610
Views
7
CrossRef citations to date
0
Altmetric
Review

Factors affecting energy efficiency of microwave drying of foods: an updated understanding

ORCID Icon, , &

References

  • Ahmed, J., N. Seyhun, H. S. Ramaswamy, and G. Luciano. 2009. Dielectric properties of potato puree in microwave frequency range as influenced by concentration and temperature. International Journal of Food Properties 12 (4):896–909. doi: 10.1080/10942910802105460.
  • Al-Harahsheh, M., A. H. Al-Muhtaseb, and T. R. A. Magee. 2009. Microwave drying kinetics of tomato pomace: Effect of osmotic dehydration. Chemical Engineering and Processing: Process Intensification 48 (1):524–31. doi: 10.1016/j.cep.2008.06.010.
  • Altay, K., A. A. Hayaloglu, and S. N. Dirim. 2019. Determination of the drying kinetics and energy efficiency of purple basil (Ocimum basilicum L.) leaves using different drying methods. Heat and Mass Transfer 55 (8):2173–84. doi: 10.1007/s00231-019-02570-9.
  • An, N.-N., W.-H. Sun, B.-Z. Li, Y. Wang, N. Shang, W.-Q. Lv, D. Li, and L.-J. Wang. 2022a. Effect of different drying techniques on drying kinetics, nutritional components, antioxidant capacity, physical properties and microstructure of edamame. Food Chemistry 373 (Pt B):131412. doi: 10.1016/j.foodchem.2021.131412.
  • An, N., N. Shang, W. Lv, D. Li, L. Wang, and Y. Wang. 2022b. Effects of carboxymethyl cellulose/pectin coating combined with ultrasound pretreatment before drying on quality of turmeric (Curcuma longa L.). International Journal of Biological Macromolecules 202:354–65. doi: 10.1016/j.ijbiomac.2022.01.021.
  • Atuonwu, J. C. and S. A. Tassou. 2018. Quality assurance in microwave food processing and the enabling potentials of solid-state power generators: A review. Journal of Food Engineering 234:1–15. doi: 10.1016/j.jfoodeng.2018.04.009.
  • Atuonwu, J. C. and S. A. Tassou. 2019. Energy issues in microwave food processing: A review of developments and the enabling potentials of solid-state power delivery. Critical Reviews in Food Science and Nutrition 59(9):1392–407. doi: 10.1080/10408398.2017.1408564.
  • Azadbakht, M., M. V. Torshizi, F. Noshad, and A. Rokhbin. 2018. Energy issues in microwave food processing: A review of developments and the enabling potentials of solid-state power delivery. Critical Reviews in Food Science and Nutrition 59 (9):1392–407. doi: 10.1080/10408398.2017.1408564.
  • Azadbakht, M., M. V. Torshizi, F. Noshad, and A. Rokhbin. 2018. Application of artificial neural network method for prediction of osmotic pretreatment based on the energy and exergy analyses in microwave drying of orange slices. Energy 165:836–45. doi: 10.1016/j.energy.2018.10.017.
  • Azimi-Nejadian, H, and S. S. Hoseini. 2019. Study the effect of microwave power and slices thickness on drying characteristics of potato. Heat and Mass Transfer 55 (10):2921–30. doi: 10.1007/s00231-019-02633-x.
  • Bashkir, I., T. Defraeye, T. Kudra, and A. Martynenko. 2020. Electrohydrodynamic drying of plant-based foods and food model systems. Food Engineering Reviews 12 (4):473–97. doi: 10.1007/s12393-020-09229-w.
  • Beigi, M, and M. Torki. 2021. Experimental and ANN modeling study on microwave dried onion slices. Heat and Mass Transfer 57 (5):787–96. doi: 10.1007/s00231-020-02997-5.
  • Cao, X., M. Zhang, A. S. Mujumdar, Q. Zhong, and Z. Wang. 2018. Effect of microwave freeze drying on quality and energy supply in drying of barley grass. Journal of the Science of Food and Agriculture 98 (4):1599–605. doi: 10.1002/jsfa.8634.
  • Chandrasekaran, S., S. Ramanathan, and T. Basak. 2013. Microwave food processing—A review. Food Research International 52 (1):243–61. doi: 10.1016/j.foodres.2013.02.033.
  • Chen, J. L., M. Zhang, B. G. Xu, J. C. Sun, and A. S. Mujumdar. 2020. Artificial intelligence assisted technologies for controlling the drying of fruits and vegetables using physical fields: A review. Trends in Food Science & Technology 105:251–60. doi: 10.1016/j.tifs.2020.08.015.
  • Cuccurullo, G., L. Giordano, A. Metallo, and L. Cinquanta. 2018. Drying rate control in microwave assisted processing of sliced apples. Biosystems Engineering 170:24–30. doi: 10.1016/j.biosystemseng.2018.03.010.
  • Darvishi, H., M. Zarein, and Z. Farhudi. 2016. Energetic and exergetic performance analysis and modeling of drying kinetics of kiwi slices. Journal of Food Science and Technology 53 (5):2317–33. doi: 10.1007/s13197-016-2199-7.
  • Datta, A. K, and V. Rakesh. 2013. Principles of microwave combination heating. Comprehensive Reviews in Food Science and Food Safety 12 (1):24–39. doi: 10.1111/j.1541-4337.2012.00211.x.
  • Dehghannya, J., S. H. Hosseinlar, and M. K. Heshmati. 2018. Multi-stage continuous and intermittent microwave drying of quince fruit coupled with osmotic dehydration and low temperature hot air drying. Innovative Food Science & Emerging Technologies 45:132–51. doi: 10.1016/j.ifset.2017.10.007.
  • Deng, L., A. S. Mujumdar, Q. Zhang, X. Yang, J. Wang, Z. Zheng, Z. Gao, and H. Xiao. 2019. Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes–a comprehensive review. Critical Reviews in Food Science and Nutrition 59 (9):1408–32. doi: 10.1080/10408398.2017.1409192.
  • Dinani, S. T., P. Kubbutat, and U. Kulozik. 2020. Assessment of heating profiles in model food systems heated by different microwave generators: Solid-state (semiconductor) versus traditional magnetron technology. Innovative Food Science & Emerging Technologies 63:102376. doi: 10.1016/j.ifset.2020.102376.
  • Duan, X., W. Liu, G. Ren, and X. Yang. 2017. Effects of different drying methods on the physical characteristics and flavor of dried hawthorns (Crataegus spp. )Drying Technology 35 (11):1412–21. doi: 10.1080/07373937.2017.1325898.
  • Fan, K., M. Zhang, and A. S. Mujumdar. 2019. Recent developments in high efficient freeze-drying of fruits and vegetables assisted by microwave: A review. Critical Reviews in Food Science and Nutrition 59 (8):1357–66. doi: 10.1080/10408398.2017.1420624.
  • FAO. 2011. Energy-smart food for people and climate. https://www.fao.org/family-farming/detail/en/c/285125/. Accessed March 6, 2022.
  • Franco, A. P., C. C. Tadini, and J. A. W. Gut. 2017. Predicting the dielectric behavior of orange and other citrus fruit juices at 915 and 2450 MHz. International Journal of Food Properties, 20:1–21. doi: 10.1080/10942912.2017.1347674.
  • Gonzalez-Cavieres, L., M. Perez-Won, G. Tabilo-Munizaga, E. Jara-Quijada, R. Diaz-Alvarez, and R. Lemus-Mondaca. 2021. Advances in vacuum microwave drying (VMD) systems for food products. Trends in Food Science & Technology 116:626–38. doi: 10.1016/j.tifs.2021.08.005.
  • Guo, Q., D. Sun, J. Cheng, and Z. Han. 2017. Microwave processing techniques and their recent applications in the food industry. Trends in Food Science & Technology 67:236–47. doi: 10.1016/j.tifs.2017.07.007.
  • Guzik, P., P. Kulawik, M. Zając, and W. Migdał. 2021. Microwave applications in the food industry: An overview of recent developments. Critical Reviews in Food Science and Nutrition 2021:1–20. doi: 10.1080/10408398.2021.1922871.
  • Hazervazifeh, A., A. M. Nikbakht, and P. A. Moghaddam. 2016. Novel hybridized drying methods for processing of apple fruit: Energy conservation approach. Energy 103:679–87. doi: 10.1016/j.energy.2016.03.012.
  • Hazervazifeh, A., A. M. Nikbakht, P. A. Moghaddam, and F. Sharifian. 2018. Energy economy and kinetic investigation of sugar cube dehydration using microwave supplemented with thermal imaging. Journal of Food Processing and Preservation 42 (2):e13504. doi: 10.1111/jfpp.13504.
  • Horuz, E., H. Bozkurt, H. Karataş, and M. Maskan. 2017. Effects of hybrid (microwave-convectional) and convectional drying on drying kinetics, total phenolics, antioxidant capacity, vitamin C, color and rehydration capacity of sour cherries. Food Chemistry 230:295–305. doi: 10.1016/j.foodchem.2017.03.046.
  • Jahanbakhshi, A., M. Kaveh, E. Taghinezhad, and V. R. Sharabiani. 2020. Assessment of kinetics, effective moisture diffusivity, specific energy consumption, shrinkage, and color in the pistachio kernel drying process in microwave drying with ultrasonic pretreatment. Journal of Food Processing and Preservation 44 (6):e13504. doi: 10.1111/jfpp.14449.
  • Jiang, H., M. Zhang, Y. Liu, A. S. Mujumdar, and H. Liu. 2013. The energy consumption and color analysis of freeze/microwave freeze banana chips. Food and Bioproducts Processing 91 (4):464–72. doi: 10.1016/j.fbp.2013.04.004.
  • Jiang, N., C. Liu, D. Li, Z. Zhang, C. Liu, D. Wang, L. Niu, and M. Zhang. 2017. Evaluation of freeze drying combined with microwave vacuum drying for functional okra snacks: Antioxidant properties, sensory quality, and energy consumption. LWT - Food Science and Technology 82:216–26. doi: 10.1016/j.lwt.2017.04.015.
  • Jiang, N., C. Q. Liu, D. J. Li, Z. Y. Zhang, Z. F. Yu, and Y. J. Zhou. 2016. Effect of thermosonic pretreatment on drying kinetics and energy consumption of microwave vacuum dried Agaricus bisporus slices. Journal of Food Engineering 177:21–30. doi: 10.1016/j.jfoodeng.2015.12.012.
  • Jindarat, W., S. Sungsoontorn, and P. Rattanadecho. 2015. Analysis of energy consumption in a combined microwave–hot air spouted bed drying of biomaterial: Coffee beans. Experimental Heat Transfer 28 (2):107–24. doi: 10.1080/08916152.2013.821544.
  • Karimi, S., N. Layeghinia, and H. Abbasi. 2021. Microwave pretreatment followed by associated microwave-hot air drying of Gundelia tournefortii L.: Drying kinetics, energy consumption and quality characteristics. Heat and Mass Transfer 57 (1):133–46. doi: 10.1007/s00231-020-02948-0.
  • Kaveh, M., Y. Abbaspour-Gilandeh, and M. Nowacka. 2021. Comparison of different drying techniques and their carbon emissions in green peas. Chemical Engineering and Processing - Process Intensification 160:108274. doi: 10.1016/j.cep.2020.108274.
  • Kaveh, M., R. A. Chayjan, E. Taghinezhad, V. R. Sharabiani, and A. Motevali. 2020. Evaluation of specific energy consumption and GHG emissions for different drying methods (Case study: Pistacia Atlantica). Journal of Cleaner Production 259:120963. doi: 10.1016/j.jclepro.2020.120963.
  • Kumar, C, and M. A. Karim. 2019. Microwave-convective drying of food materials: A critical review. Critical Reviews in Food Science and Nutrition 59 (3):379–94. doi: 10.1080/10408398.2017.1373269.
  • Kurjak, Z., A. Barhacs, and J. Beke. 2012. Energetic analysis of drying biological materials with high moisture content by using microwave energy. Drying Technology 30 (3):312–9. doi: 10.1080/07373937.2011.639473.
  • Lamidi, R. O., L. Jiang, P. B. Pathare, Y. D. Wang, and A. P. Roskilly. 2019. Recent advances in sustainable drying of agricultural produce: A review. Applied Energy 233-234:367–85. doi: 10.1016/j.apenergy.2018.10.044.
  • Łechtańska, J. M., J. Szadzińska, and S. J. Kowalski. 2015. Microwave- and infrared-assisted convective drying of green pepper: Quality and energy considerations. Chemical Engineering and Processing: Process Intensification 98:155–64. doi: 10.1016/j.cep.2015.10.001.
  • Li, L., M. Zhang, and L. Zhou. 2021. A promising pulse-spouted microwave freeze drying method used for Chinese yam cubes dehydration: Quality, energy consumption, and uniformity. Drying Technology 39 (2):148–61. doi: 10.1080/07373937.2019.1624564.
  • Li, Z., N. Wang, G. S. V. Raghavan, and W. Cheng. 2006. A microcontroller-based, feedback power control system for microwave drying processes. Applied Engineering in Agriculture 22 (2):309–14. doi: 10.13031/2013.20277.
  • Li, Z. F., G. S. V. Raghavan, and N. Wang. 2010. Carrot volatiles monitoring and control in microwave drying. LWT - Food Science and Technology 43 (2):291–7. doi: 10.1016/j.lwt.2009.08.002.
  • Li, Z. F., G. S. V. Raghavan, N. Wang, and C. Vigneault. 2011. Drying rate control in the middle stage of microwave drying. Journal of Food Engineering 104 (2):234–8. doi: 10.1016/j.jfoodeng.2010.12.014.
  • Lin, B. Q., H. Li, Z. W. Chen, C. S. Zheng, Y. D. Hong, and Z. Wang. 2017. Sensitivity analysis on the microwave heating of coal: A coupled electromagnetic and heat transfer model. Applied Thermal Engineering 126:949–62. doi: 10.1016/j.applthermaleng.2017.08.012.
  • Liu, P., M. Zhang, and A. S. Mujumdar. 2012. Comparison of three microwave-assisted drying methods on the physiochemical, nutritional and sensory qualities of re-structured purple-fleshed sweet potato granules. International Journal of Food Science & Technology 47 (1):141–7. doi: 10.1111/j.1365-2621.2011.02819.x.
  • Lv, W., D. Li, H. Lv, X. Jin, Q. Han, D. Su, and Y. Wang. 2019. Recent development of microwave fluidization technology for drying of fresh fruits and vegetables. Trends in Food Science & Technology 86:59–67. doi: 10.1016/j.tifs.2019.02.047.
  • Macedo, L. L., J. L. G. Correa, I. Petri, C. D. Araujo, and W. C. Vimercati. 2022. Intermittent microwave drying and heated air drying of fresh and isomaltulose (Palatinose) impregnated strawberry. LWT 155:112918. doi: 10.1016/j.lwt.2021.112918.
  • Maftoonazad, N., M. R. Dehghani, and H. S. Ramaswamy. 2022. Hybrid microwave-hot air tunnel drying of onion slices: Drying kinetics, energy efficiency, product rehydration, color, and flavor characteristics. Drying Technology 40 (5):966–86. doi: 10.1080/07373937.2020.1841790.
  • Martynenko, A., I. Bashkir, and T. Kudra. 2021. The energy efficiency of electrohydrodynamic (EHD) drying of foods. Trends in Food Science & Technology 118:744–64. doi: 10.1016/j.tifs.2021.09.002.
  • Menon, A., V. Stojceska, and S. A. Tassou. 2020. A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies. Trends in Food Science & Technology 100:67–76. doi: 10.1016/j.tifs.2020.03.014.
  • Moreno, A. H., A. J. Aguirre, R. H. Maqueda, G. J. Jimenez, and C. T. Mino. 2022. Effect of temperature on the microwave drying process and the viability of amaranth seeds. Biosystems Engineering 215:49–66. doi: 10.1016/j.biosystemseng.2021.12.019.
  • Moses, J. A., T. Norton, K. Alagusundaram, and B. K. Tiwari. 2014. Novel drying techniques for the food industry. Food Engineering Reviews 6 (3):43–55. doi: 10.1007/s12393-014-9078-7.
  • Motevali, A, and R. T. Koloor. 2017. A comparison between pollutants and greenhouse gas emissions from operation of different dryers based on energy consumption of power plants. Journal of Cleaner Production 154:445–61. doi: 10.1016/j.jclepro.2017.03.219.
  • Motevali, A., S. Minaei, A. Banakar, B. Ghobadian, and H. Darvishi. 2016. Energy analyses and drying kinetics of chamomile leaves in microwave-convective dryer. Journal of the Saudi Society of Agricultural Sciences 15 (2):179–87. doi: 10.1016/j.jssas.2014.11.003.
  • Motevali, A., S. Minaei, A. Banakar, B. Ghobadian, and M. H. Khoshtaghaza. 2014. Comparison of energy parameters in various dryers. Energy Conversion and Management 87:711–25. doi: 10.1016/j.enconman.2014.07.012.
  • Motevali, A., S. Minaei, and M. H. Khoshtagaza. 2011. Evaluation of energy consumption in different drying methods. Energy Conversion and Management 52 (2):1192–9. doi: 10.1016/j.enconman.2010.09.014.
  • Motevali, A., S. Minaei, M. H. Khoshtaghaza, and H. Amirnejat. 2011. Comparison of energy consumption and specific energy requirements of different methods for drying mushroom slices. Energy 36 (11):6433–41. doi: 10.1016/j.energy.2011.09.024.
  • Nadery Dehsheikh, F, and S. Taghian Dinani. 2019. Coating pretreatment of banana slices using carboxymethyl cellulose in an ultrasonic system before convective drying. Ultrasonics Sonochemistry 52:401–13. doi: 10.1016/j.ultsonch.2018.12.018.
  • Najib, T., M. M. Heydari, and V. Meda. 2022. Combination of germination and innovative microwave-assisted infrared drying of lentils: Effect of physicochemical properties of different varieties on water uptake, germination, and drying kinetics. Applied Food Research, 2 (1):100040. doi: 10.1016/j.afres.2021.100040.
  • Nguyen, D. D., S. W. Chang, J. H. Cha, S. Y. Jeong, Y. S. Yoon, S. J. Lee, M. C. Tran, and H. H. Ngo. 2017. Dry semi-continuous anaerobic digestion of food waste in the mesophilic and thermophilic modes: New aspects of sustainable management and energy recovery in South Korea. Energy Conversion and Management 135:445–52. doi: 10.1016/j.enconman.2016.12.030.
  • Ni, J., C. Ding, Y. Zhang, Z. Song, and W. Xu. 2020. Influence of ultrasonic pretreatment on electrohydrodynamic drying process of goji berry. Journal of Food Processing and Preservation 44 (8):e14600. doi: 10.1111/jfpp.14600.
  • Omari, A., N. Behroozi-Khazaei, and F. Sharifian. 2018. Drying kinetic and artificial neural network modeling of mushroom drying process in microwave-hot air dryer. Journal of Food Process Engineering 41 (7):e12849. doi: 10.1111/jfpe.12849.
  • Osae, R., G. Essilfie, R. N. Alolga, E. Bonah, H. Ma, and C. Zhou. 2020. Drying of ginger slices—Evaluation of quality attributes, energy consumption, and kinetics study. Journal of Food Process Engineering 43 (2):e13348. doi: 10.1111/jfpe.13348.
  • Radoiu, M, and A. Mello. 2022. Technical advances, barriers, and solutions in microwave-assisted technology for industrial processing. Chemical Engineering Research and Design 181:331–42. doi: 10.1016/j.cherd.2022.03.029.
  • Sharma, G. P, and S. Prasad. 2006. Specific energy consumption in microwave drying of garlic cloves. Energy 31 (12):1921–6. doi: 10.1016/j.energy.2005.08.006.
  • Surendhar, A., V. Sivasubramanian, D. Vidhyeswari, and B. Deepanraj. 2019. Energy and exergy analysis, drying kinetics, modeling and quality parameters of microwave-dried turmeric slices. Journal of Thermal Analysis and Calorimetry 136 (1):185–97. doi: 10.1007/s10973-018-7791-9.
  • Szadzińska, J., J. Łechtańska, S. J. Kowalski, and M. Stasiak. 2017. The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrasonics Sonochemistry 34:531–9. doi: 10.1016/j.ultsonch.2016.06.030.
  • Szadzińska, J, and D. Mierzwa. 2021. The influence of hybrid drying (microwave-convective) on drying kinetics and quality of white mushrooms. Chemical Engineering and Processing - Process Intensification 167:108532. doi: 10.1016/j.cep.2021.108532.
  • Taghinezhad, E., A. Szumny, M. Kaveh, V. Rasooli Sharabiani, A. Kumar, and N. Shimizu. 2020. Parboiled paddy drying with different dryers: thermodynamic and quality properties, mathematical modeling using ANNs assessment. Foods 9 (1):86. doi: 10.3390/foods9010086.
  • Talens, C., J. C. Arboleya, M. Castro-Giraldez, and P. J. Fito. 2017. Effect of microwave power coupled with hot air drying on process efficiency and physico-chemical properties of a new dietary fibre ingredient obtained from orange peel. LWT 77:110–8. doi: 10.1016/j.lwt.2016.11.036.
  • Taskin, O., A. Polat, N. Izli, and B. B. Asik. 2019. Intermittent Microwave-Vacuum Drying Effects on Pears. Polish Journal of Food and Nutrition Sciences 69 (1):101–8. doi: 10.31883/pjfns-2019-0010.
  • Tippayawong, N., C. Tantakitti, and S. Thavornun. 2008. Intermittent microwave-vacuum drying effects on pears. Polish Journal of Food and Nutrition Sciences 69 (1):101–8. doi: 10.31883/pjfns-2019-0010.
  • Tippayawong, N., C. Tantakitti, and S. Thavornun. 2008. Energy efficiency improvements in longan drying practice. Energy 33 (7):1137–43. doi: 10.1016/j.energy.2008.02.007.
  • Torki-Harchegani, M., D. Ghanbarian, A. G. Pirbalouti, and M. Sadeghi. 2016. Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments. Renewable and Sustainable Energy Reviews 58:407–18. doi: 10.1016/j.rser.2015.12.078.
  • Venkatesh, M. S, and G. S. V. Raghavan. 2004. An overview of microwave processing and dielectric properties of agri-food materials. Biosystems Engineering 88 (1):1–18. doi: 10.1016/j.biosystemseng.2004.01.007.
  • Wang, W., Y. Lei, Y. M. Lo, Y. Han, B. Zheng, and Y. Tian. 2021. Process effectiveness assessment by modeling the kinetics of lotus seed drying combining air-borne ultrasound and microwave vacuum. Journal of Food Process Engineering 44 (9):e13795. doi: 10.1111/jfpe.13795.
  • Wang, Y., X. Li, X. T. Chen, B. Li, X. H. Mao, J. Miao, C. C. Zhao, L. Q. Huang, and W. Y. Gao. 2018. Effects of hot air and microwave-assisted drying on drying kinetics, physicochemical properties, and energy consumption of chrysanthemum. Chemical Engineering and Processing - Process Intensification 129:84–94. doi: 10.1016/j.cep.2018.03.020.
  • Wu, X. F., M. Zhang, B. Bhandari, and Z. Li. 2018. Effects of microwave-assisted pulse-spouted bed freeze-drying (MPSFD) on volatile compounds and structural aspects of Cordyceps militaris. Journal of the Science of Food and Agriculture 98 (12):4634–43. doi: 10.1002/jsfa.8993.
  • Wu, Y., R. Mu, G. Li, M. Li, and W. Lv. 2022. Research progress in fluid and semifluid microwave heating technology in food processing. Comprehensive Reviews in Food Science and Food Safety 21 (4):3436–54. doi: 10.1111/1541-4337.12978.
  • Xu, J., D. Wang, Y. Lei, L. Cheng, W. Zhuang, and Y. Tian. 2022. Effects of combined ultrasonic and microwave vacuum drying on drying characteristics and physicochemical properties of Tremella fuciformis. Ultrasonics Sonochemistry 84:105963. doi: 10.1016/j.ultsonch.2022.105963.
  • Yang, R., A. E. Fathy, M. T. Morgan, and J. Chen. 2022. Development of online closed-loop frequency shifting strategies to improve heating performance of foods in a solid-state microwave system. Food Research International (Ottawa, Ont.) 154:110985. doi: 10.1016/j.foodres.2022.110985.
  • Zarein, M., S. H. Samadi, and B. Ghobadian. 2015. Investigation of microwave dryer effect on energy efficiency during drying of apple slices. Journal of the Saudi Society of Agricultural Sciences 14 (1):41–7. doi: 10.1016/j.jssas.2013.06.002.
  • Zeng, S., M. Li, G. Li, W. Lv, X. Liao, and L. Wang. 2022. Innovative applications, limitations and prospects of energy-carrying infrared radiation, microwave and radio frequency in agricultural products processing. Trends in Food Science & Technology 121:76–92. doi: 10.1016/j.tifs.2022.01.032.
  • Zhang, Y., G. Zhu, X. Li, Y. Zhao, D. Lei, G. Ding, K. Ambrose, and Y. Liu. 2020. Combined medium-and short-wave infrared and hot air impingement drying of sponge gourd (Luffa cylindrical) slices. Journal of Food Engineering 284:110043. doi: 10.1016/j.jfoodeng.2020.110043.
  • Zhu, Z, and W. Guo. 2017. Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy. Scientific Reports 7 (1):9311. doi: 10.1038/s41598-017-09197-y.
  • Zielinska, M., E. Ropelewska, H. W. Xiao, A. S. Mujumdar, and C. L. Law. 2020. Review of recent applications and research progress in hybrid and combined microwave-assisted drying of food products: Quality properties. Critical Reviews in Food Science and Nutrition 60 (13):2212–64. doi: 10.1080/10408398.2019.1632788.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.