722
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Micro/nanomotor technology: the new era for food safety control

, , , , , & ORCID Icon show all

References

  • Abdelmohsen, L. K. E. A., M. Nijemeisland, G. M. Pawar, G.-J A. Janssen, R. J. M. Nolte, J. C. M. van Hest, and D. A. Wilson. 2016. Dynamic loading and unloading of proteins in polymeric stomatocytes: formation of an enzyme-loaded supramolecular nanomotor. ACS Nano 10 (2):2652–60. doi: 10.1021/acsnano.5b07689.
  • Ahmed, D., T. Baasch, B. Jang, S. Pane, J. Dual, and B. J. Nelson. 2016. Artificial swimmers propelled by acoustically activated flagella. Nano Letters 16 (8):4968–74. doi: 10.1021/acs.nanolett.6b01601.
  • Al-Qadiri, H. M., M. Lin, A. G. Cavinato, and B. A. Rasco. 2006. Fourier transform infrared spectroscopy, detection and identification of Escherichia coli o157:H7 and Alicyclobacillus strains in apple juice. International Journal of Food Microbiology 111 (1):73–80. doi: 10.1016/j.ijfoodmicro.2006.05.004.
  • Algammal, A. M., H. F. Hetta, A. Elkelish, D. H. H. Alkhalifah, W. N. Hozzein, G. E. Batiha, N. E. Nahhas, and M. A. Mabrok. 2020. Methicillin-resistant Staphylococcus aureus (mrsa): one health perspective approach to the bacterium epidemiology, virulence factors, antibiotic-resistance, and zoonotic impact. Infection and Drug Resistance ume 13:3255–65. doi: 10.2147/IDR.S272733.
  • Ávila, B. E.-F d., P. Angsantikul, D. E. Ramírez-Herrera, F. Soto, H. Teymourian, D. Dehaini, Y. Chen, L. Zhang, and J. Wang. 2018. Hybrid biomembrane-functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins. Science Robotics 3 (18):eaat0485. doi: 10.1126/scirobotics.aat0485.
  • Bahrami, A., R. Delshadi, S. M. Jafari, and L. Williams. 2019. Nanoencapsulated nisin: an engineered natural antimicrobial system for the food industry. Trends in Food Science & Technology 94:20–31. doi: 10.1016/j.tifs.2019.10.002.
  • Benoit, P. W, and D. W. Donahue. 2003. Methods for rapid separation and concentration of bacteria in food that bypass time-consuming cultural enrichment. Journal of Food Protection 66 (10):1935–48. doi: 10.4315/0362-028X-66.10.1935.
  • Bradberry, S. M., K. J. Dickers, P. Rice, G. D. Griffiths, and J. A. Vale. 2003. Ricin poisoning. Toxicological Reviews 22 (1):65–70. doi: 10.2165/00139709-200322010-00007.
  • Campuzano, S., J. Orozco, D. Kagan, M. Guix, W. Gao, S. Sattayasamitsathit, J. C. Claussen, A. Merkoçi, and J. Wang. 2012. Bacterial isolation by lectin-modified microengines. Nano Letters 12 (1):396–401. doi: 10.1021/nl203717q.
  • Carovac, A., F. Smajlovic, and D. Junuzovic. 2011. Application of ultrasound in medicine. Acta Informatica Medica: AIM: Journal of the Society for Medical Informatics of Bosnia & Herzegovina: Casopis Drustva za Medicinsku Informatiku BiH 19 (3):168–71. doi: 10.5455/aim.2011.19.168-171.
  • Chang, W.-H., S. Herianto, C.-C. Lee, H. Hung, and H.-L. Chen. 2021. The effects of phthalate ester exposure on human health: a review. The Science of the Total Environment 786:147371. doi: 10.1016/j.scitotenv.2021.147371.
  • Chang, X., Y. Feng, B. Guo, D. Zhou, and L. Li. 2022. Nature-inspired micro/nanomotors. Nanoscale 14 (2):219–38. doi: 10.1039/D1NR07172F.
  • Chen, C., T. Ma, Y. Shang, B. Gao, B. Jin, H. Dan, Q. Li, Q. Yue, Y. Li, Y. Wang, et al. 2019. In-situ pyrolysis of enteromorpha as carbocatalyst for catalytic removal of organic contaminants: considering the intrinsic n/fe in enteromorpha and non-radical reaction. Applied Catalysis B: Environmental 250:382–95. doi: 10.1016/j.apcatb.2019.03.048.
  • Chen, T., H. Zhao, Y. Zheng, Y. Cai, B. Ren, and R. Dong. 2022. Bifunctional biohybrid magnetically propelled microswimmer. Chemical Engineering Journal 439:135490. doi: 10.1016/j.cej.2022.135490.
  • Chen, X.-Z., M. Hoop, F. Mushtaq, E. Siringil, C. Hu, B. J. Nelson, and S. Pane. 2017. Recent developments in magnetically driven micro- and nanorobots. Applied Materials Today 9:37–48. doi: 10.1016/j.apmt.2017.04.006.
  • Delezuk, J. A., D. E. Ramirez-Herrera, B. Esteban-Fernandez de Avila, and J. Wang. 2017. Chitosan-based water-propelled micromotors with strong antibacterial activity. Nanoscale 9 (6):2195–200. doi: 10.1039/c6nr09799e.
  • Ding, X., Y. Liu, X. Chen, W. Liu, and J. Li. 2021. Simultaneous removal of antibiotics and heavy metals with poly(aspartic acid)-based fenton micromotors. Chemistry, an Asian Journal 16 (14):1930–6. doi: 10.1002/asia.202100448.
  • Esteban-Fernández de Ávila, B., M. A. Lopez-Ramirez, D. F. Báez, A. Jodra, V. V. Singh, K. Kaufmann, and J. Wang. 2016. Aptamer-modified graphene-based catalytic micromotors: off–on fluorescent detection of ricin. ACS Sensors 1 (3):217–21. doi: 10.1021/acssensors.5b00300.
  • Feng, Y., X. Chang, H. Liu, Y. Hu, T. Li, and L. Li. 2021. Multi-response biocompatible Janus micromotor for ultrasonic imaging contrast enhancement. Applied Materials Today 23:101026. doi: 10.1016/j.apmt.2021.101026.
  • Gao, C., Z. Lin, D. Wang, Z. Wu, H. Xie, and Q. He. 2019. Red blood cell-mimicking micromotor for active photodynamic cancer therapy. ACS Applied Materials & Interfaces 11 (26):23392–400. doi: 10.1021/acsami.9b07979.
  • Gao, W., R. Dong, S. Thamphiwatana, J. Li, W. Gao, L. Zhang, and J. Wang. 2015. Artificial micromotors in the mouse’s stomach: a step toward in vivo use of synthetic motors. ACS Nano 9 (1):117–23. doi: 10.1021/nn507097k.
  • Gao, W., A. Pei, and J. Wang. 2012. Water-driven micromotors. ACS Nano 6 (9):8432–8. doi: 10.1021/nn303309z.
  • Gao, W., S. Sattayasamitsathit, J. Orozco, and J. Wang. 2011. Highly efficient catalytic microengines: template electrosynthesis of polyaniline/platinum microtubes. Journal of the American Chemical Society 133 (31):11862–4. doi: 10.1021/ja203773g.
  • Gao, W., S. Sattayasamitsathit, J. Orozco, and J. Wang. 2013. Efficient bubble propulsion of polymer-based microengines in real-life environments. Nanoscale 5 (19):8909–14. doi: 10.1039/C3NR03254J.
  • Garcia-Gradilla, V., J. Orozco, S. Sattayasamitsathit, F. Soto, F. Kuralay, A. Pourazary, A. Katzenberg, W. Gao, Y. Shen, and J. Wang. 2013. Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7 (10):9232–40. doi: 10.1021/nn403851v.
  • Gong, D., N. Celi, L. Xu, D. Zhang, and J. Cai. 2022. Cus nanodots-loaded biohybrid magnetic helical microrobots with enhanced photothermal performance. Materials Today Chemistry 23:100694. doi: 10.1016/j.mtchem.2021.100694.
  • Gu, H., S. W. Lee, J. Carnicelli, T. Zhang, and D. Ren. 2020. Magnetically driven active topography for long-term biofilm control. Nature Communications 11 (1):2211. doi: 10.1038/s41467-020-16055-5.
  • Gupta, R., N. Raza, S. K. Bhardwaj, K. Vikrant, K.-H. Kim, and N. Bhardwaj. 2021. Advances in nanomaterial-based electrochemical biosensors for the detection of microbial toxins, pathogenic bacteria in food matrices. Journal of Hazardous Materials 401 (123379):123379. doi: 10.1016/j.jhazmat.2020.123379.
  • Gusain, R., K. Gupta, P. Joshi, and O. P. Khatri. 2019. Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review. Advances in Colloid and Interface Science 272:102009. doi: 10.1016/j.cis.2019.102009.
  • Handford, C. E., M. Dean, M. Henchion, M. Spence, C. T. Elliott, and K. Campbell. 2014. Implications of nanotechnology for the agri-food industry: opportunities, benefits and risks. Trends in Food Science & Technology 40 (2):226–41. doi: 10.1016/j.tifs.2014.09.007.
  • He, S, and X. Shi. 2021. Microbial food safety in china: past, present, and future. Foodborne Pathogens and Disease 18 (8):510–8. doi: 10.1089/fpd.2021.0009.
  • Hilgren, J., K. M. J. Swanson, F. Diez-Gonzalez, and B. Cords. 2007. Inactivation of Bacillus anthracis spores by liquid biocides in the presence of food residue. Applied and Environmental Microbiology 73 (20):6370–7. doi: 10.1128/AEM.00974-07.
  • Ismagilov, R. F., A. Schwartz, N. Bowden, and G. M. Whitesides. 2002. Autonomous movement and self-assembly. Angewandte Chemie International Edition 41 (4):652–4. doi: 10.1002/1521-3773(20020215)41:4 < 652::AID-ANIE652 > 3.0.CO;2-U.
  • Ji, Y., X. Lin, Z. Wu, Y. Wu, W. Gao, and Q. He. 2019. Macroscale chemotaxis from a swarm of bacteria-mimicking nanoswimmers. Angewandte Chemie (International ed. in English) 58 (35):12200–5. doi: 10.1002/anie.201907733.
  • Jurado-Sánchez, B., A. Escarpa, and J. Wang. 2015. Lighting up micromotors with quantum dots for smart chemical sensing. Chemical Communications (Cambridge, England) 51 (74):14088–91. doi: 10.1039/C5CC04726A.
  • Jurado-Sanchez, B., M. Pacheco, J. Rojo, and A. Escarpa. 2017. Magnetocatalytic graphene quantum dots janus micromotors for bacterial endotoxin detection. Angewandte Chemie (International ed. in English) 56 (24):6957–61. doi: 10.1002/anie.201701396.
  • Jurado-Sánchez, B, and J. Wang. 2018. Micromotors for environmental applications: a review. Environmental Science: Nano 5 (7):1530–44. doi: 10.1039/C8EN00299A.
  • Khandpur, P, and P. R. Gogate. 2015. Effect of novel ultrasound based processing on the nutrition quality of different fruit and vegetable juices. Ultrasonics Sonochemistry 27:125–36. doi: 10.1016/j.ultsonch.2015.05.008.
  • Kiristi, M., V. V. Singh, B. E.-F. de Avila, M. Uygun, F. Soto, D. A. Uygun, and J. Wang. 2015. Lysozyme-based antibacterial nanomotors. ACS Nano 9 (9):9252–9. doi: 10.1021/acsnano.5b04142.
  • Kong, L., N. Rohaizad, M. Z. M. Nasir, J. Guan, and M. Pumera. 2019. Micromotor-assisted human serum glucose biosensing. Analytical Chemistry 91 (9):5660–6. doi: 10.1021/acs.analchem.8b05464.
  • Kumar, C. S, and F. Mohammad. 2011. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Advanced Drug Delivery Reviews 63 (9):789–808. doi: 10.1016/j.addr.2011.03.008.
  • Kumar, R., J. Travas-Sejdic, and L. P. Padhye. 2020. Conducting polymers-based photocatalysis for treatment of organic contaminants in water. Chemical Engineering Journal Advances 4:100047. doi: 10.1016/j.ceja.2020.100047.
  • Kuralay, F., S. Sattayasamitsathit, W. Gao, A. Uygun, A. Katzenberg, and J. Wang. 2012. Self-propelled carbohydrate-sensitive microtransporters with built-in boronic acid recognition for isolating sugars and cells. Journal of the American Chemical Society 134 (37):15217–20. doi: 10.1021/ja306080t.
  • Kutorglo, E. M., R. Elashnikov, S. Rimpelova, P. Ulbrich, J. Říhová Ambrožová, V. Svorcik, and O. Lyutakov. 2021. Polypyrrole-based nanorobots powered by light and glucose for pollutant degradation in water. ACS Applied Materials & Interfaces 13 (14):16173–81. doi: 10.1021/acsami.0c20055.
  • Li, J., V. V. Singh, S. Sattayasamitsathit, J. Orozco, K. Kaufmann, R. Dong, W. Gao, B. Jurado-Sanchez, Y. Fedorak, and J. Wang. 2014. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 8 (11):11118–25. doi: 10.1021/nn505029k.
  • Li, T., Y. Lyu, J. Li, C. Wang, N. Xing, J. Yang, and M. Zuo. 2021. Micromotor-assisted fluorescence detection of hg2+ with bio-inspired ao–mn2o3/γ-alo(oh). Environmental Science: Nano 8 (12):3833–45. doi: 10.1039/D1EN00796C.
  • Li, X. 2019. Technical solutions for the safe utilization of heavy metal-contaminated farmland in china: a critical review. Land Degradation & Development 30 (15):1773–84. doi: 10.1002/ldr.3309.
  • Linley, E., S. P. Denyer, G. McDonnell, C. Simons, and J.-Y. Maillard. 2012. Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. The Journal of Antimicrobial Chemotherapy 67 (7):1589–96. doi: 10.1093/jac/dks129.
  • Liu, Q., Z. Chen, Y. Chen, F. Yang, W. Yao, and Y. Xie. 2021. Microplastics and nanoplastics: emerging contaminants in food. Journal of Agricultural and Food Chemistry 69 (36):10450–68. doi: 10.1021/acs.jafc.1c04199.
  • Lu, X., H. Shen, Y. Wei, H. Ge, J. Wang, H. Peng, and W. Liu. 2020. Ultrafast growth and locomotion of dandelion-like microswarms with tubular micromotors. Small 16 (38):2003678. doi: 10.1002/smll.202003678.
  • Ludwig, J. R, and C. S. Schindler. 2017. Catalyst: sustainable catalysis. Chem 2 (3):313–6. doi: 10.1016/j.chempr.2017.02.014.
  • Luo, Y., Y. Su, Y. Lin, L. He, L. Wu, X. Hou, and C. Zheng. 2021. Mnfe2o4 micromotors enhanced field digestion and solid phase extraction for on-site determination of arsenic in rice and water. Analytica Chimica Acta 1156:338354. doi: 10.1016/j.aca.2021.338354.
  • Lv, M., Y. Liu, J. Geng, X. Kou, Z. Xin, and D. Yang. 2018. Engineering nanomaterials-based biosensors for food safety detection. Biosensors & Bioelectronics 106:122–8. doi: 10.1016/j.bios.2018.01.049.
  • Ma, X., A. C. Hortelao, T. Patino, and S. Sanchez. 2016. Enzyme catalysis to power micro/nanomachines. ACS Nano 10 (10):9111–22. doi: 10.1021/acsnano.6b04108.
  • Maria-Hormigos, R., B. Jurado-Sánchez, and A. Escarpa. 2018. Surfactant-free β-galactosidase micromotors for “on-the-move” lactose hydrolysis. Advanced Functional Materials 28 (25):1704256. doi: 10.1002/adfm.201704256.
  • Maric, T., C. C. Mayorga-Martinez, M. Z. M. Nasir, and M. Pumera. 2019. Platinum–halloysite nanoclay nanojets as sensitive and selective mobile nanosensors for mercury detection. Advanced Materials Technologies 4 (2):1800502. doi: 10.1002/admt.201800502.
  • Martin, N. H., A. Friedlander, A. Mok, D. Kent, M. Wiedmann, and K. J. Boor. 2014. Peroxide test strips detect added hydrogen peroxide in raw milk at levels affecting bacterial load. Journal of Food Protection 77 (10):1809–13. doi: 10.4315/0362-028x.Jfp-14-074.
  • Mi, F., M. Guan, C. Hu, F. Peng, S. Sun, and X. Wang. 2021. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: a review. The Analyst 146 (2):429–43. doi: 10.1039/D0AN01459A.
  • Misselwitz, B., M. Butter, K. Verbeke, and M. R. Fox. 2019. Update on lactose malabsorption and intolerance: pathogenesis, diagnosis and clinical management. Gut 68 (11):2080–91. doi: 10.1136/gutjnl-2019-318404.
  • Molinero-Fernandez, A., A. Jodra, M. Moreno-Guzman, M. A. Lopez, and A. Escarpa. 2018. Magnetic reduced graphene oxide/nickel/platinum nanoparticles micromotors for mycotoxin analysis. Chemistry (Weinheim an Der Bergstrasse, Germany) 24 (28):7172–6. doi: 10.1002/chem.201706095.
  • Molinero-Fernandez, A., M. Moreno-Guzman, M. A. Lopez, and A. Escarpa. 2017. Biosensing strategy for simultaneous and accurate quantitative analysis of mycotoxins in food samples using unmodified graphene micromotors. Analytical Chemistry 89 (20):10850–7. doi: 10.1021/acs.analchem.7b02440.
  • Mushtaq, F., M. Guerrero, M. S. Sakar, M. Hoop, A. M. Lindo, J. Sort, X. Chen, B. J. Nelson, E. Pellicer, and S. Pané. 2015. Magnetically driven bi2o3/biocl-based hybrid microrobots for photocatalytic water remediation. Journal of Materials Chemistry A 3 (47):23670–6. doi: 10.1039/C5TA05825B.
  • Nerín, C., M. Aznar, and D. Carrizo. 2016. Food contamination during food process. Trends in Food Science & Technology 48:63–8. doi: 10.1016/j.tifs.2015.12.004.
  • Orozco, J., G. Pan, S. Sattayasamitsathit, M. Galarnyk, and J. Wang. 2015. Micromotors to capture and destroy anthrax simulant spores. The Analyst 140 (5):1421–7. doi: 10.1039/c4an02169j.
  • Ou, J., K. Liu, J. Jiang, D. A. Wilson, L. Liu, F. Wang, S. Wang, Y. Tu, and F. Peng. 2020. Micro-/nanomotors toward biomedical ­applications: the recent progress in biocompatibility. Small 16 (27):1906184. doi: 10.1002/smll.201906184.
  • Pacheco, M., B. Jurado-Sanchez, and A. Escarpa. 2018. Sensitive monitoring of enterobacterial contamination of food using self-propelled Janus microsensors. Analytical Chemistry 90 (4):2912–7. doi: 10.1021/acs.analchem.7b05209.
  • Pacheco, M., B. Jurado-Sánchez, and A. Escarpa. 2019. Visible-light-driven Janus microvehicles in biological media. Angewandte Chemie (International ed. in English) 58 (50):18017–24. doi: 10.1002/anie.201910053.
  • Pacheco, M., B. Jurado-Sánchez, and A. Escarpa. 2022. Transition metal dichalcogenide-based janus micromotors for on-the-fly salmonella detection. Mikrochimica Acta 189 (5):194. doi: 10.1007/s00604-022-05298-2.
  • Parmar, J., D. Vilela, K. Villa, J. Wang, and S. Sánchez. 2018. Micro- and nanomotors as active environmental microcleaners and sensors. Journal of the American Chemical Society 140 (30):9317–31. doi: 10.1021/jacs.8b05762.
  • Patiño, T., X. Arqué, R. Mestre, L. Palacios, and S. Sánchez. 2018. Fundamental aspects of enzyme-powered micro- and nanoswimmers. Accounts of Chemical Research 51 (11):2662–71. doi: 10.1021/acs.accounts.8b00288.
  • Pijpers, I. A. B., S. Cao, A. Llopis-Lorente, J. Zhu, S. Song, R. R. M. Joosten, F. Meng, H. Friedrich, D. S. Williams, S. Sanchez, et al. 2020. Hybrid biodegradable nanomotors through compartmentalized synthesis. Nano Letters 20 (6):4472–80. doi: 10.1021/acs.nanolett.0c01268.
  • Probstein, R. F, and R. E. Hicks. 1993. Removal of contaminants from soils by electric fields. Science (New York, N.Y.) 260 (5107):498–503. doi: 10.1126/science.260.5107.498.
  • Ramirez-Hernandez, A., O. A. Galagarza, M. V. Álvarez Rodriguez, E. Pachari Vera, M. d C. Valdez Ortiz, A. J. Deering, and H. F. Oliver. 2020. Food safety in Peru: a review of fresh produce production and challenges in the public health system. Comprehensive Reviews in Food Science and Food Safety 19 (6):3323–42. doi: 10.1111/1541-4337.12647.
  • Ren, M., W. Guo, H. Guo, and X. Ren. 2019. Microfluidic fabrication of bubble-propelled micromotors for wastewater treatment. ACS Applied Materials & Interfaces 11 (25):22761–7. doi: 10.1021/acsami.9b05925.
  • Ripolles-Avila, C., M. Martínez-Garcia, M. Capellas, J. Yuste, D. Y. C. Fung, and J.-J. Rodríguez-Jerez. 2020. From hazard analysis to risk control using rapid methods in microbiology: a practical approach for the food industry. Comprehensive Reviews in Food Science and Food Safety 19 (4):1877–907. doi: 10.1111/1541-4337.12592.
  • Rizwan, M., M. Singh, C. K. Mitra, and R. K. Morve. 2014. Ecofriendly application of nanomaterials: nanobioremediation. Journal of Nanoparticles 2014:1–7. doi: 10.1155/2014/431787.
  • Roduner, E. 2006. Size matters: why nanomaterials are different. Chemical Society Reviews 35 (7):583–92. doi: 10.1039/B502142C.
  • Rojas, D., B. Jurado-Sanchez, and A. Escarpa. 2016. Shoot and sense Janus micromotors-based strategy for the simultaneous degradation and detection of persistent organic pollutants in food and biological samples. Analytical Chemistry 88 (7):4153–60. doi: 10.1021/acs.analchem.6b00574.
  • Saad, S., H. Kaur, and G. Natale. 2020. Scalable chemical synthesis route to manufacture ph-responsive janus caco3 micromotors. Langmuir: The ACS Journal of Surfaces and Colloids 36 (42):12590–600. doi: 10.1021/acs.langmuir.0c02148.
  • Sánchez, S., L. Soler, and J. Katuri. 2015. Chemically powered micro- and nanomotors. Angewandte Chemie (International ed. in English) 54 (5):1414–44. doi: 10.1002/anie.201406096.
  • Sharma, R., K. V. Ragavan, M. S. Thakur, and K. S. M. S. Raghavarao. 2015. Recent advances in nanoparticle based aptasensors for food contaminants. Biosensors & Bioelectronics 74:612–27. doi: 10.1016/j.bios.2015.07.017.
  • Shen, Y., L. Xu, and Y. Li. 2021. Biosensors for rapid detection of Salmonella in food: a review. Comprehensive Reviews in Food Science and Food Safety 20 (1):149–97. doi: 10.1111/1541-4337.12662.
  • Singh, T., S. Shukla, P. Kumar, V. Wahla, V. K. Bajpai, and I. A. Rather. 2017. Application of nanotechnology in food science: perception and overview. Frontiers in Microbiology 8:1501. doi: 10.3389/fmicb.2017.01501.
  • Singh, V. V., K. Kaufmann, J. Orozco, J. Li, M. Galarnyk, G. Arya, and J. Wang. 2015. Micromotor-based on–off fluorescence detection of sarin and soman simulants. Chemical Communications (Cambridge, England) 51 (56):11190–3. doi: 10.1039/c5cc04120a.
  • Srivastava, A. K., A. Dev, and S. Karmakar. 2018. Nanosensors and nanobiosensors in food and agriculture. Environmental Chemistry Letters 16 (1):161–82. doi: 10.1007/s10311-017-0674-7.
  • Sun, M., X. Fan, X. Meng, J. Song, W. Chen, L. Sun, and H. Xie. 2019. Magnetic biohybrid micromotors with high maneuverability for efficient drug loading and targeted drug delivery. Nanoscale 11 (39):18382–92. doi: 10.1039/C9NR06221A.
  • Tesař, J., M. Ussia, O. Alduhaish, and M. Pumera. 2022. Autonomous self-propelled mno2 micromotors for hormones removal and degradation. Applied Materials Today 26:101312. doi: 10.1016/j.apmt.2021.101312.
  • Tong, J., D. Wang, D. Wang, F. Xu, R. Duan, D. Zhang, J. Fan, and B. Dong. 2020. Visible-light-driven water-fueled ecofriendly micromotors based on iron phthalocyanine for highly efficient organic pollutant degradation. Langmuir: The ACS Journal of Surfaces and Colloids 36 (25):6930–7. doi: 10.1021/acs.langmuir.9b02479.
  • Tu, Y., F. Peng, and D. A. Wilson. 2017. Motion manipulation of micro- and nanomotors. Advanced Materials 29 (39):1701970. doi: 10.1002/adma.201701970.
  • Uygun, D. A., B. Jurado-Sánchez, M. Uygun, and J. Wang. 2016. Self-propelled chelation platforms for efficient removal of toxic metals. Environmental Science: Nano 3 (3):559–66. doi: 10.1039/C6EN00043F.
  • Valdez-Garduño, M., M. Leal-Estrada, E. S. Oliveros-Mata, D. I. Sandoval-Bojorquez, F. Soto, J. Wang, and V. Garcia-Gradilla. 2020. Density asymmetry driven propulsion of ultrasound-powered Janus micromotors. Advanced Functional Materials 30 (50):2004043. doi: 10.1002/adfm.202004043.
  • Vilela, D., J. Parmar, Y. Zeng, Y. Zhao, and S. Sanchez. 2016. Graphene-based microbots for toxic heavy metal removal and ­recovery from water. Nano Letters 16 (4):2860–6. doi: 10.1021/acs.nanolett.6b00768.
  • Vilela, D., M. M. Stanton, J. Parmar, and S. Sanchez. 2017. Microbots decorated with silver nanoparticles kill bacteria in aqueous media. ACS Applied Materials & Interfaces 9 (27):22093–100. doi: 10.1021/acsami.7b03006.
  • Villa, K., F. Novotný, J. Zelenka, M. P. Browne, T. Ruml, and M. Pumera. 2019. Visible-light-driven single-component bivo4 micromotors with the autonomous ability for capturing microorganisms. ACS Nano 13 (7):8135–45. doi: 10.1021/acsnano.9b03184.
  • Villa, K., H. Sopha, J. Zelenka, M. Motola, L. Dekanovsky, D. C. Beketova, J. M. Macak, T. Ruml, and M. Pumera. 2022. Enzyme-photocatalyst tandem microrobot powered by urea for escherichia coli biofilm eradication. Small 2106612. doi: 10.1002/smll.202106612.
  • Wan, M., T. Li, H. Chen, C. Mao, and J. Shen. 2021. Biosafety, functionalities, and applications of biomedical micro/nanomotors. Angewandte Chemie (International ed. in English) 60 (24):13158–76. doi: 10.1002/anie.202013689.
  • Wang, D., G. Zhao, C. Chen, H. Zhang, R. Duan, D. Zhang, M. Li, and B. Dong. 2019a. One-step fabrication of dual optically/magnetically modulated walnut-like micromotor. Langmuir: The ACS Journal of Surfaces and Colloids 35 (7):2801–7. doi: 10.1021/acs.langmuir.8b02904.
  • Wang, H., M. G. Potroz, J. A. Jackman, B. Khezri, T. Marić, N.-J. Cho, and M. Pumera. 2017. Bioinspired spiky micromotors based on sporopollenin exine capsules. Advanced Functional Materials 27 (32):1702338. doi: 10.1002/adfm.201702338.
  • Wang, H., G. Zhao, and M. Pumera. 2014. Crucial role of surfactants in bubble-propelled microengines. The Journal of Physical Chemistry C 118 (10):5268–74. doi: 10.1021/jp410003e.
  • Wang, J. 2012. Cargo-towing synthetic nanomachines: towards active transport in microchip devices. Lab on a Chip 12 (11):1944–50. doi: 10.1039/C2LC00003B.
  • Wang, J., X. Liu, Y. Qi, Z. Liu, Y. Cai, and R. Dong. 2021. Ultrasound-propelled nanomotors for improving antigens cross-presentation and cellular immunity. Chemical Engineering Journal 416:129091. doi: 10.1016/j.cej.2021.129091.
  • Wang, J., Z. Xiong, J. Zheng, X. Zhan, and J. Tang. 2018. Light-driven micro/nanomotor for promising biomedical tools: principle, challenge, and prospect. Accounts of Chemical Research 51 (9):1957–65. doi: 10.1021/acs.accounts.8b00254.
  • Wang, Q., R. Dong, C. Wang, S. Xu, D. Chen, Y. Liang, B. Ren, W. Gao, and Y. Cai. 2019b. Glucose-fueled micromotors with highly efficient visible-light photocatalytic propulsion. ACS Applied Materials & Interfaces 11 (6):6201–7. doi: 10.1021/acsami.8b17563.
  • Wang, Q., T. Li, D. Fang, X. Li, L. Fang, X. Wang, C. Mao, F. Wang, and M. Wan. 2020a. Micromotor for removal/detection of blood copper ion. Microchemical Journal 158:105125. doi: 10.1016/j.microc.2020.105125.
  • Wang, W., L. A. Castro, M. Hoyos, and T. E. Mallouk. 2012. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6 (7):6122–32. doi: 10.1021/nn301312z.
  • Wang, Z., R. Cai, Z. Gao, Y. Yuan, and T. Yue. 2020b. Immunomagnetic separation: an effective pretreatment technology for isolation and enrichment in food microorganisms detection. Comprehensive Reviews in Food Science and Food Safety 19 (6):3802–24. doi: 10.1111/1541-4337.12656.
  • Wang, Z., S. Wang, K. Liu, D. Fu, Y. Ye, J. Gao, L. Liu, D. A. Wilson, Y. Tu, and F. Peng. 2020c. Water powered and anti-cd3 loaded mg micromotor for T cell activation. Applied Materials Today 21:100839. doi: 10.1016/j.apmt.2020.100839.
  • Wrede, P., M. Medina-Sánchez, V. M. Fomin, and O. G. Schmidt. 2021. Switching propulsion mechanisms of tubular catalytic micromotors. Small 17 (12):2006449. doi: 10.1002/smll.202006449.
  • Xing, Y., M. Zhou, X. Du, X. Li, J. Li, T. Xu, and X. Zhang. 2019. Hollow mesoporous carbon@pt janus nanomotors with dual response of h2o2 and near-infrared light for active cargo delivery. Applied Materials Today 17:85–91. doi: 10.1016/j.apmt.2019.07.017.
  • Xu, D., Y. Wang, C. Liang, Y. You, S. Sanchez, and X. Ma. 2020. Self-propelled micro/nanomotors for on-demand biomedical cargo transportation. Small 16 (27):1902464. doi: 10.1002/smll.201902464.
  • Xu, T., L.-P. Xu, and X. Zhang. 2017. Ultrasound propulsion of micro-/nanomotors. Applied Materials Today 9:493–503. doi: 10.1016/j.apmt.2017.07.011.
  • Xuan, M., Z. Wu, J. Shao, L. Dai, T. Si, and Q. He. 2016. Near infrared light-powered janus mesoporous silica nanoparticle motors. Journal of the American Chemical Society 138 (20):6492–7. doi: 10.1021/jacs.6b00902.
  • Yang, W., J. Li, Y. Lyu, X. Yan, P. Yang, and M. Zuo. 2021. Bioinspired 3d hierarchical bsa-nico2o4@mno2/c multifunctional micromotors for simultaneous spectrophotometric determination of enzyme ­activity and pollutant removal. Journal of Cleaner Production 309:127294. doi: 10.1016/j.jclepro.2021.127294.
  • Yuan, H., X. Liu, L. Wang, and X. Ma. 2021. Fundamentals and ­applications of enzyme powered micro/nano-motors. Bioactive Materials 6 (6):1727–49. doi: 10.1016/j.bioactmat.2020.11.022.
  • Yuan, K., B. Jurado-Sánchez, and A. Escarpa. 2021. Dual-propelled lanbiotic based Janus micromotors for selective inactivation of bacterial biofilms. Angewandte Chemie (International ed. in English) 60 (9):4915–24. doi: 10.1002/anie.202011617.
  • Yuan, K., M. Á. López, B. Jurado-Sánchez, and A. Escarpa. 2020. Janus micromotors coated with 2d nanomaterials as dynamic interfaces for (bio)-sensing. ACS Applied Materials & Interfaces 12 (41):46588–97. doi: 10.1021/acsami.0c15389.
  • Zarei, M, and M. Zarei. 2018. Self-propelled micro/nanomotors for sensing and environmental remediation. Small 14 (30):1800912. doi: 10.1002/smll.201800912.
  • Zhang, D., D. Wang, J. Li, X. Xu, H. Zhang, R. Duan, B. Song, D. Zhang, and B. Dong. 2019a. One-step synthesis of pcl/mg Janus micromotor for precious metal ion sensing, removal and recycling. Journal of Materials Science 54 (9):7322–32. doi: 10.1007/s10853-019-03390-2.
  • Zhang, Q., R. Dong, X. Chang, B. Ren, and Z. Tong. 2015. Spiropyran-decorated SiO2–pt Janus micromotor: preparation and light-induced dynamic self-assembly and disassembly. ACS Applied Materials & Interfaces 7 (44):24585–91. doi: 10.1021/acsami.5b06448.
  • Zhang, Y., K. Yan, F. Ji, and L. Zhang. 2018. Enhanced removal of toxic heavy metals using swarming biohybrid adsorbents. Advanced Functional Materials 28 (52):1806340. doi: 10.1002/adfm.201806340.
  • Zhang, Y., L. Zhang, L. Yang, C. I. Vong, K. F. Chan, W. K. K. Wu, T. N. Y. Kwong, N. W. S. Lo, M. Ip, S. H. Wong, et al. 2019b. Real-time tracking of fluorescent magnetic spore-based microrobots for remote detection of c. Diff toxins. Science Advances 5 (1):2375–548. doi: 10.1126/sciadv.aau9650.
  • Zhou, H., C. C. Mayorga-Martinez, and M. Pumera. 2021. Microplastic removal and degradation by mussel-inspired adhesive magnetic/enzymatic microrobots. Small Methods. 5 (9):2100230. doi: 10.1002/smtd.202100230.
  • Zhou, X., Z. Li, L. Tan, Y. Zhang, and Y. Jiao. 2020. Near-infrared light-steered graphene aerogel micromotor with high speed and precise navigation for active transport and microassembly. ACS Applied Materials & Interfaces 12 (20):23134–44. doi: 10.1021/acsami.0c04970.
  • Zwietering, M. H., L. Jacxsens, J.-M. Membré, M. Nauta, and M. Peterz. 2016. Relevance of microbial finished product testing in food safety management. Food Control. 60:31–43. doi: 10.1016/j.foodcont.2015.07.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.