1,314
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Anti-aging effects and mechanisms of anthocyanins and their intestinal microflora metabolites

, ORCID Icon, ORCID Icon, , , , & show all

References

  • Abdelmageed, M. E., G. S. Shehatou, G. M. Suddek, and H. A. Salem. 2021. Protocatechuic acid improves hepatic insulin resistance and restores vascular oxidative status in type-2 diabetic rats. Environmental Toxicology and Pharmacology 83:103577.
  • Al-Saeed, A. H., M. I. Constantino, L. Molyneaux, M. D’Souza, F. Limacher-Gisler, C. Luo, T. Wu, S. M. Twigg, D. K. Yue, and J. Wong. 2016. An inverse relationship between age of type 2 diabetes onset and complication risk and mortality: The impact of youth-onset type 2 diabetes. Diabetes Care 39 (5):823–9. doi: 10.2337/dc15-0991.
  • Aman, Y., T. Schmauck-Medina, M. Hansen, R. I. Morimoto, A. K. Simon, I. Bjedov, K. Palikaras, A. Simonsen, T. Johansen, N. Tavernarakis, et al. 2021. Autophagy in healthy aging and disease. Nature Aging 1 (8):634–50. doi: 10.1038/s43587-021-00098-4.
  • Aravind, S. M., S. Wichienchot, R. Tsao, S. Ramakrishnan, and S. Chakkaravarthi. 2021. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Research International (Ottawa, Ont.) 142:110189.
  • Aura, A.-M., P. Martin-Lopez, K. A. O'Leary, G. Williamson, K.-M. Oksman-Caldentey, K. Poutanen, and C. Santos-Buelga. 2005. In vitro metabolism of anthocyanins by human gut microflora. European Journal of Nutrition 44 (3):133–42. doi: 10.1007/s00394-004-0502-2.
  • Barbosa, P., P. Araújo, J. Oliveira, I. Fraga, J. Pissarra, and C. Amaral. 2019. Metabolic pathways of degradation of malvidin-3-O-monoglucoside by Candida oleophila. International Biodeterioration & Biodegradation 144:104768. doi: 10.1016/j.ibiod.2019.104768.
  • Barha, C. K., C.-L T. Hsu, L. Brinke, and T. Liu-Ambrose. 2019. Biological sex: A potential moderator of physical activity efficacy on brain health. Frontiers in Aging Neuroscience 11 (329) doi: 10.3389/fnagi.2019.00329.
  • Blackburn, E. H., E. S. Epel, and J. Lin. 2015. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science (New York, N.Y.) 350 (6265):1193–8. doi: 10.1126/science.aab3389.
  • Borges, G., S. Roowi, J. M. Rouanet, G. G. Duthie, M. E. Lean, and A. Crozier. 2007. The bioavailability of raspberry anthocyanins and ellagitannins in rats. Molecular Nutrition & Food Research 51 (6):714–25. doi: 10.1002/mnfr.200700024.
  • Bouzaiene, N. N., S. K. Jaziri, H. Kovacic, L. Chekir-Ghedira, K. Ghedira, and J. Luis. 2015. The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. European Journal of Pharmacology 766:99–105.
  • Bovilla, V. R., P. G. Anantharaju, S. Dornadula, P. M. Veeresh, M. G. Kuruburu, V. G. Bettada, K. M. Ramkumar, and S. V. Madhunapantula. 2021. Caffeic acid and protocatechuic acid modulate Nrf2 and inhibit Ehrlich ascites carcinomas in mice. Asian Pacific Journal of Tropical Biomedicine 11 (6):244. doi: 10.4103/2221-1691.314045.
  • Cai, Z., J. Zhang, and H. Li. 2019. Selenium, aging and aging-related diseases. Aging Clinical and Experimental Research 31 (8):1035–47. doi: 10.1007/s40520-018-1086-7.
  • Campisi, J. 2013. Aging, cellular senescence, and cancer. Annual Review of Physiology 75:685–705.
  • Cao, X., Y. Xia, M. Zeng, W. Wang, Y. He, and J. Liu. 2019. Caffeic acid inhibits the formation of advanced glycation end products (AGEs) and mitigates the AGEs‐induced oxidative stress and inflammation reaction in human umbilical vein endothelial cells (HUVECs. )Chemistry & Biodiversity 16 (10):e1900174. doi: 10.1002/cbdv.201900174.
  • Chen, J., J. Zhang, Y. Xiang, L. Xiang, Y. Liu, X. He, X. Zhou, X. Liu, and Z. Huang. 2016. Extracts of Tsai Tai (Brassica chinensis): enhanced antioxidant activity and anti-aging effects both in vitro and in Caenorhabditis elegans. Food & Function 7 (2):943–52. doi: 10.1039/c5fo01241d.
  • Chen, W., D. Müller, E. Richling, and M. Wink. 2013. Anthocyanin-rich purple wheat prolongs the life span of Caenorhabditis elegans ­probably by activating the DAF-16/FOXO transcription factor. Journal of Agricultural and Food Chemistry 61 (12):3047–53. doi: 10.1021/jf3054643.
  • Chen, Y., Q. Li, T. Zhao, Z. Zhang, G. Mao, W. Feng, X. Wu, and L. Yang. 2017. Biotransformation and metabolism of three mulberry anthocyanin monomers by rat gut microflora. Food Chemistry 237:887–94.
  • Chiang, W.-C., T.-T. Ching, H. C. Lee, C. Mousigian, and A.-L. Hsu. 2012. HSF-1 regulators DDL-1/2 link insulin-like signaling to heat-shock responses and modulation of longevity. Cell 148 (1-2):322–34. doi: 10.1016/j.cell.2011.12.019.
  • Choi, M. J., B. K. Kim, K. Y. Park, T. Yokozawa, Y. O. Song, and E. J. Cho. 2010. Anti-aging effects of cyanidin under a stress-induced premature senescence cellular system. Biological & Pharmaceutical Bulletin 33 (3):421–6. doi: 10.1248/bpb.33.421.
  • Cortés-Martín, A., M. V. Selma, F. A. Tomás‐Barberán, A. González‐Sarrías, and J. C. Espín. 2020. Where to look into the puzzle of polyphenols and health? The postbiotics and gut microbiota associated with human metabotypes. Molecular Nutrition & Food Research 64 (9):1900952. doi: 10.1002/mnfr.201900952.
  • Czank, C., A. Cassidy, Q. Zhang, D. J. Morrison, T. Preston, P. A. Kroon, N. P. Botting, and C. D. Kay. 2013. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: A 13C-tracer study. The American Journal of Clinical Nutrition 97 (5):995–1003. doi: 10.3945/ajcn.112.049247.
  • de Aguiar Cipriano, P., H. Kim, C. Fang, V. P. Venancio, S. U. Mertens-Talcott, and S. T. Talcott. 2022. In vitro digestion, absorption and biological activities of acylated anthocyanins from purple sweet potatoes (Ipomoea batatas). Food Chemistry 374:131076.
  • De Ferrars, R. M., C. Czank, Q. Zhang, N. P. Botting, P. A. Kroon, A. Cassidy, and C. D. Kay. 2014. The pharmacokinetics of anthocyanins and their metabolites in humans. British Journal of Pharmacology 171 (13):3268–82. doi: 10.1111/bph.12676.
  • Diaconeasa, Z., I. Știrbu, J. Xiao, N. Leopold, Z. Ayvaz, C. Danciu, H. Ayvaz, A. Stǎnilǎ, M. Nistor, and C. Socaciu. 2020. Anthocyanins, vibrant color pigments, and their role in skin cancer prevention. Biomedicines 8 (9):336. doi: 10.3390/biomedicines8090336.
  • Dilberger, B., S. Weppler, and G. P. Eckert. 2021. Phenolic acid metabolites of polyphenols act as inductors for hormesis in C. elegans. Mechanisms of Ageing and Development 198:111518. doi: 10.1016/j.mad.2021.111518.
  • Fan, Z., H. Wen, X. Zhang, J. Li, and J. Zang. 2022. Cyanidin 3-O-β-Galactoside alleviated cognitive impairment in mice by regulating brain energy metabolism during aging. Journal of Agricultural and Food Chemistry 70 (4):1111–21. doi: 10.1021/acs.jafc.1c06240.
  • Fang, J. 2014. Bioavailability of anthocyanins. Drug Metabolism Reviews 46 (4):508–20. doi: 10.3109/03602532.2014.978080.
  • Faria, A., D. Pestana, J. Azevedo, F. Martel, V. de Freitas, I. Azevedo, N. Mateus, and C. Calhau. 2009. Absorption of anthocyanins through intestinal epithelial cells–Putative involvement of GLUT2. Molecular Nutrition & Food Research 53 (11):1430–7. doi: 10.1002/mnfr.200900007.
  • Felgines, C., S. Krisa, A. Mauray, C. Besson, J.-L. Lamaison, A. Scalbert, J.-M. Mérillon, and O. Texier. 2010. Radiolabelled cyanidin 3-O-glucoside is poorly absorbed in the mouse. The British Journal of Nutrition 103 (12):1738–45. doi: 10.1017/S0007114510000061.
  • Fernandes, I., V. de Freitas, C. Reis, and N. Mateus. 2012. A new approach on the gastric absorption of anthocyanins. Food & Function 3 (5):508–16. doi: 10.1039/c2fo10295a.
  • Fernandes, I., A. Faria, V. de Freitas, C. Calhau, and N. Mateus. 2015. Multiple-approach studies to assess anthocyanin bioavailability. Phytochemistry Reviews 14 (6):899–919. doi: 10.1007/s11101-015-9415-3.
  • Fleschhut, J., F. Kratzer, G. Rechkemmer, and S. E. Kulling. 2006. Stability and biotransformation of various dietary anthocyanins in vitro. European Journal of Nutrition 45 (1):7–18. doi: 10.1007/s00394-005-0557-8.
  • Flores, G., M. L. R. del Castillo, A. Costabile, A. Klee, K. B. Guergoletto, and G. R. Gibson. 2015. In vitro fermentation of anthocyanins encapsulated with cyclodextrins: Release, metabolism and influence on gut microbiota growth. Journal of Functional Foods 16:50–7. doi: 10.1016/j.jff.2015.04.022.
  • Forester, S. C, and A. L. Waterhouse. 2008. Identification of Cabernet Sauvignon anthocyanin gut microflora metabolites. Journal of Agricultural and Food Chemistry 56 (19):9299–304. doi: 10.1021/jf801309n.
  • Fornasaro, S., L. Ziberna, M. Gasperotti, F. Tramer, U. Vrhovšek, F. Mattivi, and S. Passamonti. 2016. Determination of cyanidin 3-glucoside in rat brain, liver and kidneys by UPLC/MS-MS and its application to a short-term pharmacokinetic study. Scientific Reports 6 (1):22815–1. doi: 10.1038/srep22815.
  • Gallardo-Fernández, M., R. Hornedo-Ortega, A. B. Cerezo, A. M. Troncoso, and M. C. García-Parrilla. 2019. Melatonin, protocatechuic acid and hydroxytyrosol effects on vitagenes system against alpha-synuclein toxicity. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 134:110817.
  • Gao, Y., R. Tian, H. Liu, H. Xue, R. Zhang, S. Han, L. Ji, W. Huang, J. Zhan, and Y. You. 2021. Research progress on intervention effect and mechanism of protocatechuic acid on nonalcoholic fatty liver disease. Critical Reviews in Food Science and Nutrition 61:1–23. doi: 10.1080/10408398.2021.1939265.
  • Golubev, D., N. Zemskaya, O. Shevchenko, M. Shaposhnikov, D. Kukuman, S. Patov, V. Punegov, and A. Moskalev. 2022. Honeysuckle extract (Lonicera pallasii L.) exerts antioxidant properties and extends the lifespan and healthspan of Drosophila melanogaster. Biogerontology 23 (2):215–35. doi: 10.1007/s10522-022-09954-1.
  • Gutierrez-Zetina, S. M., S. González-Manzano, B. Ayuda-Durán, C. Santos-Buelga, and A. M. González-Paramás. 2021. Caffeic and dihydrocaffeic acids promote longevity and increase stress resistance in Caenorhabditis elegans by modulating expression of stress-related genes. Molecules 26 (6):1517. doi: 10.3390/molecules26061517.
  • Han, F., P. Yang, H. Wang, I. Fernandes, N. Mateus, and Y. Liu. 2019. Digestion and absorption of red grape and wine anthocyanins through the gastrointestinal tract. Trends in Food Science & Technology 83:211–24. doi: 10.1016/j.tifs.2018.11.025.
  • Han, Y., Y. Guo, S. W. Cui, H. Li, Y. Shan, and H. Wang. 2021. Purple sweet potato extract extends lifespan by activating autophagy pathway in male drosophila melanogaster. Experimental Gerontology 144:111190.
  • Herrera-Bravo, J., J. F. Beltrán, N. Huard, K. Saavedra, N. Saavedra, M. Alvear, F. Lanas, and L. A. Salazar. 2022. Anthocyanins Found in Pinot Noir Waste Induce Target Genes Related to the Nrf2 Signalling in Endothelial Cells. Antioxidants 11 (7):1239. doi: 10.3390/antiox11071239.
  • Herrera-Balandrano, D. D., Z. Chai, T. Beta, J. Feng, and W. Huang. 2021. Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability. Trends in Food Science & Technology 118:808–21. doi: 10.1016/j.tifs.2021.11.006.
  • Herrera-Sotero, M. Y., C. D. Cruz-Hernández, R. M. Oliart-Ros, J. L. Chávez-Servia, R. I. Guzmán-Gerónimo, V. González-Covarrubias, M. Cruz-Burgos, and M. Rodríguez-Dorantes. 2020. Anthocyanins of blue corn and tortilla arrest cell cycle and induce apoptosis on breast and prostate cancer cells. Nutrition and Cancer 72 (5):768–77. doi: 10.1080/01635581.2019.1654529.
  • Huang, B., Z. Wang, J. H. Park, O. H. Ryu, M. K. Choi, J.-Y. Lee, Y.-H. Kang, and S. S. Lim. 2015. Anti-diabetic effect of purple corn extract on C57BL/KsJ db/db mice. Nutrition Research and Practice 9 (1):22–9. doi: 10.4162/nrp.2015.9.1.22.
  • Izzo, C., A. Carrizzo, A. Alfano, N. Virtuoso, M. Capunzo, M. Calabrese, E. De Simone, S. Sciarretta, G. Frati, M. Oliveti, et al. 2018. The impact of aging on cardio and cerebrovascular diseases. International Journal of Molecular Sciences 19 (2):481. doi: 10.3390/ijms19020481.
  • Jabeen, A., N. Parween, K. Sayrav, and B. Prasad. 2020. Date (Phoenix dactylifera) seed and syringic acid exhibits antioxidative effect and lifespan extending properties in Caenorhabditis elegans. Arabian Journal of Chemistry 13 (12):9058–67. doi: 10.1016/j.arabjc.2020.10.028.
  • Jang, S.-E., J.-R. Choi, M. J. Han, and D.-H. Kim. 2016. The preventive and curative effect of cyanidin-3β-D-glycoside and its ­metabolite protocatechuic acid against TNBS-induced colitis in mice. Natural Product Sciences 22 (4):282–6. doi: 10.20307/nps.2016.22.4.282.
  • Jaskiw, G. E., M. E. Obrenovich, and C. J. Donskey. 2019. The phenolic interactome and gut microbiota: Opportunities and challenges in developing applications for schizophrenia and autism. Psychopharmacology 236 (5):1471–89. doi: 10.1007/s00213-019-05267-3.
  • Jayarathne, S., L. Ramalingam, H. Edwards, S. A. Vanapalli, and N. Moustaid-Moussa. 2020. Tart cherry increases lifespan in Caenorhabditis elegans by altering metabolic signaling pathways. Nutrients 12 (5):1482. doi: 10.3390/nu12051482.
  • Jaye, K., C. G. Li, and D. J. Bhuyan. 2021. The complex interplay of gut microbiota with the five most common cancer types: From carcinogenesis to therapeutics to prognoses. Critical Reviews in Oncology/Hematology 165:103429. doi: 10.1016/j.critrevonc.2021.103429.
  • Joo, H. K., S. Choi, Y. R. Lee, E. O. Lee, M. S. Park, K. B. Park, C.-S. Kim, Y. P. Lim, J.-T. Park, and B. H. Jeon. 2018. Anthocyanin-rich extract from red Chinese cabbage alleviates vascular inflammation in endothelial cells and Apo E−/− mice. International Journal of Molecular Sciences 19 (3):816. doi: 10.3390/ijms19030816.
  • Jung, S., M.-S. Lee, E. Chang, C.-T. Kim, and Y. Kim. 2021. Mulberry (Morus alba L.) fruit extract ameliorates inflammation via regulating microRNA-21/132/143 expression and increases the skeletal muscle mitochondrial content and AMPK/SIRT activities. Antioxidants 10 (9):1453. doi: 10.3390/antiox10091453.
  • Kamonpatana, K., M. L. Failla, P. S. Kumar, and M. M. Giusti. 2014. Anthocyanin structure determines susceptibility to microbial degradation and bioavailability to the buccal mucosa. Journal of Agricultural and Food Chemistry 62 (29):6903–10. doi: 10.1021/jf405180k.
  • Kamonpatana, K., M. M. Giusti, C. Chitchumroonchokchai, M. MorenoCruz, K. M. Riedl, P. Kumar, and M. L. Failla. 2012. Susceptibility of anthocyanins to ex vivo degradation in human saliva. Food Chemistry 135 (2):738–47. doi: 10.1016/j.foodchem.2012.04.110.
  • Kim, D. K., H. Jeon, and D. S. Cha. 2014. 4-Hydroxybenzoic acid-mediated lifespan extension in Caenorhabditis elegans. Journal of Functional Foods 7:630–40. doi: 10.1016/j.jff.2013.12.022.
  • Kim, Y. S., H. W. Seo, M.-H. Lee, D. K. Kim, H. Jeon, and D. S. Cha. 2014. Protocatechuic acid extends lifespan and increases stress resistance in Caenorhabditis elegans. Archives of Pharmacal Research 37 (2):245–52.
  • Klaips, C. L., G. G. Jayaraj, and F. U. Hartl. 2018. Pathways of cellular proteostasis in aging and disease. The Journal of Cell Biology 217 (1):51–63. doi: 10.1083/jcb.201709072.
  • Kristiani, L., M. Kim, and Y. Kim. 2020. Role of the nuclear lamina in age-associated nuclear reorganization and inflammation. Cells 9 (3):718. doi: 10.3390/cells9030718.
  • Lee, A.-T., M.-Y. Yang, Y.-J. Lee, T.-W. Yang, C.-C. Wang, and C.-J. Wang. 2021. Gallic acid improves diabetic steatosis by downregulating microRNA-34a-5p through targeting NFE2L2 expression in high-fat diet-fed db/db mice. Antioxidants 11 (1):92. doi: 10.3390/antiox11010092.
  • Lee, S. G., C. R. Brownmiller, S.-O. Lee, and H. W. Kang. 2020. Anti-inflammatory and antioxidant effects of anthocyanins of Trifolium pratense (red clover) in lipopolysaccharide-stimulated RAW-267.4 macrophages. Nutrients 12 (4):1089. doi: 10.3390/nu12041089.
  • Li, H., X. Yu, C. Li, L. Ma, Z. Zhao, S. Guan, and L. Wang. 2021. Caffeic acid protects against Aβ toxicity and prolongs lifespan in Caenorhabditis elegans models. Food & Function 12 (3):1219–31.
  • Li, H., T. Zheng, F. Lian, T. Xu, W. Yin, and Y. Jiang. 2022. Anthocyanin-rich blueberry extracts and anthocyanin metabolite protocatechuic acid promote autophagy-lysosomal pathway and alleviate neurons damage in in vivo and in vitro models of Alzheimer’s disease. Nutrition (Burbank, Los Angeles County, Calif.) 93:111473. doi: 10.1016/j.nut.2021.111473.
  • Li, P., D. Feng, D. Yang, X. Li, J. Sun, G. Wang, L. Tian, X. Jiang, and W. Bai. 2021. Protective effects of anthocyanins on neurodegenerative diseases. Trends in Food Science & Technology 117:205–17. doi: 10.1016/j.tifs.2021.05.005.
  • Li, R., M. Tao, T. Xu, S. Pan, X. Xu, and T. Wu. 2021. Small berries as health-promoting ingredients: A review on anti-aging effects and mechanisms in Caenorhabditis elegans. Food & Function 13 (2):478–500. doi: 10.1039/D1FO02184B.
  • Li, S., B. Wu, W. Fu, and L. Reddivari. 2019. The anti-inflammatory effects of dietary anthocyanins against ulcerative colitis. International Journal of Molecular Sciences 20 (10):2588. doi: 10.3390/ijms20102588.
  • Li, X., Z. Shi, Y. Zhu, T. Shen, H. Wang, G. Shui, J. J. Loor, Z. Fang, M. Chen, X. Wang, et al. 2020. Cyanidin‐3‐O‐glucoside improves non‐alcoholic fatty liver disease by promoting PINK1‐mediated mitophagy in mice. British Journal of Pharmacology 177 (15):3591–607. doi: 10.1111/bph.15083.
  • Li, Z., Z. Zhang, Y. Ren, Y. Wang, J. Fang, H. Yue, S. Ma, and F. Guan. 2021. Aging and age‐related diseases: From mechanisms to therapeutic strategies. Biogerontology 22 (2):165–87.
  • Liang, N, and D. D. Kitts. 2014. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules (Basel, Switzerland) 19 (11):19180–208. doi: 10.3390/molecules191119180.
  • Lila, M. A., B. Burton-Freeman, M. Grace, and W. Kalt. 2016. Unraveling anthocyanin bioavailability for human health. Annual Review of Food Science and Technology 7:375–93.
  • Liu, Y., D. Zhang, Y. Wu, D. Wang, Y. Wei, J. Wu, and B. Ji. 2014. Stability and absorption of anthocyanins from blueberries subjected to a simulated digestion process. International Journal of Food Sciences and Nutrition 65 (4):440–8. doi: 10.3109/09637486.2013.869798.
  • Liu, Y., Z. Zhou, L. Yin, M. Zhu, F. Wang, L. Zhang, H. Wang, Z. Zhou, H. Zhu, C. Huang, et al. 2022. Tangeretin promotes lifespan associated with insulin/insulin‐like growth factor‐1 signaling pathway and heat resistance in Caenorhabditis elegans. BioFactors (Oxford, England) 48 (2):442–53. doi: 10.1002/biof.1788.
  • Long, J., H. Gao, L. Sun, J. Liu, and X. Zhao-Wilson. 2009. Grape extract protects mitochondria from oxidative damage and improves locomotor dysfunction and extends lifespan in a Drosophila Parkinson’s disease model. Rejuvenation Research 12 (5):321–31. doi: 10.1089/rej.2009.0877.
  • Luo, J., H. Si, Z. Jia, and D. Liu. 2021. Dietary anti-aging polyphenols and potential mechanisms. Antioxidants 10 (2):283. doi: 10.3390/antiox10020283.
  • Ma, H., S. L. Johnson, W. Liu, N. A. DaSilva, S. Meschwitz, J. A. Dain, and N. P. Seeram. 2018. Evaluation of polyphenol anthocyanin-enriched extracts of blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry for free radical scavenging, reactive carbonyl species trapping, anti-glycation, anti-β-amyloid aggregation, and microglial neuroprotective effects. International Journal of Molecular Sciences 19 (2):461. doi: 10.3390/ijms19020461.
  • Mahjoob, M, and U. Stochaj. 2021. Curcumin nanoformulations to combat aging-related diseases. Ageing Research Reviews 69:101364.
  • Maleki, M., N. Khelghati, F. Alemi, M. Bazdar, Z. Asemi, M. Majidinia, A. Sadeghpoor, A. Mahmoodpoor, F. Jadidi-Niaragh, N. Targhazeh, et al. 2020. Stabilization of telomere by the antioxidant property of polyphenols: Anti-aging potential. Life Sciences 259:118341. doi: 10.1016/j.lfs.2020.118341.
  • Mallery, S. R., D. E. Budendorf, M. P. Larsen, P. Pei, M. Tong, A. S. Holpuch, P. E. Larsen, G. D. Stoner, H. W. Fields, K. K. Chan, et al. 2011. Effects of human oral mucosal tissue, saliva, and oral microflora on intraoral metabolism and bioactivation of black raspberry anthocyanins. Cancer Prevention Research (Philadelphia, Pa.) 4 (8):1209–21. doi: 10.1158/1940-6207.CAPR-11-0040.
  • Manolescu, B. N., E. Oprea, M. Mititelu, L. L. Ruta, and I. C. Farcasanu. 2019. Dietary anthocyanins and stroke: A review of pharmacokinetic and pharmacodynamic studies. Nutrients 11 (7):1479. doi: 10.3390/nu11071479.
  • Martell, J., Y. Seo, D. W. Bak, S. F. Kingsley, H. A. Tissenbaum, and E. Weerapana. 2016. Global cysteine-reactivity profiling during impaired Insulin/IGF-1 signaling in C. elegans identifies uncharacterized mediators of longevity. Cell Chemical Biology 23 (8):955–66. doi: 10.1016/j.chembiol.2016.06.015.
  • Mas-Bargues, C., M. Alique, M. T. Barrús-Ortiz, C. Borrás, and R. Rodrigues-Díez. 2021. Exploring new kingdoms: The role of extracellular vesicles in oxi-inflamm-aging related to cardiorenal syndrome. Antioxidants 11 (1):78. doi: 10.3390/antiox11010078.
  • Maya, S., T. Prakash, and D. Goli. 2018. Evaluation of neuroprotective effects of wedelolactone and gallic acid on aluminium-induced neurodegeneration: Relevance to sporadic amyotrophic lateral sclerosis. European Journal of Pharmacology 835:41–51. doi: 10.1016/j.ejphar.2018.07.058.
  • Mehmood, A., M. Usman, P. Patil, L. Zhao, and C. Wang. 2020. A review on management of cardiovascular diseases by olive polyphenols. Food Science & Nutrition 8 (9):4639–55. doi: 10.1002/fsn3.1668.
  • Mehmood, A., L. Zhao, Y. Wang, F. Pan, S. Hao, H. Zhang, A. Iftikhar, and M. Usman. 2021. Dietary anthocyanins as potential natural modulators for the prevention and treatment of non-alcoholic fatty liver disease: A comprehensive review. Food Research International (Ottawa, Ont.) 142:110180. doi: 10.1016/j.foodres.2021.110180.
  • Min, J., H. Shen, W. Xi, Q. Wang, L. Yin, Y. Zhang, Y. Yu, Q. Yang, and Z-n Wang. 2018. Synergistic anticancer activity of combined use of caffeic acid with paclitaxel enhances apoptosis of non-small-cell lung cancer H1299 cells in vivo and in vitro. Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 48 (4):1433–42. doi: 10.1159/000492253.
  • Min, S.-W., S.-N. Ryu, and D.-H. Kim. 2010. Anti-inflammatory effects of black rice, cyanidin-3-O-β-D-glycoside, and its metabolites, cyanidin and protocatechuic acid. International Immunopharmacology 10 (8):959–66. doi: 10.1016/j.intimp.2010.05.009.
  • Miyazaki, K., K. Makino, E. Iwadate, Y. Deguchi, and F. Ishikawa. 2008. Anthocyanins from purple sweet potato Ipomoea batatas cultivar Ayamurasaki suppress the development of atherosclerotic lesions and both enhancements of oxidative stress and soluble vascular cell adhesion molecule-1 in apolipoprotein E-deficient mice. Journal of Agricultural and Food Chemistry 56 (23):11485–92. doi: 10.1021/jf801876n.
  • Molagoda, I. M. N., K. T. Lee, Y. H. Choi, and G.-Y. Kim. 2020. Anthocyanins from Hibiscus syriacus L. inhibit oxidative stress-mediated apoptosis by activating the Nrf2/HO-1 signaling pathway. Antioxidants 9 (1):42. doi: 10.3390/antiox9010042.
  • Moskalev, A., Z. Guvatova, I. D. A. Lopes, C. W. Beckett, B. K. Kennedy, J. P. De Magalhaes, and A. A. Makarov. 2022. Targeting aging mechanisms: Pharmacological perspectives. Trends in Endocrinology & Metabolism 33 (4):266–80. doi: 10.1016/j.tem.2022.01.007.
  • Mueller, D., K. Jung, M. Winter, D. Rogoll, R. Melcher, and E. Richling. 2017. Human intervention study to investigate the intestinal accessibility and bioavailability of anthocyanins from bilberries. Food Chemistry 231:275–86.
  • Nakano, H., S. Wu, K. Sakao, T. Hara, J. He, S. Garcia, K. Shetty, and D.-X. Hou. 2020. Bilberry anthocyanins ameliorate NAFLD by improving dyslipidemia and gut microbiome dysbiosis. Nutrients 12 (11):3252. doi: 10.3390/nu12113252.
  • Nasa, J. S. B., Manaloa, R. V. M. Medinaa, and P. M. B. 2021. Peonidin-3-glucoside extends the lifespan of Caenorhabditis elegans and enhances its tolerance to heat, UV, and oxidative stresses. Scienceasia 47 (4):457. +.
  • Nguyen, N. N., Rana, A. Goldman, C. Moore, R. Tai, J. Hong, Y. Shen, J. Walker, D. W. Hur, and J. H. 2019. Proteasome β5 subunit overexpression improves proteostasis during aging and extends lifespan in Drosophila melanogaster. Scientific Reports 9 (1):1–12. doi: 10.1038/s41598-019-39508-4.
  • Nurmi, T., J. Mursu, M. Heinonen, A. Nurmi, R. Hiltunen, and S. Voutilainen. 2009. Metabolism of berry anthocyanins to phenolic acids in humans. Journal of Agricultural and Food Chemistry 57 (6):2274–81. doi: 10.1021/jf8035116.
  • Oliveira, H., I. Fernandes, N. F. Bras, A. Faria, V. De Freitas, C. a o Calhau, and N. Mateus. 2015. Experimental and theoretical data on the mechanism by which red wine anthocyanins are transported through a human MKN-28 gastric cell model. Journal of Agricultural and Food Chemistry 63 (35):7685–92. doi: 10.1021/acs.jafc.5b00412.
  • Oliveira, H., C. Roma-Rodrigues, A. Santos, B. Veigas, N. Brás, A. Faria, C. Calhau, V. de Freitas, P. V. Baptista, N. Mateus, et al. 2019. GLUT1 and GLUT3 involvement in anthocyanin gastric transport-Nanobased targeted approach. Scientific Reports 9 (1):1–14. doi: 10.1038/s41598-018-37283-2.
  • Paramanantham, A., M. J. Kim, E. J. Jung, H. J. Kim, S.-H. Chang, J.-M. Jung, S. C. Hong, S. C. Shin, G. S. Kim, and W. S. Lee. 2020. Anthocyanins isolated from vitis coignetiae pulliat enhances cisplatin sensitivity in MCF-7 human breast cancer cells through inhibition of Akt and NF-κB activation. Molecules 25 (16):3623. doi: 10.3390/molecules25163623.
  • Peixoto, H., M. Roxo, S. Krstin, T. Röhrig, E. Richling, and M. Wink. 2016. An anthocyanin-rich extract of acai (Euterpe precatoria Mart.) increases stress resistance and retards aging-related markers in Caenorhabditis elegans. Journal of Agricultural and Food Chemistry 64 (6):1283–90. doi: 10.1021/acs.jafc.5b05812.
  • Pointner, A., C. Mölzer, U. Magnet, K. Zappe, B. Hippe, A. Tosevska, E. Tomeva, E. Dum, D. Gessner, S. Lilja, et al. 2021. The green tea polyphenol EGCG is differentially associated with telomeric regulation in normal human fibroblasts versus cancer cells. Functional Foods in Health and Disease 11 (3):73–91. doi: 10.31989/ffhd.v11i3.775.
  • Rathor, L., A. Pant, H. Awasthi, D. Mani, and R. Pandey. 2017. An antidiabetic polyherbal phytomedicine confers stress resistance and extends lifespan in Caenorhabditis elegans. Biogerontology 18 (1):131–47. doi: 10.1007/s10522-016-9668-2.
  • Rebollo-Hernanz, M., Aguilera, Y. Martin-Cabrejas, M. A, and Gonzalez de Mejia, E. 2022. Phytochemicals from the cocoa shell modulate mitochondrial function, lipid and glucose metabolism in hepatocytes via activation of FGF21/ERK, AKT, and mTOR pathways. Antioxidants 11 (1):136. doi: 10.3390/antiox11010136.
  • Rodriguez-Mateos, A., R. P. Feliciano, A. Boeres, T. Weber, C. N. Dos Santos, M. R. Ventura, and C. Heiss. 2016. Cranberry (poly) phenol metabolites correlate with improvements in vascular function: A double‐blind, randomized, controlled, dose‐response, crossover study. Molecular Nutrition & Food Research 60 (10):2130–40. doi: 10.1002/mnfr.201600250.
  • Sandhu, A. K., M. G. Miller, N. Thangthaeng, T. M. Scott, B. Shukitt-Hale, I. Edirisinghe, and B. Burton-Freeman. 2018. Metabolic fate of strawberry polyphenols after chronic intake in healthy older adults. Food & Function 9 (1):96–106. doi: 10.1039/c7fo01843f.
  • Scerbak, C., E. Vayndorf, A. Hernandez, C. McGill, and B. Taylor. 2018. Lowbush cranberry acts through DAF-16/FOXO signaling to promote increased lifespan and axon branching in aging posterior touch receptor neurons. GeroScience 40 (2):151–62. doi: 10.1007/s11357-018-0016-0.
  • Scerbak, C., E. M. Vayndorf, A. Hernandez, C. McGill, and B. E. Taylor. 2016. Mechanosensory neuron aging: Differential trajectories with lifespan-extending Alaskan berry and fungal treatments in Caenorhabditis elegans. Frontiers in Aging Neuroscience 8 (173):173.
  • Scheiblich, H., M. Trombly, A. Ramirez, and M. T. Heneka. 2020. Neuroimmune connections in aging and neurodegenerative diseases. Trends in Immunology 41 (4):300–12. doi: 10.1016/j.it.2020.02.002.
  • Sender, R., S. Fuchs, and R. Milo. 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS Biology 14 (8):e1002533.
  • Shin, S., S. H. Cho, D. Park, and E. Jung. 2020. Anti‐skin aging properties of protocatechuic acid in vitro and in vivo. Journal of Cosmetic Dermatology 19 (4):977–84. doi: 10.1111/jocd.13086.
  • Song, Q., J. Liu, L. Dong, X. Wang, and X. Zhang. 2021. Novel advances in inhibiting advanced glycation end product formation using natural compounds. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 140:111750. doi: 10.1016/j.biopha.2021.111750.
  • Su, H., L. Xie, Y. Xu, H. Ke, T. Bao, Y. Li, and W. Chen. 2020. Pelargonidin-3-O-glucoside derived from wild raspberry exerts antihyperglycemic effect by inducing autophagy and modulating gut microbiota. Journal of Agricultural and Food Chemistry 68 (46):13025–37. doi: 10.1021/acs.jafc.9b03338.
  • Sun, K., Y. Sun, H. Li, D. Han, Y. Bai, R. Zhao, and Z. Guo. 2020. Anti-ageing effect of Physalis alkekengi ethyl acetate layer on a d-galactose-induced mouse model through the reduction of cellular senescence and oxidative stress. International Journal of Molecular Sciences 21 (5):1836. doi: 10.3390/ijms21051836.
  • Talavéra, S., C. Felgines, O. Texier, C. Besson, J.-L. Lamaison, and C. Rémésy. 2003. Anthocyanins are efficiently absorbed from the stomach in anesthetized rats. The Journal of Nutrition 133 (12):4178–82. doi: 10.1093/jn/133.12.4178.
  • Tambara, A. L., L. d L. S. Moraes, A. H. Dal Forno, J. R. Boldori, A. T. G. Soares, C. de Freitas Rodrigues, L. R. B. Mariutti, A. Z. Mercadante, D. S. de Ávila, and C. C. Denardin. 2018. Purple pitanga fruit (Eugenia uniflora L.) protects against oxidative stress and increase the lifespan in Caenorhabditis elegans via the DAF-16/FOXO pathway. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 120:639–50. doi: 10.1016/j.fct.2018.07.057.
  • Tan, J. B. L, and Y. Y. Lim. 2015. Critical analysis of current methods for assessing the in vitro antioxidant and antibacterial activity of plant extracts. Food Chemistry 172:814–22.
  • Thilavech, T., S. Ngamukote, D. Belobrajdic, M. Abeywardena, and S. Adisakwattana. 2016. Cyanidin-3-rutinoside attenuates methylglyoxal-induced protein glycation and DNA damage via carbonyl trapping ability and scavenging reactive oxygen species. BMC Complementary and Alternative Medicine 16 (1):1–10. doi: 10.1186/s12906-016-1133-x.
  • Tullet, J. M., M. Hertweck, J. H. An, J. Baker, J. Y. Hwang, S. Liu, R. P. Oliveira, R. Baumeister, and T. K. Blackwell. 2008. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell 132 (6):1025–38. doi: 10.1016/j.cell.2008.01.030.
  • van de Klashorst, D., A. van den Elzen, J. Weeteling, M. Roberts, T. Desai, L. Bottoms, and S. Hughes. 2020. Montmorency tart cherry (Prunus cerasus L.) acts as a calorie restriction mimetic that increases intestinal fat and lifespan in Caenorhabditis elegans. Journal of Functional Foods 68:103890. doi: 10.1016/j.jff.2020.103890.
  • Wang, B., Y. Xu, L. Chen, G. Zhao, Z. Mi, D. Lv, and J. Niu. 2020. Optimizing the extraction of polysaccharides from Bletilla ochracea Schltr. using response surface methodology (RSM) and evaluating their antioxidant activity. Processes 8 (3):341. doi: 10.3390/pr8030341.
  • Wang, D., T. Zou, Y. Yang, X. Yan, and W. Ling. 2011. Cyanidin-3-O-β-glucoside with the aid of its metabolite protocatechuic acid, reduces monocyte infiltration in apolipoprotein E-deficient mice. Biochemical Pharmacology 82 (7):713–9. doi: 10.1016/j.bcp.2011.04.007.
  • Wang, L., Y. M. Li, L. Lei, Y. Liu, X. Wang, K. Y. Ma, C. Zhang, H. Zhu, Y. Zhao, and Z.-Y. Chen. 2016. Purple sweet potato anthocyanin attenuates fat-induced mortality in Drosophila melanogaster. Experimental Gerontology 82:95–103.
  • Wang, Y., H. Wang, T. Ma, G. Liu, X. Feng, X. Liu, X. Ma, S. Liu, D. Shi, and B. Wang. 2022. Hawthorn extract inhibited the PI3k/Akt pathway to prolong the lifespan of Drosophila melanogaster. Journal of Food Biochemistry :e14169.
  • Wang, Z., L. Sun, Z. Fang, T. Nisar, L. Zou, D. Li, and Y. Guo. 2021. Lycium ruthenicum Murray anthocyanins effectively inhibit α-glucosidase activity and alleviate insulin resistance. Food Bioscience 41:100949. doi: 10.1016/j.fbio.2021.100949.
  • Xiong, L., N. Deng, B. Zheng, T. Li, and R. H. Liu. 2021. HSF-1 and SIR-2.1 linked insulin-like signaling is involved in goji berry (Lycium spp.) extracts promoting lifespan extension of Caenorhabditis elegans. Food & Function 12 (17):7851–66. doi: 10.1039/d0fo03300f.
  • Xue, F., X. Li, L. Qin, X. Liu, C. Li, and B. Adhikari. 2021. Anti-aging properties of phytoconstituents and phyto-nanoemulsions and their application in managing aging-related diseases. Advanced Drug Delivery Reviews 176:113886.
  • Yan, F., Y. Chen, R. Azat, and X. Zheng. 2017. Mulberry anthocyanin extract ameliorates oxidative damage in HepG2 cells and prolongs the lifespan of Caenorhabditis elegans through MAPK and Nrf2 pathways. Oxidative Medicine and Cellular Longevity 2017:1–12. doi: 10.1155/2017/7956158.
  • Yan, F., X. Chen, and X. Zheng. 2017. Protective effect of mulberry fruit anthocyanin on human hepatocyte cells (LO2) and Caenorhabditis elegans under hyperglycemic conditions. Food Research International (Ottawa, Ont.) 102:213–24.
  • Yan, Y., Y. Peng, J. Tang, J. Mi, L. Lu, X. Li, L. Ran, X. Zeng, and Y. Cao. 2018. Effects of anthocyanins from the fruit of Lycium ruthenicum Murray on intestinal microbiota. Journal of Functional Foods 48:533–41. doi: 10.1016/j.jff.2018.07.053.
  • Zhang, G., J. Li, S. Purkayastha, Y. Tang, H. Zhang, Y. Yin, B. Li, G. Liu, and D. Cai. 2013. Hypothalamic programming of systemic ageing involving IKK-β, NF-κB and GnRH. Nature 497 (7448):211–6. doi: 10.1038/nature12143.
  • Zhang, H., Y. I. Hassan, J. Renaud, R. Liu, C. Yang, Y. Sun, and R. Tsao. 2017. Bioaccessibility, bioavailability, and anti‐inflammatory effects of anthocyanins from purple root vegetables using mono‐and co‐culture cell models. Molecular Nutrition & Food Research 61 (10):1600928. doi: 10.1002/mnfr.201600928.
  • Zhang, N., S. Jiao, and P. Jing. 2021. Red cabbage rather than green cabbage increases stress resistance and extends the lifespan of Caenorhabditis elegans. Antioxidants 10 (6):930. doi: 10.3390/antiox10060930.
  • Zhang, Q, and E. G. de Mejia. 2020. Protocatechuic acid attenuates adipogenesis-induced inflammation and mitochondrial dysfunction in 3T3-L1 adipocytes by regulation of AMPK pathway. Journal of Functional Foods 69:103972. doi: 10.1016/j.jff.2020.103972.
  • Zhang, W., L. Chen, Y. Xiong, A. C. Panayi, A. Abududilibaier, Y. Hu, C. Yu, W. Zhou, Y. Sun, and M. Liu. 2021. Antioxidant therapy and antioxidant-related bionanomaterials in diabetic wound healing. Frontiers in Bioengineering and Biotechnology 9:554.
  • Zhang, X., G. F. Shi, X. Z, Liu, L. J. An, and S. Guan. 2011. Anti‐ageing effects of protocatechuic acid from Alpinia on spleen and liver antioxidative system of senescent mice. Cell Biochemistry and Function 29 (4):342–7. doi: 10.1002/cbf.1757.
  • Zhang, X., H. Wang, Y. Han, Y. Pei, Y. Guo, and S. W. Cui. 2021. Purple sweet potato extract maintains intestinal homeostasis and extend lifespan through increasing autophagy in female Drosophila melanogaster. Journal of Food Biochemistry 45 (8):e13861. doi: 10.1111/jfbc.13861.
  • Zhao, J., J. Yu, Q. Zhi, T. Yuan, X. Lei, K. Zeng, and J. Ming. 2021. Anti-aging effects of the fermented anthocyanin extracts of purple sweet potato on Caenorhabditis elegans. Food & Function 12 (24):12647–58. doi: 10.1039/d1fo02671b.
  • Zhou, H., S. Ding, C. Sun, J. Fu, D. Yang, X. E. Wang, C.-C. Wang, and L. Wang. 2021. Lycium barbarum extracts extend lifespan and alleviate proteotoxicity in Caenorhabditis elegans. Frontiers in Nutrition 8:815947. doi: 10.3389/fnut.2021.815947.
  • Zhou, L., H. Wang, J. Yi, B. Yang, M. Li, D. He, W. Yang, Y. Zhang, and H. Ni. 2018. Anti-tumor properties of anthocyanins from Lonicera caerulea ‘Beilei’fruit on human hepatocellular carcinoma: In vitro and in vivo study. Biomedicine & Pharmacotherapy = Biomedecine & pharmacotherapie 104:520–9. doi: 10.1016/j.biopha.2018.05.057.
  • Zhou, L., M. Xie, F. Yang, and J. Liu. 2020. Antioxidant activity of high purity blueberry anthocyanins and the effects on human intestinal microbiota. LWT 117:108621. doi: 10.1016/j.lwt.2019.108621.
  • Zou, T.-B., D. Feng, G. Song, H.-W. Li, H.-W. Tang, and W.-H. Ling. 2014. The role of sodium-dependent glucose transporter 1 and glucose transporter 2 in the absorption of cyanidin-3-O-β-glucoside in Caco-2 cells. Nutrients 6 (10):4165–77. doi: 10.3390/nu6104165.
  • Zuo, Y., C. Peng, Y. Liang, K. Y. Ma, H. Yu, H. Y. E. Chan, and Z.-Y. Chen. 2012. Black rice extract extends the lifespan of fruit flies. Food & Function 3 (12):1271–9. doi: 10.1039/c2fo30135k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.