1,796
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Probiotics, bioactive compounds and dietary patterns for the effective management of hyperuricemia: a review

, , , ORCID Icon &

References

  • Adeyanju, O. A., O. C. Badejogbin, D. E. Areola, K. S. Olaniyi, C. Dibia, O. A. Soetan, A. A. Oniyide, O. S. Michael, L. A. Olatunji, and A. O. Soladoye. 2021. Sodium butyrate arrests pancreato-hepatic synchronous uric acid and lipid dysmetabolism in high fat diet fed Wistar. Biomedicine & Pharmacotherapy 133:110994. doi: 10.1016/j.biopha.2020.110994.
  • Allen, K. C., A. H. Champlain, J. A. Cotliar, S. M. Belknap, D. P. West, J. Mehta, and S. M. Trifilio. 2015. Risk of anaphylaxis with repeated courses of rasburicase: a research on adverse drug events and reports (RADAR) project. Drug Safety 38 (2):183–7. doi: 10.1007/s40264-014-0255-7.
  • Arakawa, H., N. Amezawa, Y. Kawakatsu, and I. Tamai. 2020. Renal reabsorptive transport of uric acid precursor xanthine by URAT1 and GLUT9. Biological & Pharmaceutical Bulletin 43 (11):1792–8. doi: 10.1248/bpb.b20-00597.
  • Becker, M. A. 2009. Hyperuricemia. In Lang, F. (Ed.), Encyclopedia of molecular mechanisms of disease. Springer.
  • Bull, T., J. Ross, and A. Collins. 2021. Resolution, following treatment with rasburicase, of obstructive nephropathy caused by uric acid calculi as a presenting feature of chronic myeloid leukaemia. British Journal of Haematology 193:121.
  • Caixin, N., L. Xin, W. Linlin, L. Xiu, Z. Jianxin, Z. Hao, W. Gang, and C. Wei. 2021. Lactic acid bacteria strains relieve hyperuricaemia by suppressing xanthine oxidase activity via a short-chain fatty acid-dependent mechanism. Food & Function 12 (15):7054–67. doi: 10.1039/d1fo00198a.
  • Cao, J., Y. Bu, H. Hao, Q. Liu, T. Wang, Y. Liu, and H. Yi. 2022. Effect and potential mechanism of Lactobacillus plantarum Q7 on hyperuricemia in vitro and in vivo. Frontiers in Nutrition 9:954545. doi: 10.3389/fnut.2022.954545.
  • Cao, T., X. Y. Li, T. Mao, H. Liu, Q. X. Zhao, X. L. Ding, C. G. Li, L. J. Zhang, and Z. B. Tian. 2017. Probiotic therapy alleviates hyperuricemia in C57BL/6 mouse model. Biomedical Research-India 28 (5):2244–9.
  • Cardoso-Jaime, V., N. A. Broderick, and K. Maya-Maldonado. 2022. Metal ions in insect reproduction: a crosstalk between reproductive physiology and immunity. Current Opinion in Insect Science 52:100924. doi: 10.1016/j.cois.2022.100924.
  • Chatzipavlou, M., G. Magiorkinis, L. Koutsogeorgopoulou, and D. Kassimos. 2014. Mediterranean diet intervention for patients with hyperuricemia: a pilot study. Rheumatology International 34 (6):759–62. doi: 10.1007/s00296-013-2690-7.
  • Chen-Xu, M., C. Yokose, S. K. Rai, M. H. Pillinger, and H. K. Choi. 2019. Contemporary prevalence of gout and hyperuricemia in the united states and decadal trends: the National Health and Nutrition Examination Survey, 2007-2016. Arthritis & Rheumatology (Hoboken, N.J.) 71 (6):991–9. doi: 10.1002/art.40807.
  • Chiaro, T. R., R. Soto, W. Zac Stephens, J. L. Kubinak, C. Petersen, L. Gogokhia, R. Bell, J. C. Delgado, J. Cox, W. Voth, et al. 2017. A member of the gut mycobiota modulates host purine metabolism exacerbating colitis in mice. Science Translational Medicine 9 (380):eaaf9044. doi: 10.1126/scitranslmed.aaf9044.
  • Chrysohoou, C., J. Skoumas, C. Pitsavos, C. Masoura, G. Siasos, N. Galiatsatos, T. Psaltopoulou, C. Mylonakis, A. Margazas, S. Kyvelou, et al. 2011. Long-term adherence to the Mediterranean diet reduces the prevalence of hyperuricaemia in elderly individuals, without known cardiovascular disease: the Ikaria study. Maturitas 70 (1):58–64. doi: 10.1016/j.maturitas.2011.06.003.
  • Cleophas, M. C. P., T. O. Crişan, H. Lemmers, H. Toenhake-Dijkstra, G. Fossati, T. L. Jansen, C. A. Dinarello, M. G. Netea, and L. A. B. Joosten. 2016. Suppression of monosodium urate crystal-induced cytokine production by butyrate is mediated by the inhibition of class I histone deacetylases. Annals of the Rheumatic Diseases 75 (3):593–600. doi: 10.1136/annrheumdis-2014-206258.
  • Crane, J. K., T. M. Naeher, J. E. Broome, and E. C. Boedeker. 2013. Role of host xanthine oxidase in infection due to enteropathogenic and Shiga-toxigenic Escherichia coli. Infection and Immunity 81 (4):1129–39. doi: 10.1128/IAI.01124-12.
  • Cummings, J. H., E. W. Pomare, W. J. Branch, C. P. Naylor, and G. T. Macfarlane. 1987. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28 (10):1221–7. doi: 10.1136/gut.28.10.1221.
  • Dalbeth, N., T. J. Lauterio, and H. R. Wolfe. 2014. Mechanism of action of colchicine in the treatment of gout. Clinical Therapeutics 36 (10):1465–79. doi: 10.1016/j.clinthera.2014.07.017.
  • Dangana, E. O., T. E. Omolekulo, E. D. Areola, K. S. Olaniyi, A. O. Soladoye, and L. A. Olatunji. 2020. Sodium acetate protects against nicotine-induced excess hepatic lipid in male rats by suppressing xanthine oxidase activity. Chemico-Biological Interactions 316:108929. doi: 10.1016/j.cbi.2019.108929.
  • Danve, A., S. T. Sehra, and T. Neogi. 2021. Role of diet in hyperuricemia and gout. Best Practice and Research in Clinical Rheumatology 35 (4):101723.
  • Dewulf, J. P., S. Marie, and M.-C. Nassogne. 2022. Disorders of purine biosynthesis metabolism. Molecular Genetics and Metabolism 136 (3):190–8. doi: 10.1016/j.ymgme.2021.12.016.
  • Dirken-Heukensfeldt, K. J., T. A. Teunissen, H. van de Lisdonk, and A. L. Lagro-Janssen. 2010. Clinical features of women with gout arthritis. A systematic review. Clinical Rheumatology 29 (6):575–82. doi: 10.1007/s10067-009-1362-1.
  • Esposito, K., M. I. Maiorino, G. Bellastella, P. Chiodini, D. Panagiotakos, and D. Giugliano. 2015. A journey into a Mediterranean diet and type 2 diabetes: a systematic review with meta-analyses. BMJ Open 5 (8):e008222. doi: 10.1136/bmjopen-2015-008222.
  • Feng, S., S. Wu, F. Xie, C. S. Yang, and P. Shao. 2022. Natural compounds lower uric acid levels and hyperuricemia: molecular mechanisms and prospective. Trends in Food Science & Technology 123:87–102. doi: 10.1016/j.tifs.2022.03.002.
  • Gao, Y., L. F. Cui, Y. Y. Sun, W. H. Yang, J. R. Wang, S. L. Wu, and X. Gao. 2021. Adherence to the dietary approaches to stop hypertension diet and hyperuricemia: a cross-sectional study. Arthritis Care & Research 73 (4):603–11. doi: 10.1002/acr.24150.
  • Garde, A. H., A. Fomsgaard, and N. Hoiby. 1995. An easy microtiter assay for quantitation of cytokine induction by lipopolysaccharide (LPS) and activity of LPS-binding serum components. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica 103 (4):286–92. doi: 10.1111/j.1699-0463.1995.tb01108.x.
  • Ghei, M., M. Mihailescu, and D. Levinson. 2002. Pathogenesis of hyperuricemia: recent advances. Current Rheumatology Reports 4 (3):270–4. doi: 10.1007/s11926-002-0076-z.
  • Gil, A., C. Gómez-León, and R. Rueda. 2007. Exogenous nucleic acids and nucleotides are efficiently hydrolysed and taken up as nucleosides by intestinal explants from suckling piglets. The British Journal of Nutrition 98 (2):285–91. doi: 10.1017/S000711450770908X.
  • Gorska, P., I. Gorna, and J. Przyslawski. 2021. Mediterranean diet and oxidative stress. Nutrition and Food Science 51 (4):677–89.
  • Grayson, P. C., S. Y. Kim, M. Lavalley, and H. K. Choi. 2011. Hyperuricemia and incident hypertension: a systematic review and meta-analysis. Arthritis Care & Research 63 (1):102–10. doi: 10.1002/acr.20344.
  • Guo, Y., H. Li, M. Liu, C. Li, Y. Chen, C. Jiang, Y. Yu, and Z. Tian. 2019. Impaired intestinal barrier function in a mouse model of hyperuricemia. Molecular Medicine Reports 20 (4):3292–300. doi: 10.3892/mmr.2019.10586.
  • Guo, Z., J. Zhang, Z. Wang, K. Y. Ang, S. Huang, Q. Hou, X. Su, J. Qiao, Y. Zheng, L. Wang, et al. 2016. Intestinal microbiota distinguish gout patients from healthy humans. Scientific Reports 6:20602. doi: 10.1038/srep20602.
  • Gustafsson, D, and R. Unwin. 2013. The pathophysiology of hyperuricaemia and its possible relationship to cardiovascular disease, morbidity and mortality. BMC Nephrology 14:164. doi: 10.1186/1471-2369-14-164.
  • Hadi Peighambardoust, S., K. Zohreh, M. Pateiro, and J. M. Lorenzo. 2021. A review on health-promoting, biological, and functional aspects of bioactive peptides in food applications. Biomolecules 11 (5):631– doi: 10.3390/biom11050631.
  • Haeckel, R. 1977. Hepatic gluconeogenesis and urate formation from various nucleosides. Advances in Experimental Medicine and Biology 76A:488–99. doi: 10.1007/978-1-4613-4223-6_62.
  • Haitao, W., H. Jiaojiao, T. Shasha, B. Wei, L. Chenyang, Z. Jun, M. Tinghong, L. Ye, and S. Xiurong. 2020. Comparisons of protective effects between two sea cucumber hydrolysates against diet induced hyperuricemia and renal inflammation in mice. Food and Function 11 (1):1074–86.
  • Hakoda, M. 2012. Recent trends in hyperuricemia and gout in Japan. Japan Medical Association Journal: JMAJ 55 (4):319–23.
  • Han, J., X. Wang, S. Tang, C. Lu, H. Wan, J. Zhou, Y. Li, T. Ming, Z. J. Wang, and X. Su. 2020. Protective effects of tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation mediated by gut microbiota. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 34 (4):5061–76. doi: 10.1096/fj.201902597RR.
  • Harper, C. R, and T. A. Jacobson. 2003. Beyond the Mediterranean diet: the role of omega-3 Fatty acids in the prevention of coronary heart disease. Preventive Cardiology 6 (3):136–46. doi: 10.1111/j.1520-037x.2003.1332.x.
  • Henjakovic, M., Y. Hagos, W. Krick, G. Burckhardt, and B. C. Burckhardt. 2015. Human organic anion transporter 2 is distinct from organic anion transporters 1 and 3 with respect to transport function. American Journal of Physiology-Renal Physiology 309 (10):F843–F851. doi: 10.1152/ajprenal.00140.2015.
  • Higa, S., M. Yoshida, D. Shima, Y. Ii, S. Kitazaki, Y. Yamamoto, and Y. Fujimoto. 2020. A retrospective, cross-sectional study on the prevalence of hyperuricemia using a Japanese healthcare database. Archives of Rheumatology 35 (1):41–51. doi: 10.5606/ArchRheumatol.2020.7330.
  • Hille, R., J. Hall, and P. Basu. 2014. The mononuclear molybdenum enzymes. Chemical Reviews 114 (7):3963–4038. doi: 10.1021/cr400443z.
  • Hsu, C. L., Y. H. Hou, C. S. Wang, S. W. Lin, B. Y. Jhou, C. C. Chen, and Y. L. Chen. 2019. Antiobesity and uric acid-lowering effect of Lactobacillus plantarum GKM3 in high-fat-diet-induced obese rats. Journal of the American College of Nutrition 38 (7):623–32. doi: 10.1080/07315724.2019.1571454.
  • Hu, Q. H., J. X. Zhu, J. Ji, L. L. Wei, M. X. Miao, and J. Hui. 2013. Fructus gardenia extract ameliorates oxonate-induced hyperuricemia with renal dysfunction in mice by regulating organic ion transporters and mOIT3. Molecules (Basel, Switzerland) 18 (8):8976–93. doi: 10.3390/molecules18088976.
  • Huang, J. Y., Z. F. Ma, Y. T. Zhang, Z. X. Wan, Y. S. Li, H. Zhou, A. Chu, and Y. Y. Lee. 2020. Geographical distribution of hyperuricemia in mainland China: a comprehensive systematic review and meta-analysis. Global Health Research and Policy 5 (1):52. doi: 10.1186/s41256-020-00178-9.
  • Hunyadi, A., E. Liktor-Busa, Á. Márki, A. Martins, N. Jedlinszki, T. J. Hsieh, M. Báthori, J. Hohmann, and I. Zupkó. 2013. Metabolic effects of mulberry leaves: exploring potential benefits in type 2 diabetes and hyperuricemia. Evidence-Based Complementary and Alternative Medicine: eCAM 2013 (3):948627. doi: 10.1155/2013/948627.
  • Hyon, K. C., K. Atkinson, E. W. Karlson, W. Willett, and G. Curhan. 2004. Purine-rich foods, dairy and protein intake, and the risk of gout in men. New England Journal of Medicine 350 (11):1093–103. doi: 10.1056/NEJMoa035700.
  • Jackson, K. G, and J. Lovegrove. 2012. Impact of probiotics, prebiotics and synbiotics on lipid metabolism in humans. Nutrition and Aging 1 (3,4):181–200. doi: 10.3233/NUA-130017.
  • James, A., H. Ke, T. Yao, and Y. Wang. 2021. The role of probiotics in purine metabolism, hyperuricemia and gout: mechanisms and interventions. Food Reviews International 1–17. doi: 10.1080/87559129.2021.1904412.
  • Juraschek, S. P., A. C. Gelber, H. K. Choi, L. J. Appel, and E. R. Miller. III. 2016. Effects of the dietary approaches to stop hypertension (DASH) diet and sodium intake on serum uric acid. Arthritis & Rheumatology (Hoboken, N.J.) 68 (12):3002–9. doi: 10.1002/art.39813.
  • Karlsson, J. L, and H. A. Barker. 1949. Tracer experiments on the mechanism of uric acid decomposition and acetic acid synthesis by Clostridium acidi-urici. The Journal of Biological Chemistry 178 (2):891–902. doi: 10.1016/S0021-9258(18)56908-8.
  • Keller, S. F, and B. F. Mandell. 2022. Management and cure of gouty arthritis. Rheumatic Diseases Clinics of North America 48 (2):479–92. doi: 10.1016/j.rdc.2022.03.001.
  • Kim, S. C., B. Schmidt, J. Liu, D. H. Solomon, and S. Schneeweiss. 2013. Clinical and health care use characteristics of patients newly prescribed allopurinol, febuxostat and colchicine for gout. Pharmacoepidemiology and Drug Safety 22:2008–14.
  • Kuhns, V. L. H, and O. M. Woodward. 2021. Urate transport in health and disease. Best Practice & Research. Clinical Rheumatology 35 (4):101717. doi: 10.1016/j.berh.2021.101717.
  • Kuo, Y. W., S. H. Hsieh, J. F. Chen, C. R. Liu, C. W. Chen, Y. F. Huang, and H. H. Ho. 2021. Lactobacillus reuteri TSR332 and Lactobacillus fermentum TSF331 stabilize serum uric acid levels and prevent hyperuricemia in rats. PeerJ. 9:e11209. doi: 10.7717/peerj.11209.
  • Lee, Y., N. Kim, P. Werlinger, D. A. Suh, H. Lee, J. Cho, and J. Cheng. 2022. Probiotic characterization of Lactobacillus brevis MJM60390 and in vivo assessment of its antihyperuricemic activity. Journal of Medicinal Food 25 (4):367–80. doi: 10.1089/jmf.2021.K.0171.
  • Li, L., M. Zhao, C. Wang, S. Zhang, C. Yun, S. Chen, L. Cui, S. Wu, and H. Xue. 2021. Early onset of hyperuricemia is associated with increased cardiovascular disease and mortality risk. Clinical Research in Cardiology: Official Journal of the German Cardiac Society 110 (7):1096–105. doi: 10.1007/s00392-021-01849-4.
  • Li, M., D. Yang, L. Mei, Y. Lin, A. Xie, J. Yuan, and L. R. Andreas. 2014. Screening and characterization of purine nucleoside degrading lactic acid bacteria isolated from Chinese sauerkraut and evaluation of the serum uric acid lowering effect in hyperuricemic rats. PLoS One, 9 (9):e105577. doi: 10.1371/journal.pone.0105577.
  • Li, Q. P., Z. W. Huang, D. F. Liu, J. N. Zheng, J. H. Xie, J. N. Chen, H. F. Zeng, Z. R. Su, and Y. C. Li. 2021. Effect of berberine on hyperuricemia and kidney injury: a network pharmacology analysis and experimental validation in a mouse model. Drug Design, Development and Therapy 15:3241–54. doi: 10.2147/DDDT.S317776.
  • Liu, N. X., Y. Wang, M. F. Yang, W. X. Bian, L. Zeng, S. G. Yin, Z. Q. Xiong, Y. Hu, S. Y. Wang, B. L. Meng, et al. 2019. New rice-derived short peptide potently alleviated hyperuricemia induced by potassium oxonate in rats. Journal of Agricultural and Food Chemistry 67 (1):220–8. doi: 10.1021/acs.jafc.8b05879.
  • Liu, Y. L., Y. Pan, X. Wang, C. Y. Fan, Q. Zhu, J. M. Li, S. J. Wang, and L. D. Kong. 2014. Betaine reduces serum uric acid levels and improves kidney function in hyperuricemic mice. Planta Medica 80 (1):39–47. doi: 10.1055/s-0033-1360127.
  • Lu, L., T. Liu, X. Liu, and C. Wang. 2022. Screening and identification of purine degrading Lactobacillus fermentum 9-4 from Chinese fermented rice-flour noodles. Food Science and Human Wellness 11 (5):1402–8. doi: 10.1016/j.fshw.2022.04.030.
  • Mao, X. Y., X. X. Yin, Q. W. Guan, Q. X. Xia, N. Yang, H. H. Zhou, Z. Q. Liu, and W. L. Jin. 2021. Dietary nutrition for neurological disease therapy: current status and future directions. Pharmacology & Therapeutics 226:107861. doi: 10.1016/j.pharmthera.2021.107861.
  • Martinon, F., V. Petrilli, A. Mayor, A. Tardivel, and J. Tschopp. 2006. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440 (7081):237–41.
  • Mead, G. C. 1974. Anaerobic utilization of uric acid by some group D streptococci. Journal of General Microbiology 82 (2):421–3. doi: 10.1099/00221287-82-2-421.
  • Mendez-Salazar. 2021. Taxonomic variations in the gut microbiome of gout patients with and without tophi might have a functional impact on urate metabolism. Molecular Medicine 27 (1):50.
  • Meng, Z. Q., Z. H. Tang, Y. X. Yan, C. R. Guo, L. Cao, G. Ding, W. Z. Huang, Z. Z. Wang, K. D. G. Wang, W. Xiao, et al. 2014. Study on the anti-gout activity of chlorogenic acid: improvement on hyperuricemia and gouty inflammation. The American Journal of Chinese Medicine 42 (6):1471–83. doi: 10.1142/S0192415X1450092X.
  • Ming-Xing, W., Z. Xiao-Juan, C. Tian-Yu, L. Yang-Liu, J. Rui-Qing, Z. Jian-Hua, M. Chun-Hua, L. Jia-Hui, P. Ying, and K. Ling-Dong. 2016. Nuciferine alleviates renal injury by inhibiting inflammatory responses in fructose-fed rats. Journal of Agricultural and Food Chemistry 64 (42):7899–910. doi: 10.1021/acs.jafc.6b03031.
  • Mishima, E., T. Mori, Y. Nakajima, T. Toyohara, K. Kikuchi, Y. Oikawa, T. Matsuhashi, Y. Maeda, T. Suzuki, M. Kudo, et al. 2020. HPRT-related hyperuricemia with a novel p.V35M mutation in HPRT1 presenting familial juvenile gout. CEN Case Reports 9 (3):210–4.
  • Muiesan, M. L., M. Salvetti, A. Virdis, S. Masi, E. Casiglia, V. Tikhonoff, C. M. Barbagallo, M. Bombelli, A. F. Cicero, M. Cirillo, et al. 2021. Serum uric acid, predicts heart failure in a large Italian cohort: search for a cut-off value the URic acid Right for heArt Health study. Journal of Hypertension 39 (1):62–9. doi: 10.1097/HJH.0000000000002589.
  • Murota, I., S. Taguchi, N. Sato, E. Y. Park, Y. Nakamura, and K. Sato. 2014. Identification of antihyperuricemic peptides in the proteolytic digest of shark cartilage water extract using in vivo activity-guided fractionation. Journal of Agricultural and Food Chemistry 62 (11):2392–7. doi: 10.1021/jf405504u.
  • Nishizawa, H., N. Maeda, and I. Shimomura. 2022. Impact of hyperuricemia on chronic kidney disease and atherosclerotic cardiovascular disease. Hypertension Research: Official Journal of the Japanese Society of Hypertension 45 (4):635–40. doi: 10.1038/s41440-021-00840-w.
  • Nuki, G, and P. A. Simkin. 2006. A concise history of gout and hyperuricemia and their treatment. Arthritis Research & Therapy 8 (Suppl 1):S1. [ Mismatch] doi: 10.1186/ar1906.
  • Obermayr, R. P., C. Temml, G. Gutjahr, M. Knechtelsdorfer, R. Oberbauer, and R. Klauser-Braun. 2008. Elevated uric acid increases the risk for kidney disease. Journal of the American Society of Nephrology 19 (12):2407–13. doi: 10.1681/ASN.2008010080.
  • Olaniyi, K. S., O. A. Amusa, N. T. Akinnagbe, I. O. Ajadi, M. B. Ajadi, T. B. Agunbiade, and O. S. Michael. 2021. Acetate ameliorates nephrotoxicity in streptozotocin-nicotinamide-induced diabetic rats: involvement of xanthine oxidase activity. Cytokine 142:155501. doi: 10.1016/j.cyto.2021.155501.
  • Pan, L., P. Han, S. Ma, R. Peng, C. Wang, W. Kong, L. Cong, J. Fu, Z. Zhang, H. Yu, et al. 2020. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia. Acta Pharmaceutica Sinica. B 10 (2):249–61. doi: 10.1016/j.apsb.2019.10.007.
  • Qing-Hua, H., Z. Xian, W. Xing, J. Rui-Qing, and K. Ling-Dong. 2012. Quercetin regulates organic ion transporter and uromodulin expression and improves renal function in hyperuricemic mice. European Journal of Nutrition 51 (5):593–606. doi: 10.1007/s00394-011-0243-y.
  • Qingyong, L., K. Xiaoyan, S. Chuanchao, L. Yujuan, M. Kaustav, N. Zhengxiang, and R. Jiaoyan. 2018. Moderation of hyperuricemia in rats via consuming walnut protein hydrolysate diet and identification of new antihyperuricemic peptides. Food and Function 9 (1):107–16.
  • Rezaeinasab, M., A. Benvidi, S. Gharaghani, S. Abbasi, and H. R. Zare. 2019. Deciphering the inhibition effect of thymoquinone on xanthine oxidase activity using differential pulse voltammetry in combination with theoretical studies. Enzyme and Microbial Technology 121:29–36. doi: 10.1016/j.enzmictec.2018.11.002.
  • Keenan, R. T. 2012. Safety of urate-lowering therapies: managing the risks to gain the benefits. Rheumatic Diseases Clinics of North America 38 (4):663–80. doi: 10.1016/j.rdc.2012.08.008.
  • Roman, Y., M. Tiirikainen, and E. Prom-Wormley. 2020. The prevalence of the gout-associated polymorphism rs2231142 G > T in ABCG2 in a pregnant female Filipino cohort. Clinical Rheumatology 39 (8):2387–92. doi: 10.1007/s10067-020-04994-9.
  • Sabina, E. P., S. Nagar, and M. Rasool. 2011. A role of piperine on monosodium urate crystal-induced inflammation-an experimental model of gouty arthritis. Inflammation 34 (3):184–92. doi: 10.1007/s10753-010-9222-3.
  • Sayehmiri, K., I. Ahmadi, and E. Anvari. 2020. Fructose feeding and hyperuricemia: a systematic review and meta-analysis. Clinical Nutrition Research 9 (2):122–33. doi: 10.7762/cnr.2020.9.2.122.
  • Shao, T., L. Shao, H. Li, Z. Xie, Z. He, and C. Wen. 2017. Combined signature of the fecal microbiome and metabolome in patients with gout. Frontiers in Microbiology 8:268. doi: 10.3389/fmicb.2017.00268.
  • Sharan, K. R., T. T. Fung, N. Lu, S. F. Keller, G. C. Curhan, and H. K. Choi. 2017. The dietary approaches to stop hypertension (DASH) diet, Western diet, and risk of gout in men: prospective cohort study. British Medical Journal 357:j1794.
  • Shen, Z., M. Gillen, J. Miner, G. Bucci, D. Wilson, and J. Hall. 2017. Pharmacokinetics, pharmacodynamics, and tolerability of verinurad, a selective uric acid reabsorption inhibitor, in healthy adult male subjects. Drug Design, Development and Therapy 11:2077–86. doi: 10.2147/DDDT.S140658.
  • Shengzhong, R., Z. Lina, Z. Yannan, Z. Guangteng, L. Xiaoxia, L. Miaojing, Y. Fenghua, L. Chunmei, H. Yingjuan, G. Hongjun, et al. 2015. Determination of purine contents in different parts of pork and beef by high performance liquid chromatography. Food Chemistry 170:303–7. doi: 10.1016/j.foodchem.2014.08.059.
  • Singh, D., V. Kumar, and C. Singh. 2017. IFN-γ regulates xanthine oxidase-mediated iNOS-independent oxidative stress in maneb- and paraquat-treated rat polymorphonuclear leukocytes. Molecular Cellular Biochemistry 427 (1–2):1–11.
  • Smith, E, and L. March. 2015. Global prevalence of hyperuricemia: a systematic review of population-based epidemiological studies. Arthritis and Rheumatology 67:2690–2.
  • Tan, J., L. Wan, X. Chen, X. Li, X. Hao, X. Li, J. Li, and H. Ding. 2019. Conjugated linoleic acid ameliorates high fructose-induced hyperuricemia and renal inflammation in rats via NLRP3 inflammasome and TLR4 signaling pathway. Molecular Nutrition & Food Research 63 (12):e1801402. doi: 10.1002/mnfr.201801402.
  • Taniguchi, T., K. Omura, K. Motoki, M. Sakai, N. Chikamatsu, N. Ashizawa, T. Takada, and T. Iwanaga. 2021. Hypouricemic agents reduce indoxyl sulfate excretion by inhibiting the renal transporters OAT1/3 and ABCG2. Scientific Reports 11 (1):7232. doi: 10.1038/s41598-021-86662-9.
  • Teng, G. G., L. W. Ang, K. G. Saag, M. C. Yu, J.-M. Yuan, and W. P. Koh. 2012. Mortality due to coronary heart disease and kidney disease among middle-aged and elderly men and women with gout in the Singapore Chinese Health Study. Annals of the Rheumatic Diseases 71 (6):924–8. doi: 10.1136/ard.2011.200523.
  • Topless, R. K. G., T. J. Major, J. C. Florez, J. N. Hirschhorn, M. Cadzow, N. Dalbeth, L. K. Stamp, P. L. Wilcox, R. J. Reynolds, J. B. Cole, et al. 2021. The comparative effect of exposure to various risk factors on the risk of hyperuricaemia: diet has a weak causal effect. Arthritis Research and Therapy 23 (1):75.
  • Tyrovolas, S, and D. B. Panagiotakos. 2010. The role of Mediterranean type of diet on the development of cancer and cardiovascular disease, in the elderly: a systematic review. Maturitas 65 (2):122–30. doi: 10.1016/j.maturitas.2009.07.003.
  • Ueo, H., H. Motohashi, T. Katsura, and K. Inui. 2005. Human organic anion transporter hOAT3 is a potent transporter of cephalosporin antibiotics, in comparison with hOAT1. Biochemical Pharmacology 70 (7):1104–13. doi: 10.1016/j.bcp.2005.06.024.
  • Usman, T. O., E. D. Areola, O. O. Badmus, I. Kim, and L. A. Olatunji. 2018. Sodium acetate and androgen receptor blockade improve gestational androgen excess-induced deteriorated glucose homeostasis and antioxidant defenses in rats: roles of adenosine deaminase and xanthine oxidase activities. The Journal of Nutritional Biochemistry 62:65–75. doi: 10.1016/j.jnutbio.2018.08.018.
  • Van Hoorn, D. E. C., R. J. Nijveldt, P. A. M. Van Leeuwen, Z. Hofman, L. M’Rabet, D. B. A. De Bont, and K. Van Norren. 2002. Accurate prediction of xanthine oxidase inhibition based on the structure of flavonoids. European Journal of Pharmacology 451 (2):111–8. doi: 10.1016/S0014-2999(02)02192-1.
  • Wachjudi, R. G., L. Hamijoyo, G. Darmawan, and S. Y. Usman. 2019. Hyperuricemia prevalence and its metabolic syndrome profiles. Indonesian Journal of Rheumatology 11 (2):175–80. doi: 10.37275/ijr.v11i2.118.
  • Wan, X., C. Xu, Y. Lin, C. Lu, D. Li, J. Sang, H. He, X. Liu, Y. Li, and C. Yu. 2016. Uric acid regulates hepatic steatosis and insulin resistance through the NLRP3 inflammasome-dependent mechanism. Journal of Hepatology 64 (4):925–32. doi: 10.1016/j.jhep.2015.11.022.
  • Wan, Y., F. Wang, B. Zou, Y. F. Shen, Y. Z. Li, A. X. Zhang, and G. M. Fu. 2019. Molecular mechanism underlying the ability of caffeic acid to decrease uric acid levels in hyperuricemia rats. Journal of Functional Foods 57:150–6. doi: 10.1016/j.jff.2019.03.038.
  • Wang, C. P., Y. M. Wang, X. Wang, X. Zhang, J. F. Ye, L. S. Hu, and L. D. Kong. 2011. Mulberroside A possesses potent uricosuric and nephroprotective effects in hyperuricemic mice. Planta Medica 77 (8):786–94. doi: 10.1055/s-0030-1250599.
  • Wang, H., L. Mei, Y. Deng, Y. Liu, X. Wei, M. Liu, J. Zhou, H. Ma, P. Zheng, J. Yuan, et al. 2019. Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis. Nutrition (Burbank, Los Angeles County, Calif.) 62:63–73. doi: 10.1016/j.nut.2018.11.018.
  • Wang, H., L. Xie, X. Song, J. Wang, X. Li, Z. Lin, T. Su, B. Liang, and D. Huang. 2022. Purine-induced IFN-gamma promotes uric acid production by upregulating xanthine oxidoreductase expression. Frontiers in Immunology 13:773001.
  • Wang, J., Y. Chen, H. Zhong, F. Chen, J. Regenstein, X. Hu, L. Cai, and F. Feng. 2022. The gut microbiota as a target to control hyperuricemia pathogenesis: potential mechanisms and therapeutic strategies. Critical Reviews in Food Science and Nutrition 62 (14):3979–89. doi: 10.1080/10408398.2021.1874287.
  • Wang, J., Y. Wang, D. Zhao, X. Guo, and J. Zhong. 2015. Association between serum uric acid and mortality in a Chinese population of hypertensive patients. Renal Failure 37 (1):73–6. doi: 10.3109/0886022X.2014.964148.
  • Wang, Z., T. Cui, X. Ci, F. Zhao, Y. Sun, Y. Li, R. Liu, W. Wu, X. Yi, and C. Liu. 2019. The effect of polymorphism of uric acid transporters on uric acid transport. Journal of Nephrology 32 (2):177–87. doi: 10.1007/s40620-018-0546-7.
  • Wu, D., W. Zhang, X. Lai, Q. Li, L. Sun, R. Chen, S. Sun, and F. Cao. 2020. Regulation of catechins in uric acid metabolism disorder related human diseases. Mini Reviews in Medicinal Chemistry 20 (18):1857–66. doi: 10.2174/1389557520666200719015919.
  • Wu, Y., Z. Ye, P. Feng, R. Li, X. Chen, X. Tian, R. Han, A. Kakade, P. Liu, and X. Li. 2021. Limosilactobacillus fermentum JL-3 isolated from “Jiangshui” ameliorates hyperuricemia by degrading uric acid. Gut Microbes 13 (1):1–18. doi: 10.1080/19490976.2021.1897211.
  • Yamada, N., C. Saito-Iwamoto, M. Nakamura, M. Soeda, Y. Chiba, H. Kano, and Y. Asami. 2017. Lactobacillus gasseri PA-3 uses the purines imp, inosine and hypoxanthine and reduces their absorption in rats. Microorganisms 5 (1):10. doi: 10.3390/microorganisms5010010.
  • Yamanaka, H., A. Taniguchi, H. Tsuboi, H. Kano, and Y. Asami. 2019. Hypouricaemic effects of yoghurt containing Lactobacillus gasseri PA-3 in patients with hyperuricaemia and/or gout: a randomised, double-blind, placebo-controlled study. Modern Rheumatology 29 (1):146–50. doi: 10.1080/14397595.2018.1442183.
  • Yamane, M., T. Nakagawa, and M. Ishigai. 2018. Characterization of phase I and phase II metabolism of UR-1102, a novel agent for the treatment of gout. Drug Metabolism Pharmacokinetics 33 (1):S29.
  • Yazhen, S., A. J. Lobene, W. Yanfang, and K. M. H. Gallant. 2021. The DASH diet and cardiometabolic health and chronic kidney disease: a narrative review of the evidence in East Asian countries. Nutrients 13 (3):984.doi: 10.3390/nu13030984.
  • Yin, H., N. Liu, and J. Chen. 2022. The role of the intestine in the development of hyperuricemia. Frontiers in Immunology 13:845684. doi: 10.3389/fimmu.2022.845684.
  • Yokose, C., N. McCormick, and H. K. Choi. 2021. Dietary and lifestyle-centered approach in gout care and prevention. Current Rheumatology Reports 23 (7):51. doi: 10.1007/s11926-021-01020-y.
  • Yu, K. H., L. C. See, Y. C. Huang, C. H. Yang, and J. H. Sun. 2008. Dietary factors associated with hyperuricemia in adults. Seminars in Arthritis and Rheumatism 37 (4):243–50. doi: 10.1016/j.semarthrit.2007.04.007.
  • Yu, Y., Q. Liu, H. Li, C. Wen, and Z. He. 2018. Alterations of the gut microbiome associated with the treatment of hyperuricaemia in male rats. Frontiers in Microbiology 9:2233. doi: 10.3389/fmicb.2018.02233.
  • Zhang, J., R. Dierckx, K. Mohee, A. L. Clark, and J. G. Cleland. 2017. Xanthine oxidase inhibition for the treatment of cardiovascular disease: an updated systematic review and meta-analysis. ESC Heart Failure 4 (1):40–5. doi: 10.1002/ehf2.12112.
  • Zhang, J. X., B. Diao, X. Lin, J. X. Xu, and F. Tang. 2019. TLR2 and TLR4 mediate an activation of adipose tissue renin-angiotensin system induced by uric acid. Biochimie 162:125–33. doi: 10.1016/j.biochi.2019.04.013.
  • Zhang, M., X. Zhu, J. Wu, Z. Huang, Z. Zhao, X. Zhang, Y. Xue, W. Wan, C. Li, W. Zhang, et al. 2021. Prevalence of hyperuricemia among Chinese adults: findings from two nationally representative cross-sectional surveys in 2015-16 and 2018-19. Frontiers in Immunology 12:791983. doi: 10.3389/fimmu.2021.791983.
  • Zhao, C.-P., G.-Y. Chen, Y. Wang, H. Chen, J.-W. Yu, and F.-Q. Yang. 2021. Evaluation of enzyme inhibitory activity of flavonoids by polydopamine-modified hollow fiber-immobilized xanthine oxidase. Molecules 26 (13):3931. doi: 10.3390/molecules26133931.
  • Zhu, Y., R. X. Zhang, Y. Wei, M. Y. Cai, Y. Q. Ma, R. Z. Gu, H. X. Zhang, and X. C. Pan. 2021. Rice peptide and collagen peptide prevented potassium oxonate-induced hyperuricemia and renal damage. Food Bioscience 42:101147. doi: 10.1016/j.fbio.2021.101147.
  • Zhu, Y. Y., B. J. Pandya, and H. K. Choi. 2012. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007-2008. The American Journal of Medicine 125 (7):679–87.e1. doi: 10.1016/j.amjmed.2011.09.033.
  • Zi-Cheng, Z., Z. Qing, Y. Yang, W. Yu, and Z. Jiu-liang. 2019. Highly acylated anthocyanins from purple sweet potato (Ipomoea batatas L.) alleviate hyperuricemia and kidney inflammation in hyperuricemic mice: possible attenuation effects on allopurinol. Journal of Agricultural and Food Chemistry 67 (22):6202–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.