1,278
Views
12
CrossRef citations to date
0
Altmetric
Review

New perspectives on electrospun nanofiber applications in smart and active food packaging materials

, , , , ORCID Icon, & ORCID Icon show all

References

  • Agarwal, A., A. Raheja, T. S. Natarajan, and T. S. Chandra. 2012. Development of universal pH sensing electrospun nanofibers. Sensors and Actuators B: Chemical 161 (1):1097–101. doi: 10.1016/j.snb.2011.12.027.
  • Aghaei, Z., B. Ghorani, B. Emadzadeh, R. Kadkhodaee, and N. Tucker. 2020. Protein-based halochromic electrospun nanosensor for monitoring trout fish freshness. Food Control. 111:107065. doi: 10.1016/j.foodcont.2019.107065.
  • Ahmed, I., H. Lin, L. Zou, A. L. Brody, Z. Li, I. M. Qazi, T. R. Pavase, and L. Lv. 2017. A comprehensive review on the application of active packaging technologies to muscle foods. Food Control. 82:163–78. doi: 10.1016/j.foodcont.2017.06.009.
  • Alehosseini, E, and S. M. Jafari. 2019. Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry. Trends in Food Science & Technology 91:116–28. doi: 10.1016/j.tifs.2019.07.003.
  • Alehosseini, E, and S. M. Jafari. 2020. Nanoencapsulation of phase change materials (PCMs) and their applications in various fields for energy storage and management. Advances in Colloid and Interface Science 283:102226. doi: 10.1016/j.cis.2020.102226.
  • Alizadeh Sani, M., M. Maleki, H. Eghbaljoo-Gharehgheshlaghi, A. Khezerlou, E. Mohammadian, Q. Liu, and S. M. Jafari. 2022b. Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films. Advances in Colloid and Interface Science 300:102593. 10.1016/j.cis.2021.102593.
  • Alizadeh Sani, M., M. Tavassoli, S. A. Salim, M. Azizi-Lalabadi, and D. J. McClements. 2022a. Development of green halochromic smart and active packaging materials: TiO2 nanoparticle- and anthocyanin-loaded gelatin/κ-carrageenan films. Food Hydrocolloids. 124:107324. doi: 10.1016/j.foodhyd.2021.107324.
  • Alizadeh-Sani, M., E. Mohammadian, J.-W. Rhim, and S. M. Jafari. 2020b. pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality. Trends in Food Science & Technology 105:93–144. doi: 10.1016/j.tifs.2020.08.014.
  • Alizadeh-Sani, M., H. Hamishehkar, A. Khezerlou, M. Maleki, M. Azizi-Lalabadi, V. Bagheri, P. Safaei, T. Azimi, M. Hashemi, and A. Ehsani. 2020a. Kinetics analysis and susceptibility coefficient of the pathogenic bacteria by titanium dioxide and zinc oxide nanoparticles. Advanced Pharmaceutical Bulletin 10 (1):56–64. doi: 10.15171/apb.2020.007.
  • Al-Moghazy, M., M. Mahmoud, and A. A. Nada. 2020. Fabrication of cellulose-based adhesive composite as an active packaging material to extend the shelf life of cheese. International Journal of Biological Macromolecules 160:264–75. 10.1016/j.ijbiomac.2020.05.217.
  • Ansarifar, E, and F. Moradinezhad. 2021. Preservation of strawberry fruit quality via the use of active packaging with encapsulated thyme essential oil in zein nanofiber film. International Journal of Food Science & Technology 56 (9 (SP: Nanotechnology)):4239–47. doi: 10.1111/ijfs.15130.
  • Arkoun, M., F. Daigle, R. A. Holley, M. C. Heuzey, and A. Ajji. 2018. Chitosan-based nanofibers as bioactive meat packaging materials. Packaging Technology and Science 31 (4):185–95. doi: 10.1002/pts.2366.
  • Aydogdu, A., E. Yildiz, Y. Aydogdu, G. Sumnu, S. Sahin, and Z. Ayhan. 2019. Enhancing oxidative stability of walnuts by using gallic acid loaded lentil flour based electrospun nanofibers as active packaging material. Food Hydrocolloids. 95:245–55. doi: 10.1016/j.foodhyd.2019.04.020.
  • Azizi-Lalabadi, M., M. Alizadeh-Sani, A. Khezerlou, M. Mirzanajafi-Zanjani, H. Zolfaghari, V. Bagheri, B. Divband, and A. Ehsani. 2019. Nanoparticles and zeolites: Antibacterial effects and their mechanism against pathogens. Current Pharmaceutical Biotechnology 20 (13):1074–86. doi: 10.2174/1573397115666190708120040.
  • Babapoor, A., G. Karimi, and M. Khorram. 2016. Fabrication and characterization of nanofiber-nanoparticle-composites with phase change materials by electrospinning. Applied Thermal Engineering 99:1225–35. doi: 10.1016/j.applthermaleng.2016.02.026.
  • Balbinot-Alfaro, E., D. V. Craveiro, K. O. Lima, H. L. G. Costa, D. R. Lopes, and C. Prentice. 2019. Intelligent packaging with pH indicator potential. Food Engineering Reviews 11 (4):235–44. doi: 10.1007/s12393-019-09198-9.
  • Begum, H. A, and K. Khan. 2017. Study on the various types of needle based and needleless electrospinning system for nanofiber production. International Journal of Textile Science 6:110–7.
  • Beikzadeh, S., S. M. Hosseini, V. Mofid, S. Ramezani, M. Ghorbani, A. Ehsani, and A. M. Mortazavian. 2021. Electrospun ethyl cellulose/poly caprolactone/gelatin nanofibers: The investigation of mechanical, antioxidant, and antifungal properties for food packaging. International Journal of Biological Macromolecules 191:457–64. doi: 10.1016/j.ijbiomac.2021.09.065.
  • Bhushani, J. A, and C. Anandharamakrishnan. 2014. Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science & Technology 38 (1):21–33. doi: 10.1016/j.tifs.2014.03.004.
  • Biji, K. B., C. N. Ravishankar, C. O. Mohan, and T. K. Srinivasa Gopal. 2015. Smart packaging systems for food applications: A review. Journal of Food Science and Technology 52 (10):6125–35. doi: 10.1007/s13197-015-1766-7.
  • Böhmer-Maas, B. W., L. M. Fonseca, D. M. Otero, E. da Rosa Zavareze, and R. C. Zambiazi. 2020. Photocatalytic zein-TiO2 nanofibers as ethylene absorbers for storage of cherry tomatoes. Food Packaging and Shelf Life 24:100508. doi: 10.1016/j.fpsl.2020.100508.
  • Camposeo, A., M. Moffa, and L. Persano. 2015. Electrospinning for high performance sensors, ed. Macagnano, A., 129. Cham, Switzerland: Springer Cham.
  • Chalco-Sandoval, W., M. J. Fabra, A. López-Rubio, and J. M. Lagaron. 2017. Use of phase change materials to develop electrospun coatings of interest in food packaging applications. Journal of Food Engineering 192:122–8. doi: 10.1016/j.jfoodeng.2015.01.019.
  • Cherpinski, A., M. Gozutok, H. Sasmazel, S. Torres-Giner, and J. Lagaron. 2018. Electrospun oxygen scavenging films of poly (3-hydroxybutyrate) containing palladium nanoparticles for active packaging applications. Nanomaterials 8 (7):469. doi: 10.3390/nano8070469.
  • Cherpinski, A., P. Szewczyk, A. Gruszczyński, U. Stachewicz, and J. Lagaron. 2019. Oxygen-scavenging multilayered biopapers containing palladium nanoparticles obtained by the electrospinning coating technique. Nanomaterials 9 (2):262. doi: 10.3390/nano9020262.
  • Chowdhury, E, and A. Morey. 2020. Application of optical technologies in the US poultry slaughter facilities for the detection of poultry carcase condemnation. British Poultry Science 61 (6):646–52. doi: 10.1080/00071668.2020.1792833.
  • Colussi, R., W. M. Ferreira da Silva, B. Biduski, S. L. Mello El Halal, E. da Rosa Zavareze, and A. R. Guerra Dias. 2021. Postharvest quality and antioxidant activity extension of strawberry fruit using allyl isothiocyanate encapsulated by electrospun zein ultrafine fibers. LWT 143:111087. doi: 10.1016/j.lwt.2021.111087.
  • Dey, A, and S. Neogi. 2019. Oxygen scavengers for food packaging applications: A review. Trends in Food Science & Technology 90:26–34. doi: 10.1016/j.tifs.2019.05.013.
  • Drago, E., R. Campardelli, M. Pettinato, and P. Perego. 2020. Innovations in smart packaging concepts for food: An extensive review. Foods 9 (11):1628. doi: 10.3390/foods9111628.
  • Duan, M., S. Yu, J. Sun, H. Jiang, J. Zhao, C. Tong, Y. Hu, J. Pang, and C. Wu. 2021. Development and characterization of electrospun nanofibers based on pullulan/chitin nanofibers containing curcumin and anthocyanins for active-intelligent food packaging. International Journal of Biological Macromolecules 187:332–40. doi: 10.1016/j.ijbiomac.2021.07.140.
  • Dudnyk, I., E.-R. Janeček, J. Vaucher-Joset, and F. Stellacci. 2018. Edible sensors for meat and seafood freshness. Sensors and Actuators B: Chemical 259:1108–12. doi: 10.1016/j.snb.2017.12.057.
  • Dumitriu, R. P., E. Stoleru, G. R. Mitchell, C. Vasile, and M. Brebu. 2021. Bioactive electrospun fibers of poly (ε-caprolactone) incorporating α-tocopherol for food packaging applications. Molecules 26 (18):5498. doi: 10.3390/molecules26185498.
  • E, K., M. K, B. P, T. S. A, and J. C. R. I. 2019. Biocompatible silver nanoparticles/poly (vinyl alcohol) electrospun nanofibers for potential antimicrobial food packaging applications. Food Packaging and Shelf Life 21:100379. doi: 10.1016/j.fpsl.2019.100379.
  • Ebrahimzadeh, S., M. R. Bari, H. Hamishehkar, H. S. Kafil, and L.-T. Lim. 2021. Essential oils-loaded electrospun chitosan-poly (vinyl alcohol) nonwovens laminated on chitosan film as bilayer bioactive edible films. LWT 144:111217. doi: 10.1016/j.lwt.2021.111217.
  • El-Naggar, M. E., M. H. El-Newehy, A. Aldalbahi, W. M. Salem, and T. A. Khattab. 2021. Immobilization of anthocyanin extract from red-cabbage into electrospun polyvinyl alcohol nanofibers for colorimetric selective detection of ferric ions. Journal of Environmental Chemical Engineering 9 (2):105072. doi: 10.1016/j.jece.2021.105072.
  • Fabra, M. J., A. López-Rubio, J. Ambrosio-Martín, and J. M. Lagaron. 2016. Improving the barrier properties of thermoplastic corn starch-based films containing bacterial cellulose nanowhiskers by means of PHA electrospun coatings of interest in food packaging. Food Hydrocolloids. 61:261–8. doi: 10.1016/j.foodhyd.2016.05.025.
  • Fang, G., H. Li, and X. Liu. 2010. Preparation and properties of lauric acid/silicon dioxide composites as form-stable phase change materials for thermal energy storage. Materials Chemistry and Physics 122 (2–3):533–6. doi: 10.1016/j.matchemphys.2010.03.042.
  • Farid, M. M., A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj. 2004. A review on phase change energy storage: Materials and applications. Energy Conversion and Management 45 (9–10):1597–615. doi: 10.1016/j.enconman.2003.09.015.
  • Feng, J. 2002. The stretching of an electrified non-Newtonian jet: A model for electrospinning. Physics of Fluids 14 (11):3912–26. doi: 10.1063/1.1510664.
  • Forghani, S., H. Almasi, and M. Moradi. 2021. Electrospun nanofibers as food freshness and time-temperature indicators: A new approach in food intelligent packaging. Innovative Food Science & Emerging Technologies 73:102804. doi: 10.1016/j.ifset.2021.102804.
  • Gaikwad, K. K., S. Singh, and Y. S. Negi. 2020. Ethylene scavengers for active packaging of fresh food produce. Environmental Chemistry Letters 18 (2):269–84. doi: 10.1007/s10311-019-00938-1.
  • Ge, L., Y-s Zhao, T. Mo, J-r Li, and P. Li. 2012. Immobilization of glucose oxidase in electrospun nanofibrous membranes for food preservation. Food Control. 26 (1):188–93. doi: 10.1016/j.foodcont.2012.01.022.
  • Ghoshal, G. 2018. Recent trends in active, smart, and intelligent packaging for food products. In Food packaging and preservation, 343–74. Sawston, Cambridge; Elsevier.
  • Göksen, G., M. J. Fabra, A. Pérez-Cataluña, H. I. Ekiz, G. Sanchez, and A. López-Rubio. 2021. Biodegradable active food packaging structures based on hybrid cross-linked electrospun polyvinyl alcohol fibers containing essential oils and their application in the preservation of chicken breast fillets. Food Packaging and Shelf Life 27:100613. doi: 10.1016/j.fpsl.2020.100613.
  • Göksen, G., M. J. Fabra, H. I. Ekiz, and A. López-Rubio. 2020. Phytochemical-loaded electrospun nanofibers as novel active edible films: Characterization and antibacterial efficiency in cheese slices. Food Control. 112:107133. doi: 10.1016/j.foodcont.2020.107133.
  • Guo, M., H. Wang, Q. Wang, M. Chen, L. Li, X. Li, and S. Jiang. 2020. Intelligent double-layer fiber mats with high colorimetric response sensitivity for food freshness monitoring and preservation. Food Hydrocolloids. 101:105468. doi: 10.1016/j.foodhyd.2019.105468.
  • Hemmati, F., A. Bahrami, A. F. Esfanjani, H. Hosseini, D. J. McClements, and L. Williams. 2021. Electrospun antimicrobial materials: Advanced packaging materials for food applications. Trends in Food Science & Technology 111:520–33. doi: 10.1016/j.tifs.2021.03.014.
  • Ioan, B., A. ODAGIU, C. Balint, et al. 2020. The traits of smart packaging. ProEnvironment Promediu 13 (44):152–159.
  • Jhuang, J.-R., S.-B. Lin, L.-C. Chen, S.-N. Lou, S.-H. Chen, and H.-H. Chen. 2020. Development of immobilized laccase-based time temperature indicator by electrospinning zein fiber. Food Packaging and Shelf Life 23:100436. doi: 10.1016/j.fpsl.2019.100436.
  • Jirsak, O., P. Sysel, F. Sanetrnik, J. Hruza, and J. Chaloupek. 2010. Polyamic acid nanofibers produced by needleless electrospinning. Journal of Nanomaterials 2010:1–6. doi: 10.1155/2010/842831.
  • Jovanska, L., C.-H. Chiu, Y.-C. Yeh, W.-D. Chiang, C.-C. Hsieh, and R. Wang. 2022. Development of a PCL-PEO double network colorimetric pH sensor using electrospun fibers containing Hibiscus rosa sinensis extract and silver nanoparticles for food monitoring. Food Chemistry 368:130813. doi: 10.1016/j.foodchem.2021.130813.
  • Kalpana, S., S. R. Priyadarshini, M. Maria Leena, J. A. Moses, and C. Anandharamakrishnan. 2019. Intelligent packaging: Trends and applications in food systems. Trends in Food Science & Technology 93:145–57. doi: 10.1016/j.tifs.2019.09.008.
  • Karami, N., A. Kamkar, Y. Shahbazi, and A. Misaghi. 2021. Electrospinning of double-layer chitosan-flaxseed mucilage nanofibers for sustained release of Ziziphora clinopodioides essential oil and sesame oil. LWT 140:110812. doi: 10.1016/j.lwt.2020.110812.
  • Khezerlou, A., H. Zolfaghari, S. A. Banihashemi, S. Forghani, and A. Ehsani. 2021b. Plant gums as the functional compounds for edible films and coatings in the food industry: A review. Polymers for Advanced Technologies 32 (6):2306–26. doi: 10.1002/pat.5293.
  • Khezerlou, A., M. Tavassoli, M. Alizadeh Sani, K. Mohammadi, A. Ehsani, and D. J. McClements. 2021a. Application of nanotechnology to improve the performance of biodegradable biopolymer-based packaging materials. Polymers 13 (24):4399. doi: 10.3390/polym13244399.
  • Kim, I.-D., S.-J. Choi, and H.-J. Cho. 2015. Graphene-based composite materials for chemical sensor application. Electrospinning for High Performance Sensors 96 :65–101.
  • Kordjazi, Z, and A. Ajji. 2022. Development of TiO2 photocatalyzed EC/HTPB based oxygen scavenging mats by electrospinning method for packaging applications. Food Packaging and Shelf Life 31:100801. doi: 10.1016/j.fpsl.2021.100801.
  • Kouhi, M., M. P. Prabhakaran, and S. Ramakrishna. 2020. Edible polymers: An insight into its application in food, biomedicine and cosmetics. Trends in Food Science & Technology 103:248–63. doi: 10.1016/j.tifs.2020.05.025.
  • Kowalczyk, T., A. Nowicka, D. Elbaum, and T. A. Kowalewski. 2008. Electrospinning of bovine serum albumin. Optimization and the use for production of biosensors. Biomacromolecules 9 (7):2087–90. doi: 10.1021/bm800421s.
  • Kuntzler, S. G., J. A. V. Costa, A. P. D. R. Brizio, and M. G. d Morais. 2020. Development of a colorimetric pH indicator using nanofibers containing Spirulina sp. LEB 18. Food Chemistry 328:126768. doi: 10.1016/j.foodchem.2020.126768.
  • Kuntzler, S. G., J. A. V. Costa, and M. G. de Morais. 2018. Development of electrospun nanofibers containing chitosan/PEO blend and phenolic compounds with antibacterial activity. International Journal of Biological Macromolecules 117:800–6. doi: 10.1016/j.ijbiomac.2018.05.224.
  • Kuswandi, B. 2017. Freshness sensors for food packaging. Reference Module in Food Science :1–11. doi:10.1016/B978-0-08-100596-5.21876-3
  • Li, C., W. Chen, S. Siva, H. Cui, and L. Lin. 2021b. Electrospun phospholipid nanofibers encapsulated with cinnamaldehyde/HP-β-CD inclusion complex as a novel food packaging material. Food Packaging and Shelf Life 28:100647. doi: 10.1016/j.fpsl.2021.100647.
  • Li, Y., J. Zhu, H. Cheng, G. Li, H. Cho, M. Jiang, Q. Gao, and X. Zhang. 2021a. Developments of advanced electrospinning techniques: A critical review. Advanced Materials Technologies 6 (11):2100410. doi: 10.1002/admt.202100410.
  • Lin, L., Y. Zhu, and H. Cui. 2018. Electrospun thyme essential oil/gelatin nanofibers for active packaging against Campylobacter jejuni in chicken. LWT 97:711–8. doi: 10.1016/j.lwt.2018.08.015.
  • Liu, Y., M. Hao, Z. Chen, L. Liu, Y. Liu, W. Yang, and S. Ramakrishna. 2020. A review on recent advances in application of electrospun nanofiber materials as biosensors. Current Opinion in Biomedical Engineering 13:174–89. doi: 10.1016/j.cobme.2020.02.001.
  • Luo, S., A. Saadi, K. Fu, M. Taxipalati, and L. Deng. 2021. Fabrication and characterization of dextran/zein hybrid electrospun fibers with tailored properties for controlled release of curcumin. Journal of the Science of Food and Agriculture 101 (15):6355–67. doi: 10.1002/jsfa.11306.
  • Luo, X, and L.-T. Lim. 2020. Curcumin-loaded electrospun nonwoven as a colorimetric indicator for volatile amines. LWT 128:109493. doi: 10.1016/j.lwt.2020.109493.
  • Maftoonazad, N, and H. Ramaswamy. 2019. Design and testing of an electrospun nanofiber mat as a pH biosensor and monitor the pH associated quality in fresh date fruit (Rutab). Polymer Testing 75:76–84. doi: 10.1016/j.polymertesting.2019.01.011.
  • Mahmood, K., H. Kamilah, A. K. Alias, F. Ariffin, and A. Mohammadi Nafchi. 2022. Functionalization of electrospun fish gelatin mats with bioactive agents: Comparative effect on morphology, thermo‐mechanical, antioxidant, antimicrobial properties, and bread shelf stability. Food Science & Nutrition 10 (2):584–96. doi: 10.1002/fsn3.2676.
  • Mancipe, J. M. A., S. V. G. Nista, G. E. R. Caballero, and L. H. I. Mei. 2021. Thermochromic and/or photochromic properties of electrospun cellulose acetate microfibers for application as sensors in smart packing. Journal of Applied Polymer Science 138 (11):50039. doi: 10.1002/app.50039.
  • Manikandan, V. S., B. Adhikari, and A. Chen. 2018. Nanomaterial based electrochemical sensors for the safety and quality control of food and beverages. The Analyst 143 (19):4537–54. doi: 10.1039/c8an00497h.
  • Marx, S., M. V. Jose, J. D. Andersen, and A. J. Russell. 2011. Electrospun gold nanofiber electrodes for biosensors. Biosensors & Bioelectronics 26 (6):2981–6. doi: 10.1016/j.bios.2010.11.050.
  • Mathiazhagan, S., V. Periasamy, and A. Vadivel. 2021. Ecofriendly antimicrobial Acalypha indica leaf extract immobilized polycaprolactone nanofibrous mat for food package applications. Journal of Food Processing and Preservation 45 (4):e15302. doi: 10.1111/jfpp.15302.
  • Mihindukulasuriya, S. D, and L.-T. Lim. 2013. Oxygen detection using UV-activated electrospun poly (ethylene oxide) fibers encapsulated with TiO2 nanoparticles. Journal of Materials Science 48 (16):5489–98. doi: 10.1007/s10853-013-7343-4.
  • Min, T., X. Sun, Z. Yuan, L. Zhou, X. Jiao, J. Zha, Z. Zhu, and Y. Wen. 2021. Novel antimicrobial packaging film based on porous poly(lactic acid) nanofiber and polymeric coating for humidity-controlled release of thyme essential oil. LWT 135:110034. doi: 10.1016/j.lwt.2020.110034.
  • Mirza Alizadeh, A., M. Masoomian, M. Shakooie, M. Zabihzadeh Khajavi, and M. Farhoodi. 2022b. Trends and applications of intelligent packaging in dairy products: A review. Critical Reviews in Food Science and Nutrition 62 (2):383–97. doi: 10.1080/10408398.2020.1817847.
  • Mirza Alizadeh, A., S. A. Golzan, A. Mahdavi, S. Dakhili, Z. Torki, and H. Hosseini. 2022a. Recent advances on the efficacy of essential oils on mycotoxin secretion and their mode of action. Critical Reviews in Food Science and Nutrition 62 (17):4726–51. doi: 10.1080/10408398.2021.1878102.
  • Moreira, J. B., M. G. de Morais, E. G. de Morais, et al. 2018. Electrospun polymeric nanofibers in food packaging. Impact of nanoscience in the food industry, 387–417. Sawston, Cambridge: Elsevier.
  • Mustafa, F, and S. Andreescu. 2018. Chemical and biological sensors for food-quality monitoring and smart packaging. Foods 7 (10):168. doi: 10.3390/foods7100168.
  • Narsaiah, K., S. N. Jha, R. Bhardwaj, R. Sharma, and R. Kumar. 2012. Optical biosensors for food quality and safety assurance—a review. Journal of Food Science and Technology 49 (4):383–406. doi: 10.1007/s13197-011-0437-6.
  • Nazari, M., H. Majdi, M. Milani, S. Abbaspour-Ravasjani, H. Hamishehkar, and L.-T. Lim. 2019. Cinnamon nanophytosomes embedded electrospun nanofiber: Its effects on microbial quality and shelf-life of shrimp as a novel packaging. Food Packaging and Shelf Life 21:100349. doi: 10.1016/j.fpsl.2019.100349.
  • Parin, F. N., P. Terzioğlu, Y. Sicak, K. Yildirim, and M. Öztürk. 2021. Pine honey–loaded electrospun poly (vinyl alcohol)/gelatin nanofibers with antioxidant properties. The Journal of the Textile Institute 112 (4):628–35. doi: 10.1080/00405000.2020.1773199.
  • Patiño Vidal, C., C. López de Dicastillo, F. Rodríguez-Mercado, A. Guarda, M. J. Galotto, and C. Muñoz-Shugulí. 2022. Electrospinning and cyclodextrin inclusion complexes: An emerging technological combination for developing novel active food packaging materials. Critical Reviews in Food Science and Nutrition 62 (20):5495–510. doi: 10.1080/10408398.2021.1886038.
  • Patiño Vidal, C., E. Velásquez, M. J. Galotto, and C. López de Dicastillo. 2022. Development of an antibacterial coaxial bionanocomposite based on electrospun core/shell fibers loaded with ethyl lauroyl arginate and cellulose nanocrystals for active food packaging. Food Packaging and Shelf Life 31:100802. doi: 10.1016/j.fpsl.2021.100802.
  • Pavelková, A. 2013. Time temperature indicators as devices intelligent packaging. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 61 (1):245–51. doi: 10.11118/actaun201361010245.
  • Perez-Masia, R., A. Lopez-Rubio, M. J. Fabra, and J. M. Lagaron. 2013. Biodegradable polyester‐based heat management materials of interest in refrigeration and smart packaging coatings. Journal of Applied Polymer Science 130 (5):3251–62. doi: 10.1002/app.39555.
  • Phan, D.-N., M. Q. Khan, V.-C. Nguyen, H. Vu-Manh, A.-T. Dao, P. Thanh Thao, N.-M. Nguyen, V.-T. Le, A. Ullah, M. Khatri, et al. 2021. Investigation of mechanical, chemical, and antibacterial properties of electrospun cellulose-based scaffolds containing orange essential oil and silver nanoparticles. Polymers 14 (1):85. doi: 10.3390/polym14010085.
  • Pignataro, R. R. D. G. 2020. Antimicrobial activity of different concentrations of colloidal silver applied to dental implants with external hexagon platform: In vitro study. São Paulo, Brazil: Universidade Estadual Paulista.
  • Pinheiro Bruni, G., J. P. de Oliveira, L. G. Gómez-Mascaraque, M. J. Fabra, V. Guimarães Martins, E. d R. Zavareze, and A. López-Rubio. 2020. Electrospun β-carotene–loaded SPI: PVA fiber mats produced by emulsion-electrospinning as bioactive coatings for food packaging. Food Packaging and Shelf Life 23:100426. doi: 10.1016/j.fpsl.2019.100426.
  • Piri, H., S. Moradi, and R. Amiri. 2021. The fabrication of a novel film based on polycaprolactone incorporated with chitosan and rutin: Potential as an antibacterial carrier for rainbow trout packaging. Food Science and Biotechnology 30 (5):683–90. doi: 10.1007/s10068-021-00898-9.
  • Portes, E., C. Gardrat, A. Castellan, and V. Coma. 2009. Environmentally friendly films based on chitosan and tetrahydrocurcuminoid derivatives exhibiting antibacterial and antioxidative properties. Carbohydrate Polymers 76 (4):578–84. doi: 10.1016/j.carbpol.2008.11.031.
  • Prasad, P, and A. Kochhar. 2014. Active packaging in food industry: A review. IOSR Journal of Environmental Science, Toxicology and Food Technology 8 (5):1–7. doi: 10.9790/2402-08530107.
  • Ronkainen, N. J., H. B. Halsall, and W. R. Heineman. 2010. Electrochemical biosensors. Chemical Society Reviews 39 (5):1747–63. doi: 10.1039/b714449k.
  • Sameen, D. E., S. Ahmed, R. Lu, R. Li, J. Dai, W. Qin, Q. Zhang, S. Li, and Y. Liu. 2022. Electrospun nanofibers food packaging: Trends and applications in food systems. Critical Reviews in Food Science and Nutrition 62 (22):6238–51. doi: 10.1080/10408398.2021.1899128.
  • Sani, M. A., M. Azizi-Lalabadi, M. Tavassoli, K. Mohammadi, and D. J. McClements. 2021. Recent advances in the development of smart and active biodegradable packaging materials. Nanomaterials 11 (5):1331. doi: 10.3390/nano11051331.
  • Saraf, K, and V. Nadanathangam. 2019. Paper from cotton linters as substrate for ammonia nanosensor using electrospun alginate nanofibers. Cotton Research Journal 10 (1):33–38.
  • Schaefer, D, and W. M. Cheung. 2018. Smart packaging: Opportunities and challenges. Procedia CIRP 72:1022–7. doi: 10.1016/j.procir.2018.03.240.
  • Senthil Muthu Kumar, T., K. Senthil Kumar, N. Rajini, S. Siengchin, N. Ayrilmis, and A. Varada Rajulu. 2019. A comprehensive review of electrospun nanofibers: Food and packaging perspective. Composites Part B: Engineering 175:107074. doi: 10.1016/j.compositesb.2019.107074.
  • Shahbazi, Y., N. Shavisi, N. Karami, R. Lorestani, and F. Dabirian. 2021. Electrospun carboxymethyl cellulose-gelatin nanofibrous films encapsulated with Mentha longifolia L. essential oil for active packaging of peeled giant freshwater prawn. LWT 152:112322. doi: 10.1016/j.lwt.2021.112322.
  • Shao, P., B. Niu, H. Chen, and P. Sun. 2018. Fabrication and characterization of tea polyphenols loaded pullulan-CMC electrospun nanofiber for fruit preservation. International Journal of Biological Macromolecules 107 (Pt B):1908–14. 10.1016/j.ijbiomac.2017.10.054.
  • Sharif, N., M.-T. Golmakani, M. M. Hajjari, E. Aghaee, and J. B. Ghasemi. 2021. Antibacterial cuminaldehyde/hydroxypropyl-β-cyclodextrin inclusion complex electrospun fibers mat: Fabrication and characterization. Food Packaging and Shelf Life 29:100738. doi: 10.1016/j.fpsl.2021.100738.
  • Shen, C., Y. Cao, J. Rao, Y. Zou, H. Zhang, D. Wu, and K. Chen. 2021. Application of solution blow spinning to rapidly fabricate natamycin-loaded gelatin/zein/polyurethane antimicrobial nanofibers for food packaging. Food Packaging and Shelf Life 29:100721. doi: 10.1016/j.fpsl.2021.100721.
  • Shi, Y.-G., D.-H. Li, Y.-M. Kong, R.-R. Zhang, Q. Gu, M.-X. Hu, S.-Y. Tian, and W.-G. Jin. 2022. Enhanced antibacterial efficacy and mechanism of octyl gallate/beta-cyclodextrins against Pseudomonas fluorescens and Vibrio parahaemolyticus and incorporated electrospun nanofibers for Chinese giant salamander fillets preservation. International Journal of Food Microbiology 361:109460. doi: 10.1016/j.ijfoodmicro.2021.109460.
  • Silva, N. F., M. M. Neves, J. M. Magalhães, C. Freire, and C. Delerue-Matos. 2020. Emerging electrochemical biosensing approaches for detection of Listeria monocytogenes in food samples: An overview. Trends in Food Science & Technology 99:621–33. doi: 10.1016/j.tifs.2020.03.031.
  • Singh, S., K. K. Gaikwad, and Y. S. Lee. 2018. Anthocyanin – A natural dye for smart food packaging systems. Korean Journal of Packaging Science and Technology 24 (3):167–80. doi: 10.20909/kopast.2018.24.3.167.
  • Song, Z., H. Liu, A. Huang, C. Zhou, P. Hong, and C. Deng. 2022. Collagen/zein electrospun films incorporated with gallic acid for tilapia (Oreochromis niloticus) muscle preservation. Journal of Food Engineering 317:110860. doi: 10.1016/j.jfoodeng.2021.110860.
  • Steyaert, I., H. Rahier, and K. De Clerck. 2015. Nanofibre-based sensors for visual and optical monitoring. In Electrospinning for high performance sensors, 157–77. New York, United States; Springer.
  • Sun XF, Liu Y, Liu J, et al., ed. 2014. Multi-bubble electrospinning of nanofibers. In Kolisnychenko, S. (EDs), Advanced Materials Research. Stafa-Zurich, Switzerland; Trans Tech Publications. doi: 10.4028/www.scientific.net/AMR.843.26.
  • Sun, W., Y. Liu, L. Jia, M. D. A. Saldaña, T. Dong, Y. Jin, and W. Sun. 2021. A smart nanofibre sensor based on anthocyanin/poly‐l‐lactic acid for mutton freshness monitoring. International Journal of Food Science & Technology 56 (1):342–51. doi: 10.1111/ijfs.14648.
  • Surendhiran, D., C. Li, H. Cui, and L. Lin. 2020. Fabrication of high stability active nanofibers encapsulated with pomegranate peel extract using chitosan/PEO for meat preservation. Food Packaging and Shelf Life 23:100439. doi: 10.1016/j.fpsl.2019.100439.
  • Tarus, B. K., J. I. Mwasiagi, N. Fadel, A. Al-Oufy, and M. Elmessiry. 2019. Electrospun cellulose acetate and poly(vinyl chloride) nanofiber mats containing silver nanoparticles for antifungi packaging. SN Applied Sciences 1 (3):245. doi: 10.1007/s42452-019-0271-4.
  • Tavassoli, M., M. Alizadeh Sani, A. Khezerlou, A. Ehsani, G. Jahed-Khaniki, and D. J. McClements. 2022. Smart biopolymer-based nanocomposite materials containing pH-sensing colorimetric indicators for food freshness monitoring. Molecules 27 (10):3168. doi: 10.3390/molecules27103168.
  • Terra, A. L. M., J. B. Moreira, J. A. V. Costa, and M. G. d Morais. 2021. Development of time-pH indicator nanofibers from natural pigments: An emerging processing technology to monitor the quality of foods. LWT 142:111020. doi: 10.1016/j.lwt.2021.111020.
  • Ting, L., L. Yingxian, Q. Qiuxing, et al. 2021. Development of electrospun films enriched with ethyl lauroyl arginate as novel antimicrobial food packaging materials for fresh strawberry preservation. Food Control. 130:108371. doi: 10.1016/j.foodcont.2021.108371.
  • Tirgar, A., D. Han, and A. J. Steckl. 2018. Absorption of ethylene on membranes containing potassium permanganate loaded into alumina-nanoparticle-incorporated alumina/carbon nanofibers. Journal of Agricultural and Food Chemistry 66 (22):5635–43. doi: 10.1021/acs.jafc.7b05037.
  • Torres-Giner, S. 2011. Electrospun nanofibers for food packaging applications. In Multifunctional and nanoreinforced polymers for food packaging, 108–25. Sawston, Cambridge: Elsevier.
  • Tripathy, S., M. S. Reddy, S. R. K. Vanjari, S. Jana, and S. G. Singh. 2019. A step towards miniaturized milk adulteration detection system: Smartphone-based accurate pH sensing using electrospun halochromic nanofibers. Food Analytical Methods 12 (2):612–24. doi: 10.1007/s12161-018-1391-y.
  • Tsai, T.-Y., S.-H. Chen, L.-C. Chen, S.-B. Lin, S.-N. Lou, Y.-H. Chen, and H.-H. Chen. 2021. Enzymatic time-temperature indicator prototype developed by immobilizing laccase on electrospun fibers to predict lactic acid bacterial growth in milk during storage. Nanomaterials 11 (5):1160. doi: 10.3390/nano11051160.
  • Vargas Romero, E., L.-T. Lim, H. Suárez Mahecha, and B. M. Bohrer. 2021. The effect of electrospun polycaprolactone nonwovens containing chitosan and propolis extracts on fresh pork packaged in linear low-density polyethylene films. Foods 10 (5):1110. doi: 10.3390/foods10051110.
  • Vilchez, A., F. Acevedo, M. Cea, M. Seeger, and R. Navia. 2021. Development and thermochemical characterization of an antioxidant material based on polyhydroxybutyrate electrospun microfibers. International Journal of Biological Macromolecules 183:772–80. doi: 10.1016/j.ijbiomac.2021.05.002.
  • Wang, N., H. Chen, L. Lin, Y. Zhao, X. Cao, Y. Song, and L. Jiang. 2010. Multicomponent phase change microfibers prepared by temperature control multifluidic electrospinning. Macromolecular Rapid Communications 31 (18):1622–7. doi: 10.1002/marc.201000185.
  • Wang, P., C. Zhang, Y. Zou, Y. Li, and H. Zhang. 2021. Immobilization of lysozyme on layer-by-layer self-assembled electrospun films: Characterization and antibacterial activity in milk. Food Hydrocolloids. 113:106468. doi: 10.1016/j.foodhyd.2020.106468.
  • Wang, Y., T. D. Xia, H. X. Feng, and H. Zhang. 2011. Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage. Renewable Energy. 36 (6):1814–20. doi: 10.1016/j.renene.2010.12.022.
  • Weiss, J., K. Kanjanapongkul, S. Wongsasulak, et al. 2012. Electrospun fibers: Fabrication, functionalities and potential food industry applications. Nanotechnology in the food, beverage and nutraceutical industries, 362–97. Sawston, Cambridge: Elsevier.
  • Wen, P., T.-G. Hu, Y. Wen, K.-E. Li, W.-P. Qiu, Z.-L. He, H. Wang, and H. Wu. 2021. Development of Nervilia fordii extract-loaded electrospun pva/pvp nanocomposite for antioxidant packaging. Foods 10 (8):1728. doi: 10.3390/foods10081728.
  • Xu, D., L. Luo, Y. Ding, L. Jiang, Y. Zhang, X. Ouyang, and B. Liu. 2014. A novel nonenzymatic fructose sensor based on electrospun LaMnO3 fibers. Journal of Electroanalytical Chemistry 727:21–6. doi: 10.1016/j.jelechem.2014.05.010.
  • Xu, Y., D. Yang, S. Huo, J. Ren, N. Gao, Z. Chen, Y. Liu, Z. Xie, S. Zhou, X. Qu, et al. 2021. Carbon dots and ruthenium doped oxygen sensitive nanofibrous membranes for monitoring the respiration of agricultural products. Polymer Testing 93:106957. doi: 10.1016/j.polymertesting.2020.106957.
  • Xue, F., J. Wu, H. Chu, Z. Mei, Y. Ye, J. Liu, R. Zhang, C. Peng, L. Zheng, and W. Chen. 2013. Electrochemical aptasensor for the determination of bisphenol A in drinking water. Microchimica Acta 180 (1–2):109–15. doi: 10.1007/s00604-012-0909-z.
  • Yavari Maroufi, L., M. Ghorbani, M. Mohammadi, and A. Pezeshki. 2021. Improvement of the physico-mechanical properties of antibacterial electrospun poly lactic acid nanofibers by incorporation of guar gum and thyme essential oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects 622:126659. doi: 10.1016/j.colsurfa.2021.126659.
  • Yener, F, and O. Jirsák. 2012. Comparison between the needle and roller electrospinning of polyvinylbutyral. Journal of Nanomaterials 2012:1–6. doi: 10.1155/2012/839317.
  • Yildiz, E., G. Sumnu, and L. N. Kahyaoglu. 2021. Monitoring freshness of chicken breast by using natural halochromic curcumin loaded chitosan/PEO nanofibers as an intelligent package. International Journal of Biological Macromolecules 170:437–46. doi: 10.1016/j.ijbiomac.2020.12.160.
  • Yılmaz, M, and A. Altan. 2021. Optimization of functionalized electrospun fibers for the development of colorimetric oxygen indicator as an intelligent food packaging system. Food Packaging and Shelf Life 28:100651. doi: 10.1016/j.fpsl.2021.100651.
  • Zabihzadeh Khajavi, M., A. Ebrahimi, M. Yousefi, S. Ahmadi, M. Farhoodi, A. Mirza Alizadeh, and M. Taslikh. 2020. Strategies for producing improved oxygen barrier materials appropriate for the food packaging sector. Food Engineering Reviews 12 (3):346–63. doi: 10.1007/s12393-020-09235-y.
  • Zhang, J., X. Huang, J. Zhang, L. Liu, J. Shi, A. Muhammad, X. Zhai, X. Zou, J. Xiao, Z. Li, et al. 2022. Development of nanofiber indicator with high sensitivity for pork preservation and freshness monitoring. Food Chemistry 381:132224. doi: 10.1016/j.foodchem.2022.132224.
  • Zhang, M., X. Zhao, G. Zhang, G. Wei, and Z. Su. 2017. Electrospinning design of functional nanostructures for biosensor applications. Journal of Materials Chemistry. B 5 (9):1699–711. doi: 10.1039/c6tb03121h.
  • Zhang, P., X. Zhao, Y. Ji, Z. Ouyang, X. Wen, J. Li, Z. Su, and G. Wei. 2015. Electrospinning graphene quantum dots into a nanofibrous membrane for dual-purpose fluorescent and electrochemical biosensors. Journal of Materials Chemistry. B 3 (12):2487–96. doi: 10.1039/c4tb02092h.
  • Zhang, R., W. Lan, T. Ji, D. E. Sameen, S. Ahmed, W. Qin, and Y. Liu. 2021. Development of polylactic acid/ZnO composite membranes prepared by ultrasonication and electrospinning for food packaging. LWT 135:110072. doi: 10.1016/j.lwt.2020.110072.
  • Zhang, Y., L. Yang, Q. Dong, and L. Li. 2021. Fabrication of antibacterial fibrous films by electrospinning and their application for Japanese sea bass (Lateolabrax japonicus) preservation. LWT 149:111870. doi: 10.1016/j.lwt.2021.111870.
  • Zhao, K., W. Wang, Y. Yang, K. Wang, and D.-G. Yu. 2019. From Taylor cone to solid nanofiber in tri-axial electrospinning: Size relationships. Results in Physics 15:102770. doi: 10.1016/j.rinp.2019.102770.
  • Zhao, L., G. Duan, G. Zhang, H. Yang, S. He, and S. Jiang. 2020. Electrospun functional materials toward food packaging applications: A review. Nanomaterials 10 (1):150. doi: 10.3390/nano10010150.
  • Zhou, Y., X. Miao, X. Lan, J. Luo, T. Luo, Z. Zhong, X. Gao, Z. Mafang, J. Ji, H. Wang, et al. 2020. Angelica essential oil loaded electrospun gelatin nanofibers for active food packaging application. Polymers 12 (2):299. doi: 10.3390/polym12020299.
  • Zhu, Z., Y. Zhang, Y. Shang, and Y. Wen. 2019. Electrospun nanofibers containing TiO2 for the photocatalytic degradation of ethylene and delaying postharvest ripening of bananas. Food and Bioprocess Technology 12 (2):281–7. doi: 10.1007/s11947-018-2207-1.
  • Zou, Y., C. Zhang, P. Wang, Y. Zhang, and H. Zhang. 2020. Electrospun chitosan/polycaprolactone nanofibers containing chlorogenic acid-loaded halloysite nanotube for active food packaging. Carbohydrate Polymers 247:116711. 10.1016/j.carbpol.2020.116711.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.