814
Views
7
CrossRef citations to date
0
Altmetric
Review

Dynamic high pressure treatments: current advances on mechanistic-cum-transport phenomena approaches and plant protein functionalization

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Akharume, F. U., R. E. Aluko, and A. A. Adedeji. 2021. Modification of plant proteins for improved functionality: A review. Comprehensive Reviews in Food Science and Food Safety 20 (1):198–224. doi: 10.1111/1541-4337.12688.
  • Akhtar, M, and R. Ding. 2017. Covalently cross-linked proteins & polysaccharides: Formation, characterisation and potential applications. Current Opinion in Colloid & Interface Science 28:31–6. doi: 10.1016/j.cocis.2017.01.002.
  • Alameri, M. 2018. Study of tomato fiber fragmentation in the high-pressure homogenizer
  • Atalar, I. 2019. Functional kefir production from high pressure homogenized hazelnut milk. LWT 107 (January):256–63. doi: 10.1016/j.lwt.2019.03.013.
  • Atalar, I., A. Kurt, O. Gul, and F. Yazici. 2021. Improved physicochemical, rheological and bioactive properties of ice cream: Enrichment with high pressure homogenized hazelnut milk. International Journal of Gastronomy and Food Science 24 (April):100358. doi: 10.1016/j.ijgfs.2021.100358.
  • Bader, S., J. Bez, and P. Eisner. 2011. Can protein functionalities be enhanced by high-pressure homogenization? A study on functional properties of lupin proteins. Procedia Food Science 1:1359–66. doi: 10.1016/j.profoo.2011.09.201.
  • Bai, L., S. Huan, J. Gu, and D. J. McClements. 2016. Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocolloids 61:703–11. doi: 10.1016/j.foodhyd.2016.06.035.
  • Bernat, N., M. Cháfer, J. Rodríguez-García, A. Chiralt, and C. González-Martínez. 2015. Effect of high pressure homogenisation and heat treatment on physical properties and stability of almond and hazelnut milks. LWT - Food Science and Technology 62 (1):488–96. doi: 10.1016/j.lwt.2014.10.045.
  • Bi, C-h., P-l Wang, D-y Sun, Z-m Yan, Y. Liu, Z-g Huang, and F. Gao. 2020. Effect of high-pressure homogenization on gelling and rheological properties of soybean protein isolate emulsion gel. Journal of Food Engineering 277(October):109923. doi: 10.1016/j.jfoodeng.2020.109923.
  • Chen, Q. H., X. Y. Li, C. L. Huang, P. Liu, Q. Z. Zeng, X. Q. Yang, and Y. Yuan. 2021. Development and mechanical properties of soy protein isolate-chitin nanofibers complex gel: The role of high-pressure homogenization. LWT 150 (April):112090. doi: 10.1016/j.lwt.2021.112090.
  • Codina-Torrella, I., B. Guamis, V. Ferragut, and A. J. T. 2017. Potential application of ultra-high pressure homogenization in the physico-chemical stabilization of tiger nuts ' milk beverage. Innovative Food Science & Emerging Technologies 40:42–51. doi: 10.1016/j.ifset.2016.06.023.
  • Cruz, N. S., M. Capellas, D. P. Jaramillo, A. J. Trujillo, B. Guamis, and V. Ã. Ferragut. 2009. Soymilk treated by ultra high-pressure homogenization : Acid coagulation properties and characteristics of a soy-yogurt product. Food Hydrocolloids 23:490–6. doi: 10.1016/j.foodhyd.2008.03.010.[Mismatch
  • Dag, D, and M. H. Oztop. 2017. Formation and characterization of green tea extract loaded liposomes. Journal of Food Science 82 (2):463–70. doi: 10.1111/1750-3841.13615.
  • Demirkesen, I., T. A. Vilgis, and B. Mert. 2018. Effect of microfluidization on the microstructure and physical properties of a novel yoghurt formulation. Journal of Food Engineering 237 (February):69–77. doi: 10.1016/j.jfoodeng.2018.05.025.
  • Djemaoune, Y., E. Cases, and R. Saurel. 2019. The effect of high-pressure microfluidization treatment on the foaming properties of pea albumin aggregates. Journal of Food Science 84(8):2242–49. doi: 10.1111/1750-3841.14734.
  • Dong, X., M. Zhao, B. A. O. Yang, X. Yang, J. Shi, and Y. Jiang. 2011. Effect of high-pressure homogenization on the functional property of peanut protein. Journal of Food Process Engineering 34 (6):2191–204. doi: 10.1111/j.1745-4530.2009.00546.x.
  • Fernandez-Avila, C, and A. J. Trujillo. 2016. Ultra-high pressure homogenization improves oxidative stability and interfacial properties of soy protein isolate-stabilized emulsions. Food Chemistry 209:104–13. doi: 10.1016/j.foodchem.2016.04.019.
  • Ferragut, V., N. S. Cruz, A. Trujillo, B. Guamis, and M. Capellas. 2009. Physical characteristics during storage of soy yogurt made from ultra-high pressure homogenized soymilk. Journal of Food Engineering 92 (1):63–9. doi: 10.1016/j.jfoodeng.2008.10.026.
  • Floury, J., and A. Desrumaux. 2002. Effect of ultra-high-pressure homogenization on structure and on rheological properties of soy protein-stabilized emulsions. Journal of Food Science 67 (9):3388–3395. doi: 10.1111/j.1365-2621.2002.tb09595.x
  • Ge, Z., Y. Zhang, X. Jin, W. Wang, X. Wang, M. Liu, L. Zhang, and W. Zong. 2021. Effects of dynamic high-pressure microfluidization on the physicochemical, structural and functional characteristics of Eucommia ulmoides Oliv. seed meal proteins. LWT 138(December):110766. doi: 10.1016/j.lwt.2020.110766.
  • Georget, E., B. Miller, M. Callanan, V. Heinz, and A. Mathys. 2014. (Ultra) high pressure homogenization for continuous high pressure sterilization of pumpable foods: A review. Frontiers in Nutrition 1 (August):15–6. doi: 10.3389/fnut.2014.00015.
  • Ghanghas, N., P. K. Prabhakar, S. Sharma, and M. T. Mukilan. 2021. Microfluidization of fenugreek (Trigonella foenum graecum) seed protein concentrate: Effects on functional, rheological, thermal and microstructural properties Microfluidization of fenugreek (Trigonella foenum graecum) seed protein concentrate : Ef. LWT 149 (June):111830. doi: 10.1016/j.lwt.2021.111830.
  • Goh, P. S., M. H. Ng, Y. M. Choo, A. N. Boyce, and C. H. Chuah. 2015. Production of nanoemulsions from palm-based tocotrienol rich fraction by microfluidization. Molecules (Basel, Switzerland) 20 (11):19936–46. doi: 10.3390/molecules201119666.
  • Gong, K., L. Chen, H. Xia, H. Dai, X. Li, L. Sun, W. Kong, and K. Liu. 2019. International Journal of Biological Macromolecules Driving forces of disaggregation and reaggregation of peanut protein isolates in aqueous dispersion induced by high-pressure micro fl uidization. International Journal of Biological Macromolecules 130:915–21. doi: 10.1016/j.ijbiomac.2019.02.123.
  • Gul, O., F. T. Saricaoglu, M. Mortas, I. Atalar, and F. Yazici. 2017. Effect of high pressure homogenization (HPH) on microstructure and rheological properties of hazelnut milk. Innovative Food Science & Emerging Technologies 41(May):411–20. doi: 10.1016/j.ifset.2017.05.002.
  • Gul, O., F. Turker, and I. Atalar. 2021. Effect of high pressure homogenization on microstructure and rheological properties of hazelnut beverage cold-set gels induced glucono- δ -lactone. LWT 143(October):111154. doi: 10.1016/j.lwt.2021.111154.
  • Gul, O., I. Atalar, M. Mortas, F. T. Saricaoglu, and F. Yazıcı. 2018. Application of TOPSIS methodology to determine optimum hazelnut cake concentration and high pressure homogenization condition for hazelnut milk production based on physicochemical, structural and sensory properties. Journal of Food Measurement and Characterization 12 (4):2404–15. doi: 10.1007/s11694-018-9857-6.
  • Guo, X., M. Chen, Y. Li, T. Dai, X. Shuai, J. Chen, and C. Liu. 2020. Trends in Food Science & Technology Modification of food macromolecules using dynamic high pressure microfluidization : A review. Trends in Food Science & Technology 100 (April):223–34. doi: 10.1016/j.tifs.2020.04.004.
  • Guo, Z., Z. Huang, Y. Guo, B. Li, W. Yu, L. Zhou, L. Jiang, F. Teng, and Z. Wang. 2021. Food Hydrocolloids Effects of high-pressure homogenization on structural and emulsifying properties of thermally soluble aggregated kidney bean (Phaseolus vulgaris L.) proteins. Food Hydrocolloids. 119 (April):106835. doi: 10.1016/j.foodhyd.2021.106835.
  • Håkansson, A. 2015. Droplet breakup in high-pressure homogenizers. In Engineering aspects of food emulsification and homogenization, 125–48. CRC Press, Boca Raton. doi: 10.1201/b18436.
  • He, X. h., S. j Luo, M. s Chen, W. Xia, J. Chen, and C. m Liu. 2020. Effect of industry-scale microfluidization on structural and physicochemical properties of potato starch. Innovative Food Science & Emerging Technologies 60 (August):102278. doi: 10.1016/j.ifset.2019.102278.
  • He, X., J. Chen, X. He, Z. Feng, C. Li, W. Liu, T. Dai, and C. Liu. 2021. Industry-scale microfluidization as a potential technique to improve solubility and modify structure of pea protein. Innovative Food Science & Emerging Technologies 67 (October):102582. doi: 10.1016/j.ifset.2020.102582.
  • Hu, C., Z. Xiong, H. Xiong, L. Chen, and Z. Zhang. 2021. Effects of dynamic high-pressure microfluidization treatment on the functional and structural properties of potato protein isolate and its complex with chitosan. Food Research International (Ottawa, Ont.) 140 (October):109868. doi:10.1016/j.foodres.2020.109868.
  • Hu, X., W. K. Amakye, P. He, M. Wang, and J. Ren. 2021. Effects of microfluidization and transglutaminase cross-linking on the conformations and functional properties of arachin and conarachin in peanut. LWT 146 (381):111438. doi: 10.1016/j.lwt.2021.111438.
  • Huang, Y. C, and M. I. Kuo. 2015. Rheological characteristics and gelation of tofu made from ultra-high-pressure homogenized soymilk. Journal of Texture Studies 46 (5):335–44. doi: 10.1111/jtxs.12133.
  • Innings, F., M. Alameri, U. H. Koppmaier, and A. Håkansson. 2020. A mechanistic investigation of cell breakup in tomato juice homogenization. Journal of Food Engineering 272:109858. doi: 10.1016/j.jfoodeng.2019.109858.
  • Jiao, B., A. Shi, H. Liu, X. Sheng, L. Liu, H. Hu, B. Adhikari, and Q. Wang. 2018. Effect of electrostatically charged and neutral polysaccharides on the rheological characteristics of peanut protein isolate after high-pressure homogenization. Food Hydrocolloids 77:329–35. doi: 10.1016/j.foodhyd.2017.10.009.
  • Kaan, O, and B. Mert. 2019. Characterization and evaluation of emulsifying properties of high pressure microfluidized and pH shifted corn gluten meal. Innovative Food Science & Emerging Technologies 52 (July):179–88. doi: 10.1016/j.ifset.2018.12.006.
  • Kang, Z. L., R. Bai, F. Lu, T. Zhang, Z. S. Gao, S. M. Zhao, M. M. Zhu, and H. J. Ma. 2022. Effects of high pressure homogenization on the solubility, foaming, and gel properties of soy 11S globulin. Food Hydrocolloids 124 (PA):107261. doi: 10.1016/j.foodhyd.2021.107261.
  • Keerati-U-Rai, A. M. and M. Corredig. 2009. Effect of dynamic high pressure homogenization on the aggregation state of soy protein. Journal of Agricultural and Food Chemistry 57 (9):3556–62. doi: 10.1021/jf803562q.
  • Kumar, A., A. Dhiman, R. Suhag, R. Sehrawat, A. Upadhyay, and D. J. McClements. 2021. Comprehensive review on potential applications of microfluidization in food processing. Food Science and Biotechnology 31:17–36. doi: 10.1007/s10068-021-01010-x.
  • Lam, R. S. H, and M. T. Nickerson. 2013. Food proteins: A review on their emulsifying properties using a structure-function approach. Food Chemistry 141 (2):975–84. doi: 10.1016/j.foodchem.2013.04.038.
  • Levy, R., Z. Okun, and A. Shpigelman. 2020. High-pressure homogenization: Principles and applications beyond microbial inactivation. Food Engineering Reviews 13: 490–508.
  • Levy, R., Z. Okun, M. Davidovich-Pinhas, and A. Shpigelman. 2021. Utilization of high-pressure homogenization of potato protein isolate for the production of dairy-free yogurt-like fermented product. Food Hydrocolloids 113(October):106442. doi: 10.1016/j.foodhyd.2020.106442.
  • Li, C., Q. Wang, C. Zhang, L. Lei, X. Lei, Y. Zhang, L. Li, Q. Wang, and J. Ming. 2022. Dynamic high-pressure microfluidization enhanced the emulsifying properties of wheat gliadin by rutin. Journal of Food Processing and Preservation 137:1–12. doi: 10.1111/jfpp.16304.
  • Li, J., K. Wang, Y. Gao, C. Ma, D. Sun, M. A. Hussain, A. Qayum, Z. Jiang, and J. Hou. 2021. Effect of thermal treatment and pressure on the characteristics of green soybean tofu and the optimization conditions of tofu processing by TOPSIS analysis. LWT 136 (P1):110314. doi: 10.1016/j.lwt.2020.110314.
  • Li, T., X. Rui, K. Wang, M. Jiang, X. Chen, W. Li, and M. Dong. 2015. Study of the dynamic states of water and effects of high-pressure homogenization on water distribution in tofu by using low- field nuclear magnetic resonance. Innovative Food Science & Emerging Technologies 30:61–8. doi: 10.1016/j.ifset.2015.03.008.
  • Li, Y. T., M. S. Chen, L. Z. Deng, Y. Z. Liang, Y. K. Liu, W. Liu, J. Chen, and C. M. Liu. 2021. Whole soybean milk produced by a novel industry-scale micofluidizer system without soaking and filtering. Journal of Food Engineering 291 (June 2020):110228. doi: 10.1016/j.jfoodeng.2020.110228.
  • Li, Y., L. Deng, T. Dai, Y. Li, J. Chen, W. Liu, and C. Liu. 2022. Microfluidization: A promising food processing technology and its challenges in industrial application. Food Control 137:108794. doi: 10.1016/j.foodcont.2021.108794.
  • Liu, H, and M. Kuo. 2016. Ultra high pressure homogenization effect on the proteins in soy flour. Food Hydrocolloids 52:741–8. doi: 10.1016/j.foodhyd.2015.08.018.
  • Liu, H. H., J. T. Chien, and M. I. Kuo. 2013. Ultra high pressure homogenized soy flour for tofu making. Food Hydrocolloids 32 (2):278–85. doi: 10.1016/j.foodhyd.2013.01.005.
  • Liu, W., A. Ye, and H. Singh. 2015. Progress in applications of liposomes in food systems. In Microencapsulation and microspheres for food applications. San Diego, USA: Elsevier Inc. doi: 10.1016/B978-0-12-800350-3.00025-X.
  • Liu, X., Y. Y. Liu, J. Guo, S. W. Yin, and X. Q. Yang. 2017. Microfluidization initiated cross-linking of gliadin particles for structured algal oil emulsions. Food Hydrocolloids 73:153–61. doi: 10.1016/j.foodhyd.2017.07.001.
  • Lozober, H. S., Z. Okun, and A. Shpigelman. 2021. The impact of high-pressure homogenization on thermal gelation of Arthrospira platensis (Spirulina) protein concentrate. Innovative Food Science & Emerging Technologies 74 (October):102857. doi: 10.1016/j.ifset.2021.102857.
  • Martínez, K. D., V. Ganesan, A. M. R. Pilosof, and F. M. Harte. 2011. Effect of dynamic high-pressure treatment on the interfacial and foaming properties of soy protein isolate-hydroxypropylmethylcelluloses systems. Food Hydrocolloids 25 (6):1640–5. doi: 10.1016/j.foodhyd.2011.02.013.
  • McCarthy, N. A., D. Kennedy, S. A. Hogan, P. M. Kelly, K. Thapa, K. M. Murphy, and M. A. Fenelon. 2016. Emulsification properties of pea protein isolate using homogenization, microfluidization and ultrasonication. Food Research International 89:415–21. doi: 10.1016/j.foodres.2016.07.024.
  • McClements, D. J, and J. Rao. 2011. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Food Science and Nutrition 51 (4):285–330. doi: 10.1080/10408398.2011.559558.
  • Mei, J., F. Feng, and Y. Li. 2016. Effective of different homogeneous methods on physicochemical, textural and sensory characteristics of soybean (Glycine max L.) yogurt. CyTA - Journal of Food 15 (1):1–6. doi: 10.1080/19476337.2016.1197315.
  • Melchior, S., M. Moretton, S. Calligaris, L. Manzocco, and M. C. Nicoli. 2022. High pressure homogenization shapes the techno-functionalities and digestibility of pea proteins. Food and Bioproducts Processing 131:77–85. doi: 10.1016/j.fbp.2021.10.011.
  • Mert, I. D. 2020. The applications of microfluidization in cereals and cereal-based products: An overview. Critical Reviews in Food Science and Nutrition 60 (6):1007–24. doi: 10.1080/10408398.2018.1555134.
  • Microfluidics. 2014. Innovation through microfluidizer TM processor technology.
  • Moll, P., H. Salminen, C. Schmitt, and J. Weiss. 2021. Impact of microfluidization on colloidal properties of insoluble pea protein fractions. European Food Research and Technology 247 (3):545–54. doi: 10.1007/s00217-020-03629-2.
  • Mukherjee, D, and S. K. C. Chang. 2017. Effects of ultra-high pressure homogenization and hydrocolloids on physicochemical and storage properties of soymilk. Journal of Food Science 82 (10):2313–20. doi: 10.1111/1750-3841.13860.
  • Mutsch, B., F. J. Preiss, T. Dagenbach, H. P. Karbstein, and C. J. Kähler. 2021. Scaling of droplet breakup in high-pressure homogenizer orifices. Part ii: Visualization of the turbulent droplet breakup. ChemEngineering 5 (2):31. doi: 10.3390/chemengineering5020031.
  • Nicolai, T. 2019. Gelation of food protein-protein mixtures. Advances in Colloid and Interface Science 270:147–64. doi: 10.1016/j.cis.2019.06.006.
  • Oliete, B., E. Cases, and R. Saurel. 2017. Improvement of the techno-functional properties of pea proteins by microfluidization. International Journal of Food and Biosystems Engineering 4 (1):57–68.
  • Oliete, B., F. Potin, E. Cases, and R. Saurel. 2018. Modulation of the emulsifying properties of pea globulin soluble aggregates by dynamic high-pressure fl uidization. Innovative Food Science & Emerging Technologies 47 (October):292–300. doi: 10.1016/j.ifset.2018.03.015.
  • Oliete, B., S. A. Yassine, E. Cases, and R. Saurel. 2019. Drying method determines the structure and the solubility of microfluidized pea globulin aggregates. Food Research International (Ottawa, Ont.) 119 (January):444–54. doi: 10.1016/j.foodres.2019.02.015.
  • Osorio-Arias, J. C., O. Vega-Castro, and S. I. Martínez-Monteagudo. 2021. Fundamentals of high-pressure homogenization of foods. In Innovative food processing technologies (January). Amsterdam, The Netherlands: Elsevier BV. doi: 10.1016/b978-0-08-100596-5.23021-7.
  • Ozturk, B., S. Argin, M. Ozilgen, and D. J. McClements. 2015. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. Food Chemistry 188:256–63. doi: 10.1016/j.foodchem.2015.05.005.
  • Ozturk, O. K, and B. Mert. 2018. The effects of microfluidization on rheological and textural properties of gluten-free corn breads. Food Research International (Ottawa, Ont.) 105 (December):782–92. , doi: 10.1016/j.foodres.2017.12.008.
  • Ozturk, O. K, and H. Turasan. 2021. Applications of microfluidization in emulsion-based systems, nanoparticle formation, and beverages. Trends in Food Science & Technology 116 (March):609–25. doi: 10.1016/j.tifs.2021.07.033.
  • Patrignani, F, and R. Lanciotti. 2016. Applications of high and ultra high pressure homogenization for food safety. Frontiers in Microbiology 7 (August):1132–13. doi: 10.3389/fmicb.2016.01132.
  • Poliseli-Scopel, F. H., M. Hernández-Herrero, B. Guamis, and V. Ferragut. 2012. Comparison of ultra high pressure homogenization and conventional thermal treatments on the microbiological, physical and chemical quality of soymilk. LWT - Food Science and Technology 46 (1):42–8. doi: 10.1016/j.lwt.2011.11.004.
  • Poliseli-Scopel, F. H., M. Hernández-Herrero, B. Guamis, and V. Ferragut. 2014. Sterilization and aseptic packaging of soymilk treated by ultra high pressure homogenization. Innovative Food Science & Emerging Technologies 22:81–8. doi: 10.1016/j.ifset.2014.01.001.
  • Preiss, F. J., M. Hetz, and H. P. Karbstein. 2021. Does cavitation affect droplet breakup in high-pressure homogenization? Insights into local effects. Chemie-Ingenieur-Technik 00:1–12. doi: 10.1002/cite.202100104.
  • Primozic, M., A. Duchek, M. Nickerson, and S. Ghosh. 2018. Formation, stability and in vitro digestibility of nanoemulsions stabilized by high-pressure homogenized lentil proteins isolate. Food Hydrocolloids 77:126–41. doi: 10.1016/j.foodhyd.2017.09.028.
  • Quan, T. H., S. Benjakul, T. Sae-leaw, A. K. Balange, and S. Maqsood. 2019. Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends in Food Science & Technology 91 (August):507–17. doi: 10.1016/j.tifs.2019.07.049.
  • Saricaoglu, F. T. 2020. Application of high-pressure homogenization (HPH) to modify functional, structural and rheological properties of lentil (Lens culinaris) proteins. International Journal of Biological Macromolecules 144:760–9. doi: 10.1016/j.ijbiomac.2019.11.034.
  • Saricaoglu, F. T., O. Gul, A. Besir, and I. Atalar. 2018. Effect of high pressure homogenization (HPH) on functional and rheological properties of hazelnut meal proteins obtained from hazelnut oil industry by-products. Journal of Food Engineering 233:98–108. doi: 10.1016/j.jfoodeng.2018.04.003.
  • Schlender, M., A. Spengler, and H. P. Schuchmann. 2015. High-pressure emulsion formation in cylindrical coaxial orifices: Influence of cavitation induced pattern on oil drop size. International Journal of Multiphase Flow 74:84–95. doi: 10.1016/j.ijmultiphaseflow.2015.04.004.
  • Sevenich, R, and A. Mathys. 2018. Continuous versus discontinuous ultra-high-pressure systems for food sterilization with focus on ultra-high-pressure homogenization and high-pressure thermal sterilization: A review. Comprehensive Reviews in Food Science and Food Safety 17 (3):646–62. doi: 10.1111/1541-4337.12348.
  • Shen, L, and C. Tang. 2012. Micro fl uidization as a potential technique to modify surface properties of soy protein isolate. Food Research International 48 (1):108–18. doi: 10.1016/j.foodres.2012.03.006.
  • Sun, C., J. Yang, F. Liu, W. Yang, F. Yuan, and Y. Gao. 2016. Effects of dynamic high-pressure microfluidization treatment and the presence of quercetagetin on the physical, structural, thermal, and morphological characteristics of zein nanoparticles. Food and Bioprocess Technology 9 (2):320–30. doi: 10.1007/s11947-015-1627-4.
  • Sun, C., L. Dai, F. Liu, and Y. Gao. 2016. Simultaneous treatment of heat and high pressure homogenization of zein in ethanol-water solution: Physical, structural, thermal and morphological characteristics. Innovative Food Science & Emerging Technologies 34:161–70. doi: 10.1016/j.ifset.2016.01.016.
  • Tan, M., M. A. Nawaz, and R. Buckow. 2021. Functional and food application of plant proteins–a review. Food Reviews International 00 (00):1–29. doi: 10.1080/87559129.2021.1955918.
  • Tang, C. H, and F. Liu. 2013. Cold, gel-like soy protein emulsions by microfluidization: Emulsion characteristics, rheological and microstructural properties, and gelling mechanism. Food Hydrocolloids. 30 (1):61–72. doi: 10.1016/j.foodhyd.2012.05.008.
  • Toro-Funes, N., J. Bosch-Fusté, M. T. Veciana-Nogués, and M. C. Vidal-Carou. 2014. Changes of isoflavones and protein quality in soymilk pasteurised by ultra-high-pressure homogenisation throughout storage. Food Chemistry 162:47–53. doi: 10.1016/j.foodchem.2014.04.019.
  • Wei, Y., C. Wang, X. Liu, A. Mackie, L. Zhang, J. Liu, L. Mao, F. Yuan, and Y. Gao. 2020. Impact of microfluidization and thermal treatment on the structure, stability and in vitro digestion of curcumin loaded zein-propylene glycol alginate complex nanoparticles. Food Research International (Ottawa, Ont.) 138 (Pt B):109817. doi: 10.1016/j.foodres.2020.109817.
  • Xia, X., Y. Dai, H. Wu, X. Liu, Y. Wang, J. Cao, and J. Zhou. 2019. Effects of pressure and multiple passes on the physicochemical and microbial characteristics of lupin-based beverage treated with high-pressure homogenization. Journal of Food Processing and Preservation 43 (4):e13912–12. doi: 10.1111/jfpp.13912.
  • Yang, J., G. Liu, H. Zeng, and L. Chen. 2018. Effects of high pressure homogenization on faba bean protein aggregation in relation to solubility and interfacial properties. Food Hydrocolloids 83 (May):275–86. doi: 10.1016/j.foodhyd.2018.05.020.
  • Zaaboul, F., H. Raza, C. Cao, and L. Yuanfa. 2019. The impact of roasting, high pressure homogenization and sterilization on peanut milk and its oil bodies. Food Chemistry 280 (December):270–7. doi: 10.1016/j.foodchem.2018.12.047.
  • Zhang, A., L. Wang, T. Song, H. Yu, X. Wang, and X. h Zhao. 2022. Effects of high pressure homogenization on the structural and emulsifying properties of a vegetable protein: Cyperus esculentus L. LWT 153(June):112542. doi: 10.1016/j.lwt.2021.112542.
  • Zhang, H., T. Wang, F. He, and G. Chen. 2021. Fabrication of pea protein-curcumin nanocomplexes via microfluidization for improved solubility, nano-dispersibility and heat stability of curcumin: Insight on interaction mechanisms. International Journal of Biological Macromolecules 168:686–94. doi: 10.1016/j.ijbiomac.2020.11.125.
  • Zhang, L., X. Chen, Y. Wang, F. Guo, S. Hu, J. Hu, H. Xiong, and Q. Zhao. 2021. Characteristics of rice dreg protein isolate treated by high-pressure microfluidization with and without proteolysis. Food Chemistry 358 (April):129861. doi: 10.1016/j.foodchem.2021.129861.
  • Zhao, Q., W. Yan, Y. Liu, and J. Li. 2021. Modulation of the structural and functional properties of perilla protein isolate from oilseed residues by dynamic high-pressure microfluidization. Food Chemistry 365 (June):130497. doi: 10.1016/j.foodchem.2021.130497.
  • Zhao, S., Y. Huang, D. J. McClements, X. Liu, P. Wang, and F. Liu. 2022. Improving pea protein functionality by combining high-pressure homogenization with an ultrasound-assisted Maillard reaction. Food Hydrocolloids. 126(November):107441. doi: 10.1016/j.foodhyd.2021.107441.
  • Zheng, L., M. He, X. Zhang, J. M. Regenstein, Z. Wang, Z. Ma, Y. Kong, C. Wu, F. Teng, and Y. Li. 2021. Gel properties and structural characteristics of soy protein isolate treated with different salt ions before spray drying combined with dynamic high-pressure micro-fluidization. Food and Bioproducts Processing, October 125:68–78. doi: 10.1016/j.fbp.2020.10.016.
  • Zhu, Q., F. Wu, M. Saito, E. Tatsumi, and L. Yin. 2016. Effect of magnesium salt concentration in water-in-oil emulsions on the physical properties and microstructure of tofu. Food Chemistry 201:197–204. doi: 10.1016/j.foodchem.2016.01.065.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.