mi, Z. Liao, C. Hsiao, K. Sonaje, M. Chung, L. Hsu, and H. Sung. 2013. Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Advanced Drug Delivery Reviews 65 (6):865–79. doi:10.1016/j.addr.2012.10.010.
  • Colle, I. J. P., S. Van Buggenhout, L. Lemmens, A. M. Van Loey, and M. E. Hendrickx. 2012. The type and quantity of lipids present during digestion influence the in vitro bioaccessibility of lycopene from raw tomato pulp. Food Research International 45 (1):250–5. doi: http://doi.org/10.1016/j.foodres.2011.10.041.
  • Conlon, L. E., R. D. King, N. E. Moran, and J. W. Erdman. 2012. Correction to coconut oil enhances tomato carotenoid tissue accumulation compared to safflower oil in the Mongolian gerbil (Meriones unguiculatus). Journal of Agricultural and Food Chemistry 60 (34):8386–94. doi: http://doi.org/10.1021/jf301902k.
  • Corte-Real, J., M. Bertucci, C. Soukoulis, C. Desmarchelier, P. Borel, E. Richling, L. Hoffmann, and T. Bohn. 2017. Negative effects of divalent mineral cations on the bioaccessibility of carotenoids from plant food matrices and related physical properties of gastro-intestinal fluids. Food & Function 8 (3):1008–19. doi: 10.1039/C6FO01708H.
  • Crow, J. A, and D. E. Ong. 1985. Cell-specific immunohistochemical localization of a cellular retinol-binding protein (type two) in the small intestine of rat. Proceedings of the National Academy of Sciences of the United States of America 82 (14):4707–11. doi: http://doi.org/10.1073/pnas.82.14.4707.
  • Daugherty, A. L, and R. J. Mrsny. 1999. Transcellular uptake mechanisms of the intestinal epithelial barrier Part one. Pharmaceutical Science & Technology Today 4 (2):144–51. doi:10.1016/S1461-5347(99)00142-X.
  • Davidov-Pardo, G., C. E. Gumus, and D. J. McClements. 2016. Lutein-enriched emulsion-based delivery systems: Influence of pH and temperature on physical and chemical stability. Food Chemistry 196:821–7. doi: http://doi.org/10.1016/j.foodchem.2015.10.018.
  • Davis, H. R., L. Zhu, L. M. Hoos, G. Tetzloff, M. Maguire, J. Liu, X. Yao, S. P. N. Iyer, M. Lam, E. G. Lund, et al. 2004. Niemann-pick C1 like 1 (NPC1L1) is the intestinal phytosterol and cholesterol transporter and a key modulator of whole-body cholesterol homeostasis. The Journal of Biological Chemistry 279 (32):33586–92. doi: http://doi.org/10.1074/jbc.M405817200.
  • Dean, M., Y. Hamon, and G. Chimini. 2001. The human ATP-binding cassette (ABC) transporter superfamily. Journal of Lipid Research 42 (7):1007–17. doi: http://doi.org/10.1016/S0022-2275(20)31588-1.
  • Dela Seña, C., S. Narayanasamy, K. M. Riedl, R. W. Curley, S. J. Schwartz, and E. H. Harrison. 2013. Substrate specificity of purified recombinant human β-carotene 15,15′-oxygenase (BCO1). The Journal of Biological Chemistry 288 (52):37094–103. doi: http://doi.org/10.1074/jbc.M113.507160.
  • Dela Seña, C., J. Sun, S. Narayanasamy, K. M. Riedl, Y. Yuan, R. W. Curley, S. J. Schwartz, and E. H. Harrison. 2016. Substrate specificity of purified recombinant chicken β-carotene 9′,10′-oxygenase (BCO2). The Journal of Biological Chemistry 291 (28):14609–19. doi: http://doi.org/10.1074/jbc.M116.723684.
  • de Lange, E. C. M. 2007. Multi drug resistance P glycoprotein and other transporters. In Encyclopedia of Stress, ed. G. Fink, 2nd ed, 774–783. New York: Academic Press. doi: http://doi.org/10.1016/b978-012373947-6/00562-6.
  • Desmarchelier, C, and P. Borel. 2017. Overview of carotenoid bioavailability determinants: From dietary factors to host genetic variations. Trends in Food Science & Technology 69:270–80. doi:10.1016/j.tifs.2017.03.002.
  • Dethlefsen, L., P. B. Eckburg, E. M. Bik, and D. A. Relman. 2006. Assembly of the human intestinal microbiota. Trends in Ecology & Evolution 21 (9):517–23. doi:10.1016/j.tree.2006.06.013.
  • Dhankhar, J., S. S. Kadian, and A. Sharma. 2012. Astaxanthin: A potential carotenoid. International Journal of Pharmaceutical Sciences and Research 3 (5):1246.
  • During, A., H. D. Dawson, and E. H. Harrison. 2005. Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe. The Journal of Nutrition 135 (10):2305–12. doi: 10.1093/jn/135.10.2305.
  • During, A., A. Nagao, and J. Terao. 1998. β-Carotene 15,15'-dioxygenase activity and cellular retinol-binding protein type II level are enhanced by dietary unsaturated triacylglycerols in rat intestines 1,2,3. The Journal of Nutrition 128 (10):1614–9. doi: 10.1093/jn/128.10.1614.
  • During, A, and E. H. Harrison. 2007. Mechanisms of provitamin A (carotenoid) and vitamin A (retinol) transport into and out of intestinal Caco-2 cells. Journal of Lipid Research 48 (10):2283–94. doi: http://doi.org/10.1194/jlr.M700263-JLR200.
  • Ensign, L. M., A. Henning, C. S. Schneider, K. Maisel, Y. Wang, M. D. Porosoff, R. Cone, and J. Hanes. 2013. Ex vivo characterization of particle transport in mucus secretions coating freshly excised mucosal tissues. Molecular Pharmaceutics 10 (6):2176–82. doi: http://doi.org/10.1021/mp400087y.
  • Ermund, A., A. Schütte, M. E. V. Johansson, J. K. Gustafsson, G. C. Hansson, A. Sahlgrenska, U. Göteborgs, U. Gothenburg, and A. Sahlgrenska. 2013. Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer’s patches. American Journal of Physiology. Gastrointestinal and Liver Physiology 305 (5):G341–G347. doi: http://doi.org/10.1152/ajpgi.00046.2013.
  • Fernández-García, E., I. Carvajal-Lérida, M. Jarén-Galán, J. Garrido-Fernández, A. Pérez-Gálvez, and D. Hornero-Méndez. 2012. Carotenoids bioavailability from foods: From plant pigments to efficient biological activities. Food Research International 46 (2):438–50. doi:10.1016/j.foodres.2011.06.007.
  • Friedl, H., S. Dünnhaupt, F. Hintzen, C. Waldner, S. Parikh, J. P. Pearson, M. D. Wilcox, and A. Bernkop-Schnürch. 2013. Development and evaluation of a novel mucus diffusion test system approved by self-nanoemulsifying drug delivery systems. Journal of Pharmaceutical Sciences 102 (12):4406–13. doi: http://doi.org/10.1002/jps.23757.
  • Gammone, M. A., G. Riccioni, and N. D'Orazio. 2015. Carotenoids: Potential allies of cardiovascular health? Food & Nutrition Research 59:26762–72. doi: 10.3402/fnr.v59.26762.
  • Gao, F, and J. Birch. 2016. Oxidative stability, thermal decomposition, and oxidation onset prediction of carrot, flax, hemp, and canola seed oils in relation to oil composition and positional distribution of fatty acids. European Journal of Lipid Science and Technology 118 (7):1042–52. doi: http://doi.org/10.1002/ejlt.201500208.
  • Gasa-Falcon, A., E. Arranz, I. Odriozola-Serrano, O. Martín-Belloso, and L. Giblin. 2021. Delivery of β-carotene to the in vitro intestinal barrier using nanoemulsions with lecithin or sodium caseinate as emulsifiers. LWT 135:110059. doi: 10.1016/j.lwt.2020.110059.
  • Ge, L., J. Wang, W. Qi, H. Miao, J. Cao, Y. Qu, B. Li, and B. Song. 2008. The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1. Cell Metabolism 7 (6):508–19. doi: http://doi.org/10.1016/j.cmet.2008.04.001.
  • Ginsberg, B. H., T. J. Brown, I. Simon, and A. A. Spector. 1981. Effect of the membrane lipid environment on the properties of insulin receptors. Diabetes 30 (9):773–80. doi: http://doi.org/10.2337/diab.30.9.773.
  • Giuliano, G., G. E. Bartley, and P. A. Scolnik. 1993. Regulation of carotenoid biosynthesis during tomato development. The Plant Cell 5 (4):379–87. doi: http://doi.org/10.1105/tpc.5.4.379.
  • Golczak, M., Y. Imanishi, V. Kuksa, T. Maeda, R. Kubota, and K. Palczewski. 2005. Lecithin: Retinol acyltransferase is responsible for amidation of retinylamine, a potent inhibitor of the retinoid cycle. The Journal of Biological Chemistry 280 (51):42263–73. doi: http://doi.org/10.1074/jbc.M509351200.
  • Goltz, S. R., W. W. Campbell, C. Chitchumroonchokchai, M. L. Failla, and M. G. Ferruzzi. 2012. Meal triacylglycerol profile modulates postprandial absorption of carotenoids in humans. Molecular Nutrition & Food Research 56 (6):866–77. doi: http://doi.org/10.1002/mnfr.201100687.
  • Gómez-Guillén, M. C, and M. P. Montero. 2021. Enhancement of oral bioavailability of natural compounds and probiotics by mucoadhesive tailored biopolymer-based nanoparticles: A review. Food Hydrocolloids. 118:106772. doi: http://doi.org/10.1016/j.foodhyd.2021.106772.
  • Gonçalves, R. F. S., J. T. Martins, C. M. M. Duarte, A. A. Vicente, and A. C. Pinheiro. 2018. Advances in nutraceutical delivery systems: From formulation design for bioavailability enhancement to efficacy and safety evaluation. Trends in Food Science & Technology 78:270–91. doi: http://doi.org/10.1016/j.tifs.2018.06.011.
  • González, C. M., A. L. García, E. Llorca, I. Hernando, P. Atienzar, A. Bermejo, G. Moraga, and A. Quiles. 2021. Carotenoids in dehydrated persimmon: Antioxidant activity, structure, and photoluminescence. LWT 142:111007. doi:10.1016/j.lwt.2021.111007.
  • Gorusupudi, A. M. S, and V. M. S. P. Baskaran. 2013. Wheat germ oil: A potential facilitator to improve lutein bioavailability in mice. Nutrition (Burbank, Los Angeles County, Calif.) 29 (5):790–5. doi: http://doi.org/10.1016/j.nut.2012.11.003.
  • Guo, B., T. Oliviero, V. Fogliano, Y. Ma, F. Chen, and E. Capuano. 2020. Gastrointestinal bioaccessibility and colonic fermentation of fucoxanthin from the extract of the microalga nitzschia laevis. Journal of Agricultural and Food Chemistry 68 (7):1844–50. doi: http://doi.org/10.1021/acs.jafc.9b02496.
  • Guo, M., M. Wei, W. Li, M. Guo, C. Guo, M. Ma, Y. Wang, Z. Yang, M. Li, Q. Fu, et al. 2019. Impacts of particle shapes on the oral delivery of drug nanocrystals: Mucus permeation, transepithelial transport and bioavailability. Journal of Controlled Release: Official Journal of the Controlled Release Society 307:64–75. doi: http://doi.org/10.1016/j.jconrel.2019.06.015.
  • Haetinger, V. S., Y. K. Dalmoro, G. L. Godoy, M. B. Lang, O. F. de Souza, P. Aristimunha, and C. Stefanello. 2021. Optimizing cost, growth performance, and nutrient absorption with a bio-emulsifier based on lysophospholipids for broiler chickens. Poultry Science 100 (4):101025. doi: http://doi.org/10.1016/j.psj.2021.101025.
  • Hafner, A., J. Lovrić, D. Voinovich, and J. Filipović-Grčić. 2009. Melatonin-loaded lecithin/chitosan nanoparticles: Physicochemical characterisation and permeability through Caco-2 cell monolayers. International Journal of Pharmaceutics 381 (2):205–13. doi: http://doi.org/10.1016/j.ijpharm.2009.07.001.
  • Hammer, J., K. Hammer, and K. Kletter. 1998. Lipids infused into the jejunum accelerate small intestinal transit but delay ileocolonic transit of solids and liquids. Gut 43 (1):111–6. doi: http://doi.org/10.1136/gut.43.1.111.
  • Han, F., P. Yang, H. Wang, I. Fernandes, N. Mateus, and Y. Liu. 2019. Digestion and absorption of red grape and wine anthocyanins through the gastrointestinal tract. Trends in Food Science & Technology 83:211–24. doi:10.1016/j.tifs.2018.11.025.
  • Harker, M, and J. Hirschberg. 1998. Molecular biology of carotenoid biosynthesis in photosynthetic organisms. Elsevier Science & Technology 297 (17):244–63. doi: http://doi.org/10.1016/S0076-6879(98)97019-7.(Reprinted.
  • Harrison, E. H, and M. M. Hussain. 2001. Mechanisms involved in the intestinal digestion and absorption of dietary vitamin A. The Journal of Nutrition 131 (5):1405–8. doi: http://doi.org/10.1093/jn/131.5.1405.
  • Harrison, E. H, and L. Quadro. 2018. Apocarotenoids: Emerging roles in mammals. Annual Review of Nutrition 38 (1):153–72. doi: http://doi.org/10.1146/annurev-nutr-082117-051841.
  • Heidrich, J. E., L. M. Contos, L. A. Hunsaker, L. M. Deck, and D. L. Vander Jagt. 2004. Inhibition of pancreatic cholesterol esterase reduces cholesterol absorption in the hamster. BMC Pharmacology 4 (1):5–14. doi: http://doi.org/10.1186/1471-2210-4-5.
  • Herron, K. L., M. M. Mcgrane, D. Waters, I. E. Lofgren, R. M. Clark, J. M. Ordovas, and M. L. Fernandez. 2006. The ABCG5 polymorphism contributes to individual responses to dietary cholesterol and carotenoids in eggs. The Journal of Nutrition 136 (5):1161–5. doi: http://doi.org/10.1093/jn/136.5.1161.
  • Ho, M. C., K. Georgios, K. L. John, W. A. Ammar, S. Mario, and L. Jose. 2019. Lycopene and tomato and risk of cardiovascular diseases: A systematic review and meta-analysis of epidemiological evidence. Critical Reviews in Food Science and Nutrition 59 (1):141–58. doi: http://doi.org/10.1080/10408398.2017.1362630.
  • Hofmann, A. F, and B. Borgstroem. 1964. The intraluminal phase of fat digestion in man: The lipid content of the micellar and oil phases of intestinal content obtained during fat digestion and absorption. The Journal of Clinical Investigation 43 (2):247–57. doi: http://doi.org/10.1172/JCI104909.
  • Hosotani, K, and M. Kitagawa. 2005. Effects of dietary protein, fat and beta-carotene levels on beta-carotene absorption in rats. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift Fur Vitamin- Und Ernahrungsforschung. Journal International de Vitaminologie et de Nutrition 75 (4):274–80. doi: http://doi.org/10.1024/0300-9831.75.4.274.
  • Hu, X., R. J. Jandacek, and W. S. White. 2000. Intestinal absorption of beta-carotene ingested with a meal rich in sunflower oil or beef tallow: Postprandial appearance in triacylglycerol-rich lipoproteins in women. The American Journal of Clinical Nutrition 71 (5):1170–80. doi: http://doi.org/10.1093/ajcn/71.5.1170.
  • Huang, L., D. Li, Y. Ma, Y. Liu, G. Liu, Y. Wang, and B. Tan. 2022. Dietary fatty acid-mediated protein encapsulation simultaneously improving the water-solubility, storage stability, and oral absorption of astaxanthin. Food Hydrocolloids 123:107152. doi: http://doi.org/10.1016/j.foodhyd.2021.107152.
  • Huo, T., M. G. Ferruzzi, S. J. Schwartz, and M. L. Failla. 2007. Impact of fatty acyl composition and quantity of triglycerides on bioaccessibility of dietary carotenoids. Journal of Agricultural and Food Chemistry 55 (22):8950–7. doi: http://doi.org/10.1021/jf071687a.
  • Hupert, J., S. Mobarhan, T. J. Layden, V. M. Papa, and D. J. Lucchesi. 1991. In vitro formation of retinoic acid from retinal in rat liver. Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire 69 (8):509–14. doi: http://doi.org/10.1139/o91-075.
  • Iddir, M., C. Degerli, G. Dingeo, C. Desmarchelier, T. Schleeh, P. Borel, Y. Larondelle, and T. Bohn. 2019. Whey protein isolate modulates beta-carotene bioaccessibility depending on gastro-intestinal digestion conditions. Food Chemistry 291:157–66. doi: http://doi.org/10.1016/j.foodchem.2019.04.003.
  • Iddir, M., J. F. Porras Yaruro, Y. Larondelle, and T. Bohn. 2021. Gastric lipase can significantly increase lipolysis and carotenoid bioaccessibility from plant food matrices in the harmonized INFOGEST static in vitro digestion model. Food & Function 12 (19):9043–53. doi: http://doi.org/10.1039/d1fo00786f.
  • Jia, Y., J. Kim, H. Jun, S. Kim, J. Lee, M. H. Hoang, K. Hwang, S. Um, H. I. Chang, and S. Lee. 2012. The natural carotenoid astaxanthin, a PPAR-α agonist and PPAR-γ antagonist, reduces hepatic lipid accumulation by rewiring the transcriptome in lipid-loaded hepatocytes. Molecular Nutrition & Food Research 56 (6):878–88. doi: http://doi.org/10.1002/mnfr.201100798.
  • Jian, B., M. de la Llera-Moya, Y. Ji, N. Wang, M. C. Phillips, J. B. Swaney, A. R. Tall, and G. H. Rothblat. 1998. Scavenger receptor class B type I as a mediator of cellular cholesterol efflux to lipoproteins and phospholipid acceptors. The Journal of Biological Chemistry 273 (10):5599–606. doi: http://doi.org/10.1074/jbc.273.10.5599.
  • Joerg, H., W. Peter, S. Angela, and K. Helene. 2013. Engineered nanomaterial uptake and tissue distribution: From cell to organism. International Journal of Nanomedicine 8 (1):3255–69. doi: 10.2147/IJN.S49770.
  • Johansson, M. E. V, and G. C. Hansson. 2016. Immunological aspects of intestinal mucus and mucins. Nature Reviews. Immunology 16 (10):639–49. doi: http://doi.org/10.1038/nri.2016.88.
  • Johnson, E. J. 2012. A possible role for lutein and zeaxanthin in cognitive function in the elderly. The American Journal of Clinical Nutrition 96 (5):1161S–5S. doi: http://doi.org/10.3945/ajcn.112.034611.
  • Johnson, E. J. 2014. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutrition Reviews 72 (9):605–12. doi: http://doi.org/10.1111/nure.12133.
  • Julian, K., S. Andreas, A. Bérengère, H. Alexander, F. S. Ulrich, S. Marc, S. Christian, W. Christian, and L. Claus-Michael. 2012. Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus. Proceedings of the National Academy of Sciences of the United States of America 109 (45):18355–60. doi: http://doi.org/10.1073/pnas.1214066109.
  • Karppi, J., T. Nurmi, B. Olmedilla-Alonso, F. Granado-Lorencio, and K. Nyyssönen. 2008. Simultaneous measurement of retinol, α-tocopherol and six carotenoids in human plasma by using an isocratic reversed-phase HPLC method. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 867 (2):226–32. doi:10.1016/j.jchromb.2008.04.007.
  • Kastl, A. J., N. A. Terry, G. D. Wu, and L. G. Albenberg. 2020. The structure and function of the human small intestinal microbiota: Current understanding and future directions. Cellular and Molecular Gastroenterology and Hepatology 9 (1):33–45. doi:10.1016/j.jcmgh.2019.07.006.
  • Kaulmann, A, and T. Bohn. 2014. Carotenoids, inflammation, and oxidative stress—Implications of cellular signaling pathways and relation to chronic disease prevention. Nutrition Research (New York, N.Y.) 34 (11):907–29. doi: http://doi.org/10.1016/j.nutres.2014.07.010.
  • Kawaguchi, R., J. Yu, J. Honda, J. Hu, J. Whitelegge, P. Ping, P. Wiita, D. Bok, and H. Sun. 2007. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science (New York, N.Y.) 315 (5813):820–5. doi: http://doi.org/10.1126/science.1136244.
  • Kawaguchi, R., M. Zhong, M. Kassai, M. Ter-Stepanian, and H. Sun. 2012. STRA6-catalyzed vitamin A influx, efflux, and exchange. The Journal of Membrane Biology 245 (11):731–45. doi: http://doi.org/10.1007/s00232-012-9463-1.
  • Kedishvili, N. Y. 2013. Enzymology of retinoic acid biosynthesis and degradation: Thematic review series: Fat-soluble vitamins: Vitamin A. Journal of Lipid Research 54 (7):1744–60. doi:10.1194/jlr.R037028.
  • Kelly, M. E., S. Ramkumar, W. Sun, C. Colon Ortiz, P. D. Kiser, M. Golczak, and J. von Lintig. 2018. The biochemical basis of vitamin A production from the asymmetric carotenoid β-cryptoxanthin. ACS Chemical Biology 13 (8):2121–9. doi: http://doi.org/10.1021/acschembio.8b00290.
  • Khoo, H., K. N. Prasad, K. Kong, Y. Jiang, and A. Ismail. 2011. Carotenoids and their isomers: Color pigments in fruits and vegetables. Molecules (Basel, Switzerland) 16 (2):1710–38. doi: http://doi.org/10.3390/molecules16021710.
  • Kiyasu, J. Y., B. Bloom, and I. L. Chaikoff. 1952. The portal transport of absorbed fatty ACIDS. The Journal of Biological Chemistry 199 (1):415–9. doi: http://doi.org/10.1016/S0021-9258(18)44850-8.
  • Klang, V, and C. Valenta. 2011. Lecithin-based nanoemulsions. Journal of Drug Delivery Science and Technology 21 (1):55–76. doi: http://doi.org/10.1016/S1773-2247(11)50006-1.
  • Kloer, D. P, and G. E. Schulz. 2006. Structural and biological aspects of carotenoid cleavage. Cellular and Molecular Life Sciences: CMLS 63 (19-20):2291–303. doi: http://doi.org/10.1007/s00018-006-6176-6.
  • Kopec, R. E., B. Gleize, P. Borel, C. Desmarchelier, and C. Caris-Veyrat. 2017. Are lutein, lycopene, and β-carotene lost through the digestive process? Food & Function 8 (4):1494–503. doi: http://doi.org/10.1039/c7fo00021a.
  • Kopec, R. E, and M. L. Failla. 2018. Recent advances in the bioaccessibility and bioavailability of carotenoids and effects of other dietary lipophiles. Journal of Food Composition and Analysis 68:16–30. doi:10.1016/j.jfca.2017.06.008.
  • Kowatz, T., D. Babino, P. Kiser, K. Palczewski, and J. von Lintig. 2013. Characterization of human β,β-carotene-15,15′-monooxygenase (BCMO1) as a soluble monomeric enzyme. Archives of Biochemistry and Biophysics 539 (2):214–22. doi:10.1016/j.abb.2013.05.007.
  • Kulczyński, B., A. Gramza-Michałowska, J. Kobus-Cisowska, and D. Kmiecik. 2017. The role of carotenoids in the prevention and treatment of cardiovascular disease – Current state of knowledge. Journal of Functional Foods 38:45–65. doi:10.1016/j.jff.2017.09.001.
  • Lakshmanan, M. R., H. Chansang, and J. A. Olson. 1972. Purification and properties of carotene 15,15'-dioxygenase of rabbit intestine. Journal of Lipid Research 13 (4):477–82. doi: http://doi.org/10.1016/S0022-2275(20)39381-0.
  • Lakshmanan, M. R., J. L. Pope, and J. A. Olson. 1968. The specificity of a partially purified carotenoid cleavage enzyme of rabbit intestine. Biochemical and Biophysical Research Communications 33 (2):347–52. doi: http://doi.org/10.1016/0006-291x(68)90791-2.
  • Langi, P., S. Kiokias, T. Varzakas, and C. Proestos. 2018. Carotenoids: From plants to food and feed industries (1852), 57–71. New York: Springer. doi: http://doi.org/10.1007/978-1-4939-8742-9_3.
  • Lerner, A, and T. Matthias. 2015. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmunity Reviews 14 (6):479–89. doi:10.1016/j.autrev.2015.01.009.
  • Li, B., P. P. Vachali, A. Gorusupudi, Z. Shen, H. Sharifzadeh, B. M. Besch, K. Nelson, M. M. Horvath, J. M. Frederick, W. Baehr, et al. 2014. Inactivity of human β,β-carotene-9′,10′-dioxygenase (BCO2) underlies retinal accumulation of the human macular carotenoid pigment. Proceedings of the National Academy of Sciences of the United States of America 111 (28):10173–8. doi: http://doi.org/10.1073/pnas.1402526111.
  • Li, D., Q. Zhang, L. Huang, Z. Chen, C. Zou, Y. Ma, M. Cao, G. Liu, Y. Liu, and Y. Wang. 2021. Fabricating hydrophilic particles with oleic acid and bovine serum albumin to improve the dispersibility and bioaccessibility of fucoxanthin in water. Food Hydrocolloids 118:106752. doi: 10.1016/j.foodhyd.2021.106752.
  • Li, T., W. Chen, and J. Y. L. Chiang. 2007. PXR induces CYP27A1 and regulates cholesterol metabolism in the intestine. Journal of Lipid Research 48 (2):373–84. doi: http://doi.org/10.1194/jlr.M600282-JLR200.
  • Li, Y., M. Hu, and D. J. McClements. 2011. Factors affecting lipase digestibility of emulsified lipids using an in vitro digestion model: Proposal for a standardised pH-stat method. Food Chemistry 126 (2):498–505. doi: http://doi.org/10.1016/j.foodchem.2010.11.027.
  • Lietz, G., J. Lange, and G. Rimbach. 2010. Molecular and dietary regulation of β,β-carotene 15,15′-monooxygenase 1 (BCMO1). Archives of Biochemistry and Biophysics 502 (1):8–16. doi: http://doi.org/10.1016/j.abb.2010.06.032.
  • Lindqvist, A, and S. Andersson. 2002. Biochemical properties of purified recombinant human β-carotene 15,15′-monooxygenase. The Journal of Biological Chemistry 277 (26):23942–8. doi: http://doi.org/10.1074/jbc.M202756200.
  • Lintig, J. V., J. Moon, J. Lee, and S. Ramkumar. 2020. Carotenoid metabolism at the intestinal barrier. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1865 (11):158580. doi:10.1016/j.bbalip.2019.158580.
  • List, G. R. 2015. Soybean lecithin: Food, industrial uses, and other applications. In Polar lipids, eds. M. U. Ahmad and X. Xu, 1–33. Elsevier: Amsterdam, The Netherlands. doi: 10.1016/B978-1-63067-044-3.50005-4. (Reprinted).
  • Liu, X., R. Zhang, D. J. McClements, F. Li, H. Liu, Y. Cao, and H. Xiao. 2018. Nanoemulsion-based delivery systems for nutraceuticals: Influence of long-chain triglyceride (LCT) type on in vitro digestion and astaxanthin bioaccessibility. Food Biophysics 13 (4):412–21. doi: http://doi.org/10.1007/s11483-018-9547-2.
  • Liu, Z., X. Sun, X. Sun, S. Wang, and Y. Xu. 2019. Fucoxanthin isolated from undaria pinnatifida can interact with escherichia coli and lactobacilli in the intestine and inhibit the growth of pathogenic bacteria. Journal of Ocean University of China 18 (4):926–32. doi: http://doi.org/10.1007/s11802-019-4019-y.
  • Lobo, M. V., L. Huerta, N. Ruiz–Velasco, E. Teixeiro, P. de la Cueva, A. Celdrán, A. Martín–Hidalgo, M. A. Vega, and R. Bragado. 2001. Localization of the lipid receptors CD36 and CLA-1/SR-BI in the human gastrointestinal tract: Towards the identification of receptors mediating the intestinal absorption of dietary lipids. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society 49 (10):1253–60. doi: http://doi.org/10.1177/002215540104901007.
  • Luo, H., Z. Li, C. R. Straight, Q. Wang, J. Zhou, Y. Sun, C. Lo, L. Yi, Y. Wu, J. Huang, et al. 2022. Black pepper and vegetable oil-based emulsion synergistically enhance carotenoid bioavailability of raw vegetables in humans. Food Chemistry 373 (Pt B):131277. doi: http://doi.org/10.1016/j.foodchem.2021.131277.
  • Macierzanka, A., N. M. Rigby, A. P. Corfield, N. Wellner, F. Böttger, E. N. C. Mills, and A. R. Mackie. 2011. Adsorption of bile salts to particles allows penetration of intestinal mucus. Soft Matter 7 (18):8077–84. doi: http://doi.org/10.1039/c1sm05888f.
  • Maher, S., R. J. Mrsny, and D. J. Brayden. 2016. Intestinal permeation enhancers for oral peptide delivery. Advanced Drug Delivery Reviews 106 (Pt B):277–319. doi:10.1016/j.addr.2016.06.005.
  • Maoka, T. 2011. Carotenoids in marine animals. Marine Drugs 9 (2):278–93. doi: http://doi.org/10.3390/md9020278.
  • Mashurabad, P. C., P. Kondaiah, R. Palika, S. Ghosh, M. K. Nair, and P. Raghu. 2016. Eicosapentaenoic acid inhibits intestinal β-carotene absorption by downregulation of lipid transporter expression via PPAR-α dependent mechanism. Archives of Biochemistry and Biophysics 590:118–24. doi: http://doi.org/10.1016/j.abb.2015.11.002.
  • Mashurabad, P. C., R. Palika, Y. W. Jyrwa, K. Bhaskarachary, and R. Pullakhandam. 2017. Dietary fat composition, food matrix and relative polarity modulate the micellarization and intestinal uptake of carotenoids from vegetables and fruits. Journal of Food Science and Technology 54 (2):333–41. doi: http://doi.org/10.1007/s13197-016-2466-7.
  • Mathur, S. N., K. R. Watt, and F. J. Field. 2007. Regulation of intestinal NPC1L1 expression by dietary fish oil and docosahexaenoic acid. Journal of Lipid Research 48 (2):395–404. doi: http://doi.org/10.1194/jlr.M600325-JLR200.
  • Matsuno, T. K. P. U. 2001. Aquatic animal carotenoids. Fisheries Science 67 (5):771–83. doi: http://doi.org/10.1046/j.1444-2906.2001.00323.x.
  • Maulucci, G., O. Cohen, B. Daniel, A. Sansone, P. I. Petropoulou, S. Filou, A. Spyridonidis, G. Pani, M. De Spirito, C. Chatgilialoglu, et al. 2016. Fatty acid-related modulations of membrane fluidity in cells: Detection and implications. Free Radical Research 50 (sup1):S40–S50. doi: http://doi.org/10.1080/10715762.2016.1231403.
  • McGraw, K. J., G. E. Hill, and R. S. Parker. 2003. Carotenoid pigments in a mutant cardinal: Implications for the genetic and enzymatic control mechanisms of carotenoid metabolism in birds. The Condor 105 (3):587–92. doi: http://doi.org/10.1093/condor/105.3.587.
  • Mein, J. R., G. G. Dolnikowski, H. Ernst, R. M. Russell, and X. Wang. 2011. Enzymatic formation of apo-carotenoids from the xanthophyll carotenoids lutein, zeaxanthin and β-cryptoxanthin by ferret carotene-9′,10′-monooxygenase. Archives of Biochemistry and Biophysics 506 (1):109–21. doi: http://doi.org/10.1016/j.abb.2010.11.005.
  • Michaud, D. S., D. Feskanich, E. B. Rimm, G. A. Colditz, F. E. Speizer, W. C. Willett, and E. Giovannucci. 2000. Intake of specific carotenoids and risk of lung cancer in 2 prospective US cohorts. The American Journal of Clinical Nutrition 72 (4):990–7. doi: http://doi.org/10.1093/ajcn/72.4.990.
  • Misaka, S., F. Müller, and M. F. Fromm. 2013. Clinical relevance of drug efflux pumps in the gut. Current Opinion in Pharmacology 13 (6):847–52. doi: http://doi.org/10.1016/j.coph.2013.08.010.
  • Mitra, S., A. Rauf, A. M. Tareq, S. Jahan, T. B. Emran, T. G. Shahriar, K. Dhama, F. A. Alhumaydhi, A. S. M. Aljohani, M. Rebezov, et al. 2021. Potential health benefits of carotenoid lutein: An updated review. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 154:112328. doi: http://doi.org/10.1016/j.fct.2021.112328.
  • Moussa, M., J.-F. Landrier, E. Reboul, O. Ghiringhelli, C. Coméra, X. Collet, K. Fröhlich, V. Böhm, and P. Borel. 2008. Lycopene absorption in human intestinal cells and in mice involves scavenger receptor class B type I but not niemann-pick C1-like 1(1,2). The Journal of Nutrition 138 (8):1432–6. doi: 10.1093/jn/138.8.1432.
  • Moussa, M., D. Trompier, P. Borel, E. Reboul, A. Klein, J. Landrier, and G. Chimini. 2009. ATP-binding cassette transporter A1 is significantly involved in the intestinal absorption of [alpha]- and [gamma]-tocopherol but not in that of retinyl palmitate in mice. The American Journal of Clinical Nutrition 89 (1):177–84. doi: 10.3945/ajcn.2008.26559.
  • Mudgil, P., B. Baby, Y. Ngoh, R. Vijayan, C. Gan, and S. Maqsood. 2019. Identification and molecular docking study of novel cholesterol esterase inhibitory peptides from camel milk proteins. Journal of Dairy Science 102 (12):10748–59. doi: http://doi.org/10.3168/jds.2019-16520.
  • Murakami, M. 2017. Lipoquality control by phospholipase A2 enzymes. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences 93 (9):677–702. doi: http://doi.org/10.2183/pjab.93.043.
  • Murthy, S., E. Born, S. N. Mathur, and F. J. Field. 2002. LXR/RXR activation enhances basolateral efflux of cholesterol in CaCo-2 cells. Journal of Lipid Research 43 (7):1054–64. doi: http://doi.org/10.1194/jlr.M100358-JLR200.
  • Nagao, A., E. Kotake-Nara, and M. Hase. 2013. Effects of fats and oils on the bioaccessibility of carotenoids and vitamin E in vegetables. Bioscience, Biotechnology, and Biochemistry 77 (5):1055–60. doi: http://doi.org/10.1271/bbb.130025.
  • Nakajima, Y., M. Shimazawa, K. Otsubo, T. Ishibashi, and H. Hara. 2009. Zeaxanthin, a retinal carotenoid, protects retinal cells against oxidative stress. Current Eye Research 34 (4):311–8. doi: http://doi.org/10.1080/02713680902745408.
  • Nakano, T., I. Inoue, Y. Takenaka, R. Ito, N. Kotani, S. Sato, Y. Nakano, M. Hirasaki, A. Shimada, and T. Murakoshi. 2020. Ezetimibe impairs transcellular lipid trafficking and induces large lipid droplet formation in intestinal absorptive epithelial cells. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1865 (12):158808. doi: http://doi.org/10.1016/j.bbalip.2020.158808.
  • Neil, V, and L. Brian. 2017. Anatomy and physiology of the small bowel. Gastrointestinal Endoscopy Clinics of North America 27 (1):1–3. doi: 10.1016/j.giec.2016.08.001.
  • Nieuwdorp, M., Gilijamse, P. W. Pai, N. Kaplan, L. M. Sahlgrenska, A. Wallenberg, L. Wallenberglaboratoriet, G. U. Gothenburg, U, and Sahlgrenska, A. 2014. Role of the microbiome in energy regulation and metabolism. Gastroenterology (New York, N.Y 1943) 146 (6):1525–33. doi: http://doi.org/10.1053/j.gastro.2014.02.008.
  • O'Connell, O., L. Ryan, L. O'Sullivan, S. A. Aherne-Bruce, and N. M. O'Brien. 2008. Carotenoid micellarization varies greatly between individual and mixed vegetables with or without the addition of fat or fiber. International Journal for Vitamin and Nutrition Research. Internationale Zeitschrift Fur Vitamin- Und Ernahrungsforschung. Journal International de Vitaminologie et de Nutrition 78 (4-5):238–46. doi: 10.1024/0300-9831.78.45.238.
  • Okumura, R, and K. Takeda. 2018. Maintenance of intestinal homeostasis by mucosal barriers. Inflammation and Regeneration 38 (1):1–8. doi: http://doi.org/10.1186/s41232-018-0063-z.
  • Oram, J. F. 2002. ATP-binding cassette transporter A1 and cholesterol trafficking. Current Opinion in Lipidology 13 (4):373–81. doi: http://doi.org/10.1097/00041433-200208000-00004.
  • Pădureţ, S. 2021. The effect of fat content and fatty acids composition on color and textural properties of butter. Molecules (Basel, Switzerland) 26 (15):4565. doi: http://doi.org/10.3390/molecules26154565.
  • Palczewski, G., J. Amengual, C. L. Hoppel, and J. Lintig. 2014. Evidence for compartmentalization of mammalian carotenoid metabolism. FASEB Journal : official Publication of the Federation of American Societies for Experimental Biology 28 (10):4457–69. doi: http://doi.org/10.1096/fj.14-252411.
  • Paola, P, and D. C. Patrice. 2020. Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut 69 (12):2232–43. doi: http://dx.doi.org/10.1136/gutjnl-2020-322260.
  • Parada, J, and J. M. Aguilera. 2007. Food microstructure affects the bioavailability of several nutrients. Journal of Food Science 72 (2):R21–R32. doi: http://doi.org/10.1111/j.1750-3841.2007.00274.x.
  • Pereira, A. G., P. Otero, J. Echave, A. Carreira-Casais, F. Chamorro, N. Collazo, A. Jaboui, C. Lourenço-Lopes, J. Simal-Gandara, and M. A. Prieto. 2021. Xanthophylls from the sea: Algae as source of bioactive carotenoids. Marine Drugs 19 (4):188–219. doi: http://doi.org/10.3390/md19040188.
  • Perry, A., H. Rasmussen, and E. J. Johnson. 2009. Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. Journal of Food Composition and Analysis 22 (1):9–15. doi: http://doi.org/10.1016/j.jfca.2008.07.006.
  • Plapied, L., N. Duhem, A. Des Rieux, and V. Préat. 2011. Fate of polymeric nanocarriers for oral drug delivery. Current Opinion in Colloid & Interface Science 16 (3):228–37. doi: http://doi.org/10.1016/j.cocis.2010.12.005.
  • Porter, C. J. H., A. M. Kaukonen, A. Taillardat-Bertschinger, B. J. Boyd, J. M. O'Connor, G. A. Edwards, and W. N. Charman. 2004. Use of in vitro lipid digestion data to explain the in vivo performance of triglyceride-based oral lipid formulations of poorly water-soluble drugs: Studies with halofantrine. Journal of Pharmaceutical Sciences 93 (5):1110–21. doi: http://doi.org/10.1002/jps.20039.
  • Porter, C. J. H., N. L. Trevaskis, and W. N. Charman. 2007. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nature Reviews. Drug Discovery 6 (3):231–48. doi: http://doi.org/10.1038/nrd2197.
  • Possemiers, S., S. Bolca, W. Verstraete, and A. Heyerick. 2011. The intestinal microbiome: A separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia 82 (1):53–66. doi: http://doi.org/10.1016/j.fitote.2010.07.012.
  • Praud, C., S. Al Ahmadieh, E. Voldoire, Y. Le Vern, E. Godet, N. Couroussé, B. Graulet, E. Le Bihan Duval, C. Berri, and M. J. Duclos. 2017. Beta-carotene preferentially regulates chicken myoblast proliferation withdrawal and differentiation commitment via BCO1 activity and retinoic acid production. Experimental Cell Research 358 (2):140–6. doi: http://doi.org/10.1016/j.yexcr.2017.06.011.
  • Przybylska, S. 2020. Lycopene – A bioactive carotenoid offering multiple health benefits: A review. International Journal of Food Science & Technology 55 (1):11–32. doi: http://doi.org/10.1111/ijfs.14260.
  • Qian, C., E. A. Decker, H. Xiao, and D. J. McClements. 2012. Nanoemulsion delivery systems: Influence of carrier oil on β-carotene bioaccessibility. Food Chemistry 135 (3):1440–7. doi: http://doi.org/10.1016/j.foodchem.2012.06.047.
  • Raghuvanshi, S., V. Reed, W. S. Blaner, and E. H. Harrison. 2015. Cellular localization of β-carotene 15,15′ oxygenase-1 (BCO1) and β-carotene 9′,10′ oxygenase-2 (BCO2) in rat liver and intestine. Archives of Biochemistry and Biophysics 572:19–27. doi:10.1016/j.abb.2014.12.024.
  • Raju, M., R. Lakshminarayana, T. P. Krishnakantha, and V. Baskaran. 2006. Micellar oleic and eicosapentaenoic acid but not linoleic acid influences the β-carotene uptake and its cleavage into retinol in rats. Molecular and Cellular Biochemistry 288 (1-2):7–15. doi: http://doi.org/10.1007/s11010-005-9091-5.
  • Raju, M., S. Varakumar, R. Lakshminarayana, T. P. Krishnakantha, and V. Baskaran. 2007. Carotenoid composition and vitamin A activity of medicinally important green leafy vegetables. Food Chemistry 101 (4):1598–605. doi: http://doi.org/10.1016/j.foodchem.2006.04.015.
  • Ravi, H, and V. Baskaran. 2017. Chitosan-glycolipid nanocarriers improve the bioavailability of fucoxanthin via up-regulation of PPARγ and SRB1 and antioxidant activity in rat model. Journal of Functional Foods 28:215–26. doi:10.1016/j.jff.2016.10.023.
  • Reboul, E. 2013. Absorption of vitamin A and carotenoids by the enterocyte: Focus on transport proteins. Nutrients 5 (9):3563–81. doi: http://doi.org/10.3390/nu5093563.
  • Reboul, E., A. Goncalves, C. Comera, R. Bott, M. Nowicki, J. Landrier, D. Jourdheuil-Rahmani, C. Dufour, X. Collet, and P. Borel. 2011. Vitamin D intestinal absorption is not a simple passive diffusion: Evidences for involvement of cholesterol transporters. Molecular Nutrition & Food Research 55 (5):691–702. doi: http://doi.org/10.1002/mnfr.201000553.
  • Reboul, E., A. Klein, F. Bietrix, B. Gleize, C. Malezet-Desmoulins, M. Schneider, A. Margotat, L. Lagrost, X. Collet, and P. Borel. 2006. Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. Journal of Biological Chemistry 281 (8):4739–45. doi: http://doi.org/10.1074/jbc.M509042200.
  • Reboul, E, and P. Borel. 2011. Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Progress in Lipid Research 50 (4):388–402. doi: http://doi.org/10.1016/j.plipres.2011.07.001.
  • Repa, J. J., S. D. Turley, J. A. Lobaccaro, J. Medina, L. Li, K. Lustig, B. Shan, R. A. Heyman, J. M. Dietschy, and D. J. Mangelsdorf. 2000. Regulation of absorption and ABC1-mediated efflux of cholesterol by RXR heterodimers. Science (New York, N.Y.) 289 (5484):1524–9. doi: http://doi.org/10.1126/science.289.5484.1524.
  • Richmond, G. S, and T. K. Smith. 2011. Phospholipases A1. International Journal of Molecular Sciences 12 (1):588–612. doi: http://doi.org/10.3390/ijms12010588.
  • Rodriguez-Concepcion, M., J. Avalos, M. L. Bonet, A. Boronat, L. Gomez-Gomez, D. Hornero-Mendez, M. C. Limon, A. J. Meléndez-Martínez, B. Olmedilla-Alonso, A. Palou, et al. 2018. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research 70:62–93. doi:10.1016/j.plipres.2018.04.004.
  • Rowles, J. L, and J. W. Erdman. 2020. Carotenoids and their role in cancer prevention. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1865 (11):158613. doi:10.1016/j.bbalip.2020.158613.
  • Sabet, S., A. Rashidinejad, L. D. Melton, and D. J. McGillivray. 2021. Recent advances to improve curcumin oral bioavailability. Trends in Food Science & Technology 110:253–66. doi:10.1016/j.tifs.2021.02.006.
  • Saini, R. K., S. H. Nile, and S. W. Park. 2015. Carotenoids from fruits and vegetables: Chemistry, analysis, occurrence, bioavailability and biological activities. Food Research International (Ottawa, Ont.) 76 (Pt 3):735–50. doi: http://doi.org/10.1016/j.foodres.2015.07.047.
  • Salvia-Trujillo, L., C. Qian, O. Martín-Belloso, and D. J. McClements. 2013. Modulating β-carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chemistry 139 (1-4):878–84. doi:10.1016/j.foodchem.2013.02.024.
  • Salvia-Trujillo, L., Q. Sun, B. H. Um, Y. Park, and D. J. McClements. 2015. In vitro and in vivo study of fucoxanthin bioavailability from nanoemulsion-based delivery systems: Impact of lipid carrier type. Journal of Functional Foods 17:293–304. doi:10.1016/j.jff.2015.05.035.
  • Salvia-Trujillo, L., S. H. E. Verkempinck, L. Sun, A. M. Van Loey, T. Grauwet, and M. E. Hendrickx. 2017. Lipid digestion, micelle formation and carotenoid bioaccessibility kinetics: Influence of emulsion droplet size. Food Chemistry 229:653–62. doi: http://doi.org/10.1016/j.foodchem.2017.02.146.
  • Sarkar, A., A. Ye, and H. Singh. 2016. On the role of bile salts in the digestion of emulsified lipids. Food Hydrocolloids 60:77–84. doi: http://doi.org/10.1016/j.foodhyd.2016.03.018.
  • Sato, Y., R. Suzuki, M. Kobayashi, S. Itagaki, T. Hirano, T. Noda, S. Mizuno, M. Sugawara, and K. Iseki. 2012. Involvement of cholesterol membrane transporter niemann-pick C1-like 1 in the intestinal absorption of lutein. Journal of Pharmacy & Pharmaceutical Sciences: A Publication of the Canadian Society for Pharmaceutical Sciences, Societe Canadienne Des Sciences Pharmaceutiques 15 (2):256–64. doi: http://doi.org/10.18433/J38K56.
  • Sauvant, P., M. Cansell, A. Hadj Sassi, and C. Atgié. 2012. Vitamin A enrichment: Caution with encapsulation strategies used for food applications. Food Research International 46 (2):469–79. doi:10.1016/j.foodres.2011.09.025.
  • Sauvant, P., N. Mekki, M. Charbonnier, H. Portugal, D. Lairon, and P. Borel. 2003. Amounts and types of fatty acids in meals affect the pattern of retinoids secreted in human chylomicrons after a high-dose preformed vitamin A intake. Metabolism: clinical and Experimental 52 (4):514–9. doi:10.1053/meta.2003.50082.
  • Schwartz, S. H., X. Qin, and J. A. Zeevaart. 2001. Characterization of a novel carotenoid cleavage dioxygenase from plants. The Journal of Biological Chemistry 276 (27):25208–11. doi: http://doi.org/10.1074/jbc.M102146200.
  • Scott, W. A., R. D. Harry, Z. Li-ji, Y. Xiaorui, M. H. Lizbeth, T. Glen, P. N. I. Sai, M. Maureen, G. Andrei, Z. Ming, et al. 2004. Niemann-pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science 303 (5661):1201–4. doi: http://doi.org/10.1126/science.1093131.
  • Sender, R., S. Fuchs, and R. Milo. 2016. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164 (3):337–40. doi: http://doi.org/10.1016/j.cell.2016.01.013.
  • Shahidi, F, and J. A. Brown. 1998. Carotenoid pigments in seafoods and aquaculture. Critical Reviews in Food Science and Nutrition 38 (1):1–67. doi: http://doi.org/10.1080/10408699891274165.
  • Shan, W., X. Zhu, M. Liu, L. Li, J. Zhong, W. Sun, Z. Zhang, and Y. Huang. 2015. Overcoming the diffusion barrier of mucus and absorption barrier of epithelium by self-assembled nanoparticles for oral delivery of insulin. ACS Nano 9 (3):2345–56. doi: http://doi.org/10.1021/acsnano.5b00028.
  • Sheng, J., L. Han, J. Qin, G. Ru, R. Li, L. Wu, D. Cui, P. Yang, Y. He, and J. Wang. 2015. N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Applied Materials & Interfaces 7 (28):15430–41. doi: http://doi.org/10.1021/acsami.5b03555.
  • Soto, M., A. Servent, P. Poucheret, K. Portet, G. Conéjéro, F. Vaillant, and C. Dhuique-Mayer. 2021. Carotenoid absorption in rats fed with vacuum-fried papaya chips depends on processed food microstructure associated with saturated and unsaturated oils. Food Research International 142:110223. doi: http://doi.org/10.1016/j.foodres.2021.110223.
  • Southon, S. 2000. Increased fruit and vegetable consumption within the EU: Potential health benefits. Food Research International 33 (3-4):211–7. doi: http://doi.org/10.1016/S0963-9969(00)00036-3.
  • Spady, D. K., D. M. Kearney, and H. H. Hobbs. 1999. Polyunsaturated fatty acids up-regulate hepatic scavenger receptor B1 (SR-BI) expression and HDL cholesteryl ester uptake in the hamster. Journal of Lipid Research 40 (8):1384–94. doi: http://doi.org/10.1016/S0022-2275(20)33380-0.
  • Stubbs, C. D, and A. D. Smith. 1984. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochimica et Biophysica Acta 779 (1):89–137. doi: http://doi.org/10.1016/0304-4157(84)90005-4.
  • Sundaram, M., A. Sivaprasadarao, M. M. DeSousa, and J. B. C. Findlay. 1998. The transfer of retinol from serum retinol-binding protein to cellular retinol-binding protein is mediated by a membrane receptor. The Journal of Biological Chemistry 273 (6):3336–42. doi: http://doi.org/10.1074/jbc.273.6.3336.
  • Tan, Y, and D. J. McClements. 2021. Improving the bioavailability of oil-soluble vitamins by optimizing food matrix effects: A review. Food Chemistry 348:129148. doi: http://doi.org/10.1016/j.foodchem.2021.129148.
  • Taungbodhitham, A. K., G. P. Jones, M. L. Wahlqvist, and D. R. Briggs. 1998. Evaluation of extraction method for the analysis of carotenoids in fruits and vegetables. Food Chemistry 63 (4):577–84. doi: http://doi.org/10.1016/S0308-8146(98)00011-9.
  • Terpstra, V., E. S. van Amersfoort, A. G. van Velzen, J. Kuiper, and T. J. van Berkel. 2000. Hepatic and extrahepatic scavenger receptors: Function in relation to disease. Arteriosclerosis, Thrombosis, and Vascular Biology 20 (8):1860–72. doi: http://doi.org/10.1161/01.ATV.20.8.1860.
  • Thakur, N., P. Raigond, Y. Singh, T. Mishra, B. Singh, M. K. Lal, and S. Dutt. 2020. Recent updates on bioaccessibility of phytonutrients. Trends in Food Science & Technology 97:366–80. doi:10.1016/j.tifs.2020.01.019.
  • Toragall, V., N. Jayapala, and B. Vallikannan. 2020. Chitosan-oleic acid-sodium alginate a hybrid nanocarrier as an efficient delivery system for enhancement of lutein stability and bioavailability. International Journal of Biological Macromolecules 150:578–94. doi:10.1016/j.ijbiomac.2020.02.104.
  • Torcello-Gómez, A., C. Boudard, and A. R. Mackie. 2018. Calcium alters the interfacial organization of hydrolyzed lipids during intestinal digestion. Langmuir: The ACS Journal of Surfaces and Colloids 34 (25):7536–44. doi: http://doi.org/10.1021/acs.langmuir.8b00841.
  • Tyssandier, V., B. Lyan, and P. Borel. 2001. Main factors governing the transfer of carotenoids from emulsion lipid droplets to micelles. Biochimica et Biophysica Acta (BBA) – Molecular and Cell Biology of Lipids 1533 (3):285–92. doi:10.1016/S1388-1981(01)00163-9.
  • Unlu, N. Z., T. Bohn, S. K. Clinton, and S. J. Schwartz. 2005. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. The Journal of Nutrition 135 (3):431–6. doi: http://doi.org/10.1093/jn/135.3.431.
  • Van Bennekum, A., M. Werder, S. T. Thuahnai, C. Han, P. Duong, D. L. Williams, P. Wettstein, G. Schulthess, M. C. Phillips, and H. Hauser. 2005. Class B scavenger receptor-mediated intestinal absorption of dietary β-carotene and cholesterol. Biochemistry (Easton) 44 (11):4517–25. doi: http://doi.org/10.1021/bi0484320.
  • Verkempinck, S. H. E., L. Salvia-Trujillo, L. G. Moens, C. Carrillo, A. M. Van Loey, M. E. Hendrickx, and T. Grauwet. 2018. Kinetic approach to study the relation between in vitro lipid digestion and carotenoid bioaccessibility in emulsions with different oil unsaturation degree. Journal of Functional Foods 41:135–47. doi: http://doi.org/10.1016/j.jff.2017.12.030.
  • Vilchez, C., E. Forján, M. Cuaresma, F. Bédmar, I. Garbayo, and J. M. Vega. 2011. Marine carotenoids: Biological functions and commercial applications. Marine Drugs 9 (3):319–33. doi: http://doi.org/10.3390/md9030319.
  • von Lintig, J, and K. Vogt. 2004. Vitamin A formation in animals: Molecular identification and functional characterization of carotene cleaving enzymes. The Journal of Nutrition 134 (1):251S–6S256S. doi: http://doi.org/10.1093/jn/134.1.251S.
  • Wade, N. M., J. Gabaudan, and B. D. Glencross. 2017. A review of carotenoid utilisation and function in crustacean aquaculture. Reviews in Aquaculture 9 (2):141–56. doi: http://doi.org/10.1111/raq.12109.
  • Wang, T, and Y. Luo. 2019. Biological fate of ingested lipid-based nanoparticles: Current understanding and future directions. Nanoscale 11 (23):11048–63. doi: 10.1039/C9NR03025E.
  • Wang, Y., R. Meng, X. Xu, K. Liao, Z. Ran, J. Xu, J. Cao, Y. Wang, D. Wang, S. Xu, et al. 2019. Effects of nutritional status and diet composition on fatty acid transporters expression in zebrafish (Danio rerio). Aquaculture Research 50 (3):904–14. doi: http://doi.org/10.1111/are.13965.
  • Widjaja-Adhi, M. A. K., G. P. Lobo, M. Golczak, and J. Von Lintig. 2015. A genetic dissection of intestinal fat-soluble vitamin and carotenoid absorption. Human Molecular Genetics 24 (11):3206–19. doi: http://doi.org/10.1093/hmg/ddv072.
  • Widjaja-Adhi, M. A. K, and M. Golczak. 2020. The molecular aspects of absorption and metabolism of carotenoids and retinoids in vertebrates. Biochimica et Biophysica Acta. Molecular and Cell Biology of Lipids 1865 (11):158571. doi: http://doi.org/10.1016/j.bbalip.2019.158571.
  • Wilcox, L. J., P. H. R. Barrett, R. S. Newton, and M. W. Huff. 1999. ApoB100 secretion from HepG2 cells is decreased by the ACAT inhibitor CI-1011: An effect associated with enhanced intracellular degradation of ApoB. Arteriosclerosis, Thrombosis, and Vascular Biology 19 (4):939–49. doi: http://doi.org/10.1161/01.ATV.19.4.939.
  • Wilcox, L. J., P. H. Barrett, and M. W. Huff. 1999. Differential regulation of apolipoprotein B secretion from HepG2 cells by two HMG-CoA reductase inhibitors, atorvastatin and simvastatin. Journal of Lipid Research 40 (6):1078–89. doi: http://doi.org/10.1016/s0022-2275(20)33512-4.
  • Wolf-Schnurrbusch, U. E. K., M. S. Zinkernagel, M. R. Munk, A. Ebneter, and S. Wolf. 2015. Oral lutein supplementation enhances macular pigment density and contrast sensitivity but not in combination with polyunsaturated fatty acids. Investigative Opthalmology & Visual Science 56 (13):8069–74. doi: http://doi.org/10.1167/iovs.15-17586.
  • Wongsiriroj, N., R. Piantedosi, K. Palczewski, I. J. Goldberg, T. P. Johnston, E. Li, and W. S. Blaner. 2008. The molecular basis of retinoid absorption. The Journal of Biological Chemistry 283 (20):13510–9. doi: http://doi.org/10.1074/jbc.M800777200.
  • Xavier, A. A. O, and A. Z. Mercadante. 2019. The bioaccessibility of carotenoids impacts the design of functional foods. Current Opinion in Food Science 26:1–8. doi:10.1016/j.cofs.2019.02.015.
  • Xia, F., W. Fan, S. Jiang, Y. Ma, Y. Lu, J. Qi, E. Ahmad, X. Dong, W. Zhao, and W. Wu. 2017. Size-dependent translocation of nanoemulsions via oral delivery. ACS Applied Materials & Interfaces 9 (26):21660–72. doi: http://doi.org/10.1021/acsami.7b04916.
  • Xia, Z., D. J. McClements, and H. Xiao. 2017. Influence of lipid content in a corn oil preparation on the bioaccessibility of β‐carotene: A comparison of low‐fat and high‐fat samples. Journal of Food Science 82 (2):373–9. doi: http://doi.org/10.1111/1750-3841.13599.
  • Xiao, H., J. Zhao, C. Fang, Q. Cao, M. Xing, X. Li, J. Hou, A. Ji, and S. Song. 2020. Advances in studies on the pharmacological activities of fucoxanthin. Marine Drugs 18 (12):634. doi: http://doi.org/10.3390/md18120634.
  • Xueping, E., L. Zhang, J. L, P. Tso, W. S. Blaner, M. S. Levin, and E. Li. 2002. Increased neonatal mortality in mice lacking cellular retinol-binding protein II. Journal of Biological Chemistry 277 (39):36617–23. doi: http://doi.org/10.1074/jbc.M205519200.
  • Yang, F., G. Chen, M. Ma, N. Qiu, L. Zhu, and J. Li. 2018. Fatty acids modulate the expression levels of key proteins for cholesterol absorption in Caco-2 monolayer. Lipids in Health and Disease 17 (1):1–14. doi: http://doi.org/10.1186/s12944-018-0675-y.
  • Yang, L., Y. Miao, and D. Han. 2020. DNA nanotechnology on live cell membranes. Chemical Research in Chinese Universities 36 (2):203–10. doi: http://doi.org/10.1007/s40242-020-9036-2.
  • Yao, K., D. J. McClements, C. Yan, J. Xiao, H. Liu, Z. Chen, X. Hou, Y. Cao, H. Xiao, and X. Liu. 2021. In vitro and in vivo study of the enhancement of carotenoid bioavailability in vegetables using excipient nanoemulsions: Impact of lipid content. Food Research International (Ottawa, Ont.) 141:110162. doi: http://doi.org/10.1016/j.foodres.2021.110162.
  • Yao, M., D. J. McClements, F. Zhao, R. W. Craig, and H. Xiao. 2017. Controlling the gastrointestinal fate of nutraceutical and pharmaceutical-enriched lipid nanoparticles: From mixed micelles to chylomicrons. NanoImpact 5:13–21. doi: http://doi.org/10.1016/j.impact.2016.12.001.
  • Ye, Z., C. Cao, Y. Liu, P. Cao, and Q. Li. 2018. Digestion fates of different edible oils vary with their composition specificities and interactions with bile salts. Food Research International (Ottawa, Ont.) 111:281–90. doi: http://doi.org/10.1016/j.foodres.2018.05.040.
  • Yi, J., F. Zhong, Y. Zhang, W. Yokoyama, and L. Zhao. 2015. Effects of lipids on in vitro release and cellular uptake of β-carotene in nanoemulsion-based delivery systems. Journal of Agricultural and Food Chemistry 63 (50):10831–7. doi: http://doi.org/10.1021/acs.jafc.5b04789.
  • Yonekura, L, and A. Nagao. 2007. Intestinal absorption of dietary carotenoids. Molecular Nutrition & Food Research 51 (1):107–15. doi: http://doi.org/10.1002/mnfr.200600145.
  • Yuan, X., X. Liu, D. J. McClements, Y. Cao, and H. Xiao. 2018. Enhancement of phytochemical bioaccessibility from plant-based foods using excipient emulsions: Impact of lipid type on carotenoid solubilization from spinach. Food & Function 9 (8):4352–65. doi: http://doi.org/10.1039/C8FO01118D.
  • Zare, M., R. Z. Norouzi, E. Assadpour, and S. M. Jafari. 2021. Improving the cancer prevention/treatment role of carotenoids through various nano-delivery systems. Critical Reviews in Food Science and Nutrition 61 (3):522–34. doi: 10.1080/10408398.2020.1738999.
  • Zhang, J., Z. Dong, S. R. Mundla, X. E. Hu, W. Seibel, R. Papoian, K. Palczewski, and M. Golczak. 2015. Expansion of first-in-class drug candidates that sequester toxic all-trans-retinal and prevent light-induced retinal degeneration. Molecular Pharmacology 87 (3):477–91. doi: http://doi.org/10.1124/mol.114.096560.
  • Zhang, X, and W. Wu. 2014. Ligand-mediated active targeting for enhanced oral absorption. Drug Discovery Today 19 (7):898–904. doi:10.1016/j.drudis.2014.03.001.
  • Zhao, C., L. Wei, B. Yin, F. Liu, J. Li, X. Liu, J. Wang, and Y. Wang. 2020. Encapsulation of lycopene within oil-in-water nanoemulsions using lactoferrin: Impact of carrier oils on physicochemical stability and bioaccessibility. International Journal of Biological Macromolecules 153:912–20. doi: http://doi.org/10.1016/j.ijbiomac.2020.03.063.
  • Zhou, L., L. Ouyang, S. Lin, S. Chen, Y. Liu, W. Zhou, and X. Wang. 2018. Protective role of β-carotene against oxidative stress and neuroinflammation in a rat model of spinal cord injury. International Immunopharmacology 61:92–9. doi:10.1016/j.intimp.2018.05.022.
  • Žnidarčič, D., D. Ban, and H. Šircelj. 2011. Carotenoid and chlorophyll composition of commonly consumed leafy vegetables in Mediterranean countries. Food Chemistry 129 (3):1164–8. doi: http://doi.org/10.1016/j.foodchem.2011.05.097.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.