465
Views
1
CrossRef citations to date
0
Altmetric
Review

Application on infrared spectroscopy for the analysis of total phenolic compounds in fruits

, , & ORCID Icon

References

  • Abdelshafy, A. M., T. Belwal, Z. Liang, L. Wang, D. Li, Z. Luo, and L. Li. 2022. A comprehensive review on phenolic compounds from edible mushrooms: Occurrence, biological activity, application and future prospective. Critical Reviews in Food Science and Nutrition 62 (22):6204–24. doi:10.1080/10408398.2021.1898335.
  • Aleixandre-Tudo, J. L., H. Nieuwoudt, and W. du Toit. 2019. Towards on-line monitoring of phenolic content in red wine grapes: A feasibility study. Food Chemistry 270:322–31. doi: 10.1016/j.foodchem.2018.07.118.
  • Ali Asgar, M. 2013. Anti-diabetic potential of phenolic compounds: A review. International Journal of Food Properties 16 (1):91–103. doi: 10.1080/10942912.2011.595864.
  • Al-Qassabi, J. S. A., A. M. Weli, and M. A. Hossain. 2018. Comparison of total phenols content and antioxidant potential of peel extracts of local and imported lemons samples. Sustainable Chemistry and Pharmacy 8:71–5. doi: 10.1016/j.scp.2018.03.001.
  • Alsuhaibani, A. M. A, and A. N. Al-Kuraieef. 2019. Effect of phenolic compounds and fatty acid contents of walnut seeds on streptozotocin-induced diabetes in rats. Journal of Food Measurement and Characterization 13 (1):499–505. doi: 10.1007/s11694-018-9963-5.
  • Ambriz-Pérez, D. L., N. Leyva-López, E. P. Gutierrez-Grijalva, and J. B. Heredia. 2016. Phenolic compounds: Natural alternative in inflammation treatment. A Review. Cogent Food and Agriculture 2 (1):1–14 doi: 10.1080/23311932.2015.1131412.
  • Amintas, S., C. Dupin, J. Boutin, P. Beaumont, F. Moreau-Gaudry, A. Bedel, S. Krisa, V. Vendrely, and S. Dabernat. 2022. Bioactive food components for colorectal cancer prevention and treatment: A good match. Critical Reviews in Food Science and Nutrition 1–15. doi: 10.1080/10408398.2022.2036095.
  • Amodio, M. L., F. Ceglie, M. M. A. Chaudhry, F. Piazzolla, and G. Colelli. 2017. Potential of NIR spectroscopy for predicting internal quality and discriminating among strawberry fruits from different production systems. Postharvest Biology and Technology 125:112–21. doi: 10.1016/j.postharvbio.2016.11.013.
  • Amoriello, T., R. Ciccoritti, and K. Carbone. 2019. Vibrational spectroscopy as a green technology for predicting nutraceutical properties and antiradical potential of early-to-late apricot genotypes. Postharvest Biology and Technology 155 (June):156–66. doi: 10.1016/j.postharvbio.2019.03.013.
  • Angelo, P. M, and N. Jorge. 2007. Compostos fenólicos em alimentos Uma breve revisão. Revista Do Instituto Adolfo Lutz 66 (1):1–9.
  • Arendse, E., O. A. Fawole, L. S. Magwaza, H. H. Nieuwoudt, and U. L. Opara. 2017. Development of calibration models for the evaluation of pomegranate aril quality by Fourier-transform near infrared spectroscopy combined with chemometrics. Biosystems Engineering 159:22–32. doi: 10.1016/j.biosystemseng.2017.04.004.
  • Arendse, E., O. A. Fawole, L. S. Magwaza, H. Nieuwoudt, and U. L. Opara. 2018. Evaluation of biochemical markers associated with the development of husk scald and the use of diffuse reflectance NIR spectroscopy to predict husk scald in pomegranate fruit. Scientia Horticulturae 232:240–9. doi: 10.1016/j.scienta.2018.01.022.
  • Baker, M. T., P. Lu, J. A. Parrella, and H. R. Leggette. 2022. Consumer acceptance toward functional foods: A scoping review. International Journal of Environmental Research and Public Health 19 (3):1217. doi: 10.3390/ijerph19031217.
  • Baldissera, M. D., C. F. Souza, T. H. Grando, L. F. Cossetin, M. R. Sagrillo, K. Nascimento, A. S. da Silva, A. K. Machado, I. B. M. da Cruz, L. M. Stefani, et al. 2017. Antihyperglycemic, antioxidant activities of tucumã oil (Astrocaryum vulgare) in alloxan-induced diabetic mice, and identification of fatty acid profile by gas chromatograph: New natural source to treat hyperglycemia. Chemico-Biological Interactions 270:51–8. doi: 10.1016/j.cbi.2017.04.001.
  • Bataglion, G. A., F. M. A. da Silva, M. N. Eberlin, and H. H. F. Koolen. 2014. Simultaneous quantification of phenolic compounds in buriti fruit (Mauritia flexuosa L.f.) by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. Food Research International 66:396–400. doi: 10.1016/j.foodres.2014.09.035.
  • Bataglion, G. A., F. M. A. Da Silva, M. N. Eberlin, and H. H. F. Koolen. 2015. Determination of the phenolic composition from Brazilian tropical fruits by UHPLC-MS/MS. Food Chemistry 180:280–7. doi: 10.1016/j.foodchem.2015.02.059.
  • Blanco-Díaz, M. T., M. Del Río-Celestino, D. Martínez-Valdivieso, and R. Font. 2014. Use of visible and near-infrared spectroscopy for predicting antioxidant compounds in summer squash (Cucurbita pepo ssp pepo). Food Chemistry 164:301–8. doi:10.1016/j.foodchem.2014.05.019.
  • Canteri, M. H. G., A. P. Scheer, G. Wosiacki, C. Ginies, M. Reich, and C. M. C. G. Renard. 2010. A Comparative Study of Pectin Extracted from Passion Fruit Rind Flours. Journal of Polymers and the Environment 18 (4):593–9. doi: 10.1007/s10924-010-0206-z.
  • Castrignanò, A., G. Buttafuoco, C. Malegori, E. Genorini, R. Iorio, M. Stipic, G. Girone, and A. Venezia. 2019. Assessing the feasibility of a miniaturized near-infrared spectrometer in determining quality attributes of San Marzano Tomato. Food Analytical Methods 12 (7):1497–510. doi: 10.1007/s12161-019-01475-x.
  • Chauchard, F., R. Cogdill, S. Roussel, J. M. Roger, and V. Bellon-Maurel. 2004. Application of LS-SVM to non-linear phenomena in NIR spectroscopy: Development of a robust and portable sensor for acidity prediction in grapes. Chemometrics and Intelligent Laboratory Systems 71 (2):141–50. doi: 10.1016/j.chemolab.2004.01.003.
  • Chirinos, R., J. Galarza, I. Betalleluz-Pallardel, R. Pedreschi, and D. Campos. 2010. Antioxidant compounds and antioxidant capacity of Peruvian camu camu (Myrciaria dubia (H.B.K.) McVaugh) fruit at different maturity stages. Food Chemistry 120 (4):1019–1024. doi: 10.1016/j.foodchem.2009.11.041.
  • Chu, L., L. Yang, L. Lin, J. Wei, N. Wang, M. Xu, G. Qiao, and G. Zheng. 2019. Chemical composition, antioxidant activities of polysaccharide from Pine needle (Pinus massoniana) and hypolipidemic effect in high-fat diet-induced mice. International Journal of Biological Macromolecules 125:445–52. doi: 10.1016/j.ijbiomac.2018.12.082.
  • Ciccoritti, R., M. Paliotta, T. Amoriello, and K. Carbone. 2019. FT-NIR spectroscopy and multivariate classification strategies for the postharvest quality of green-fleshed kiwifruit varieties. Scientia Horticulturae 257 (June):108622. doi: 10.1016/j.scienta.2019.108622.
  • Cozzolino, D. 2012. Recent trends on the use of infrared spectroscopy to trace and authenticate natural and agricultural food products. Applied Spectroscopy Reviews 47 (7):518–30. doi: 10.1080/05704928.2012.667858.
  • Cozzolino, D. 2015. Sample presentation, sources of error and future perspectives on the application of vibrational spectroscopy in the wine industry. Journal of the Science of Food and Agriculture 95 (5):861–8. doi:10.1002/jsfa.6733.
  • Cozzolino, D. 2022. An overview of the successful application of vibrational spectroscopy techniques to quantify nutraceuticals in fruits and plants. Foods 11 (3):315. doi: 10.3390/foods11030315.
  • Cozzolino, D., W. U. Cynkar, N. Shah, and P. Smith. 2011. Multivariate data analysis applied to spectroscopy: Potential application to juice and fruit quality. Food Research International 44 (7):1888–96. doi: 10.1016/j.foodres.2011.01.041.
  • Cruz, R. G. d., L. Beney, P. Gervais, S. P. d Lira, T. M. F. d S. Vieira, and S. Dupont. 2019. Comparison of the antioxidant property of acerola extracts with synthetic antioxidants using an in vivo method with yeasts. Food Chemistry 277:698–705. (June 2018), doi: 10.1016/j.foodchem.2018.10.099.
  • Ding, X., Y. Guo, Y. Ni, and S. Kokot. 2016. A novel NIR spectroscopic method for rapid analyses of lycopene, total acid, sugar, phenols and antioxidant activity in dehydrated tomato samples. Vibrational Spectroscopy 82:1–9. doi: 10.1016/j.vibspec.2015.10.004.
  • Dong, X., Y. Hu, Y. Li, and Z. Zhou. 2019. The maturity degree, phenolic compounds and antioxidant activity of Eureka lemon [Citrus limon (L.) Burm. f.]: A negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Scientia Horticulturae 243:281–9. (August 2018), doi: 10.1016/j.scienta.2018.08.036.
  • Dong, W., Y. Ni, and S. Kokot. 2013. A Near-Infrared Reflectance Spectroscopy Method for Direct Analysis of Several Chemical Components and Properties of Fruit, for Example, Chinese Hawthorn. Journal of Agricultural and Food Chemistry 61 (3):540–6. doi: 10.1021/jf305272s.
  • Dutra, R. L. T., A. M. Dantas, D. d A. Marques, J. D. F. Batista, B. R. L. d A. Meireles, Â. M. T. de Magalhães Cordeiro, M. Magnani, and G. d S. C. Borges. 2017. Bioaccessibility and antioxidant activity of phenolic compounds in frozen pulps of Brazilian exotic fruits exposed to simulated gastrointestinal conditions. Food Research International (Ottawa, Ont.) 100 (Pt 1):650–7. doi: 10.1016/j.foodres.2017.07.047.
  • Escarpa, A, and M. C. González. 1998. High-performance liquid chromatography with diode-array detection for the determination of phenolic compounds in peel and pulp from different apple varieties. Journal of Chromatography. A 823 (1-2):331–7. doi: 10.1016/S0021-9673(98)00294-5.
  • Ferreira, M. M. C. 2015. Quimiometria: conceitos, métodos e aplicações (1st ed.), Editora UNICAMP, Campinas, SP.
  • Ferreira, D. S., V. V. de Rosso, and A. Z. Mercadante. 2010. Bioactive compounds of blackberry fruits (Rubus spp.) grown in Brazil | Compostos bioativos presentes em amora-preta (Rubus spp. )Revista Brasileira de Fruticultura 32 (3):664–74. doi: 10.1590/S0100-29452010005000110.
  • Ferreira, R. d A., G. Teixeira, and L. A. Peternelli. 2022. Kennard-Stone method outperforms the Random Sampling in the selection of calibration samples in SNPs and NIR data. Ciência Rural 52 (5):1–11. doi: 10.1590/0103-8478cr20201072.
  • FOSS. 2018. Best practice for calibration of NIR instruments with global models. May
  • Galvão, R. K. H., M. C. U. Araujo, G. E. José, M. J. C. Pontes, E. C. Silva, and T. C. B. Saldanha. 2005. A method for calibration and validation subset partitioning. Talanta 67 (4):736–40. doi: 10.1016/j.talanta.2005.03.025.
  • Garcia-Salas, P., A. Morales-Soto, A. Segura-Carretero, and A. Fernández-Gutiérrez. 2010. Phenolic-compound-extraction systems for fruit and vegetable samples. Molecules (Basel, Switzerland) 15 (12):8813–26. doi: 10.3390/molecules15128813.
  • Gauglitz, E. G. 2004. Handbook of spectroscopy. In Choice Reviews Online (41 Issue (08):89–110. doi: 10.5860/choice.41-4678.
  • Giovanelli, G., N. Sinelli, R. Beghi, R. Guidetti, and E. Casiraghi. 2014. NIR spectroscopy for the optimization of postharvest apple management. Postharvest Biology and Technology 87:13–20. doi: 10.1016/j.postharvbio.2013.07.041.
  • Gordon, A., A. P. G. Cruz, L. M. C. Cabral, S. C. De Freitas, C. M. A. D. Taxi, C. M. Donangelo, R. De Andrade Mattietto, M. Friedrich, V. M. Da Matta, and F. Marx. 2012. Chemical characterization and evaluation of antioxidant properties of Açaí fruits (Euterpe oleraceae Mart.) during ripening. Food Chemistry 133 (2):256–63. doi: 10.1016/j.foodchem.2011.11.150.
  • Granato, D., P. Putnik, D. B. Kovačević, J. S. Santos, V. Calado, R. S. Rocha, A. G. D. Cruz, B. Jarvis, O. Y. Rodionova, and A. Pomerantsev. 2018. Trends in chemometrics: food authentication, microbiology, and effects of processing. Comprehensive Reviews in Food Science and Food Safety 17 (3):663–77. doi: 10.1111/1541-4337.12341.
  • Guimarães, K. C., D. L. Salgado, and E. E. N. Carvalho. 2020. Evaluation of different methodologies for the determination of phenolic compounds in tropical fruits. Brazilian Journal of Food Technology 23:1–7. doi: 10.1590/1981-6723.01519.
  • Gutiérrez-Grijalva, E. P., D. L. Ambriz-Pére, N. Leyva-López, R. I. Castillo-López, and J. B. Heredia. 2016. Review: Dietary phenolic compounds, health benefits and bioaccessibility. Archivos Latinoamericanos de Nutricion 66 (2):87–100.
  • Haminiuk, C. W. I., G. M. Maciel, M. S. V. Plata-Oviedo, and R. M. Peralta. 2012. Phenolic compounds in fruits - an overview. International Journal of Food Science & Technology 47 (10):2023–44. doi: 10.1111/j.1365-2621.2012.03067.x.
  • Hubert, M, and K. Vanden Branden. 2003. Robust methods for partial least squares regression. Journal of Chemometrics 17 (10):537–49. doi: 10.1002/cem.822.
  • ISO 12099: 2017. Animal feeding stuffs, cereals and milled cereal products - Guidelines for the application of near infrared spectrometry.
  • ISO 21543: 2020. Milk and milk products — Guidelines for the application of near infrared spectrometry (Vol. 2020).
  • Jia, W., D. Zhao, and L. Ding. 2016. An optimized RBF neural network algorithm based on partial least squares and genetic algorithm for classification of small sample. Applied Soft Computing 48:373–84. doi: 10.1016/j.asoc.2016.07.037.
  • Kennard, R. W, and L. A. Stone. 1969. Computer Aided Design of Experiments. Technometrics 11 (1):137–48. doi: 10.1080/00401706.1969.10490666.
  • Khoddami, A., M. A. Wilkes, and T. H. Roberts. 2013. Techniques for analysis of plant phenolic compounds. Molecules (Basel, Switzerland) 18 (2):2328–75. doi: 10.3390/molecules18022328.
  • Lakshmi, S. (2015). Research and Reviews: Journal of Pharmaceutical Analysis A Review on Chromatography with High Performance Liquid Chromatography (HPLC) and its Functions. Journal of Pharmaceutical Analysis, 4(1), 1–15. http://www.rroij.com/open-access/a-review-on-chromatography-with-high-performance-liquid-chromatography-hplc-and-its-functions.pdf
  • Lerma-García, M. J., V. Cortés, P. Talens, and J. M. Barat. 2018. Variety Discrimination of Fruits, Edible Plants, and Other Foodstuffs and Beverages by Infrared Spectroscopy. Comprehensive Analytical Chemistry 80:127–63. doi: 10.1016/bs.coac.2018.03.004.
  • Li, J. L., D. W. Sun, and J. H. Cheng. 2016. Recent Advances in Nondestructive Analytical Techniques for Determining the Total Soluble Solids in Fruits: A Review. Comprehensive Reviews in Food Science and Food Safety 15 (5):897–911. doi: 10.1111/1541-4337.12217.
  • Lima, J. P., C. A. Fante, C. R. Freitas Pires, E. E. Nunes, R. R. Alves, H. H. de Siqueira Elias, C. A. Nunes, and E. V. de Barros Vilas Boas. 2015. The antioxidative potential and volatile constituents of mangaba fruit over the storage period. Scientia Horticulturae 194:1–6. doi: 10.1016/j.scienta.2015.05.035.
  • Lima, V. L., E. A. Mélo, M. I. S. Maciel, F. G. Prazeres, R. S. Musser, and D. E. S. Lima. 2005. Total phenolic and carotenoid contents in acerola genotypes harvested at three ripening stages. Food Chemistry 90 (4):565–8. doi: 10.1016/j.foodchem.2004.04.014.
  • Lohumi, S., S. Lee, H. Lee, and B. K. Cho. 2015. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends in Food Science & Technology 46 (1):85–98. doi: 10.1016/j.tifs.2015.08.003.
  • López-Vargas, J. H., J. Fernández-López, J. A. Pérez-Álvarez, and M. Viuda-Martos. 2013. Chemical, Physico-chemical, Technological, Antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Food Research International 51 (2):756–63. doi: 10.1016/j.foodres.2013.01.055.
  • Lu, X, and B. A. Rasco. 2012. Determination of Antioxidant Content and Antioxidant Activity in Foods using Infrared Spectroscopy and Chemometrics: A Review. Critical Reviews in Food Science and Nutrition 52 (10):853–75. doi: 10.1080/10408398.2010.511322.
  • Luthria, D. L. 2006. Application of green chemistry principles for extraction of phytolipids and phenolic compounds. Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry 45 (10):2291–6.
  • Magwaza, L. S., S. I. Messo Naidoo, S. M. Laurie, M. D. Laing, and H. Shimelis. 2016. Development of NIRS models for rapid quantification of protein content in sweetpotato [Ipomoea batatas (L.) LAM.]. LWT - Food Science and Technology 72:63–70. doi: 10.1016/j.lwt.2016.04.032.
  • Malegori, C., E. J. Nascimento Marques, S. T. de Freitas, M. F. Pimentel, C. Pasquini, and E. Casiraghi. 2017. Comparing the analytical performances of Micro-NIR and FT-NIR spectrometers in the evaluation of acerola fruit quality, using PLS and SVM regression algorithms. Talanta 165:112–6. doi: 10.1016/j.talanta.2016.12.035.
  • Meini, M. R., I. Cabezudo, C. E. Boschetti, and D. Romanini. 2019. Recovery of phenolic antioxidants from Syrah grape pomace through the optimization of an enzymatic extraction process. Food Chemistry 283:257–64. doi: 10.1016/j.foodchem.2019.01.037.
  • Milanez, J. T., L. C. Neves, R. C. Colombo, M. Shahab, and S. R. Roberto. 2018. Bioactive compounds and antioxidant activity of buriti fruits, during the postharvest, harvested at different ripening stages. Scientia Horticulturae 227:10–21. doi: 10.1016/j.scienta.2017.08.045.
  • Milanez, J. T., L. C. Neves, P. M. C. Silva, V. J. Bastos, M. Shahab, R. C. Colombo, and S. R. Roberto. 2016. Pre-harvest studies of buriti (Mauritia flexuosa L.F.), a Brazilian native fruit, for the characterization of ideal harvest point and ripening stages. Scientia Horticulturae 202:77–82. doi: 10.1016/j.scienta.2016.02.026.
  • Mitchell, A. E., D. Robertson, and E. Koh. 2017. Optimizing the Extraction of Procyanidins Oligomers through Decamer. Nutrition & Food Science International Journal 4 (3):1–7. doi: 10.19080/nfsij.2017.04.555636.
  • Mitra, S, and R. Brukh. 2003. Sample preparation techniques in analytical chemistry. In S. Mitra & J. Winefordner (Eds.), Methodology, John Wiley & Sons, Inc., Hoboken, New Jersey.
  • Moraes, J. O., P. B. Pertuzatti, F. V. Corrêa, and M. D. L. M. Salas-Mellado. 2007. Study of rabbiteye blueberry (Vaccinium ashei Reade) in the process of food products. Ciência e Tecnologia de Alimentos 27 (SUPPL.1):18–22. doi: 10.1590/S0101-20612007000500003.
  • Munera, S., F. Hernández, N. Aleixos, S. Cubero, and J. Blasco. 2019. Maturity monitoring of intact fruit and arils of pomegranate cv. ‘Mollar de Elche’ using machine vision and chemometrics. Postharvest Biology and Technology 156 (June):110936. doi: 10.1016/j.postharvbio.2019.110936.
  • Mustorgi, E., C. Malegori, P. Oliveri, M. Hooshyary, H. Bounneche, L. Mondello, M. Oteri, and M. Casale. 2020. A chemometric strategy to evaluate the comparability of PLS models obtained from quartz cuvettes and disposable glass vials in the determination of extra virgin olive oil quality parameters by NIR spectroscopy. Chemometrics and Intelligent Laboratory Systems 199:103974. doi: 10.1016/j.chemolab.2020.103974.
  • Naczk, M, and F. Shahidi. 2006. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis 41 (5):1523–42. doi: 10.1016/j.jpba.2006.04.002.
  • Neves, L. C., Silva, V. X. da, Pontis, J. A., Flach, A, and Roberto, S. R. 2015. Bioactive compounds and antioxidant activity in pre-harvest camu-camu [Myrciaria dubia (H.B.K.) Mc Vaugh] fruits. Scientia Horticulturae 186:223–9. doi: 10.1016/j.scienta.2015.02.031.
  • Neveu, V., J. Perez-Jiménez, F. Vos, V. Crespy, L. du Chaffaut, L. Mennen, C. Knox, R. Eisner, J. Cruz, D. Wishart, et al. 2010. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database : The Journal of Biological Databases and Curation 2010:bap024–9. doi: 10.1093/database/bap024.
  • Nogales-bueno, J., J. M. Hernández-hierro, F. J. Rodríguez-Pulido, and F. J. Heredia. 2014. Determination of technological maturity of grapes and total phenolic compounds of grape skins in red and white cultivars during ripening by near infrared hyperspectral ­image : A preliminary approach. Food Chemistry 152:586–91. doi: 10.1016/j.foodchem.2013.12.030.
  • Olarewaju, O. O., L. S. Magwaza, H. Nieuwoudt, C. Poblete-Echeverría, O. A. Fawole, S. Z. Tesfay, and U. L. Opara. 2019. Model development for non-destructive determination of rind biochemical properties of ‘Marsh’ grapefruit using visible to near-infrared spectroscopy and chemometrics. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 209:62–9. doi: 10.1016/j.saa.2018.10.027.
  • Oleszek, W., C. Y. Lee, A. W. Jaworski, and K. R. Price. 1988. Identification of Some Phenolic Compounds in Apples. Journal of Agricultural and Food Chemistry 36 (3):430–2. doi: 10.1021/jf00081a007.
  • Oliveira, A. C., I. B. Valentim, C. A. Silva, E. J. H. Bechara, M. P. Barros, C. M. Mano, and M. O. F. Goulart. 2009. Total phenolic content and free radical scavenging activities of methanolic extract powders of tropical fruit residues. Food Chemistry 115 (2):469–75. doi: 10.1016/j.foodchem.2008.12.045.
  • Oliveri, P., C. Malegori, and M. Casale. 2020. Chemometrics: Multivariate analysis of chemical data. In Chemical Analysis of Food, 2nd ed., Academic Press, Elsevier Inc., June, 33–76.
  • Oliveri, P., C. Malegori, E. Mustorgi, and M. Casale. 2020. Application of Chemometrics in the Food Sciences. In Comprehensive Chemometrics (2nd ed., Issue July). Elsevier Inc. doi: 10.1016/b978-0-12-409547-2.14748-1.
  • Oliveri, P., C. Malegori, R. Simonetti, and M. Casale. 2019. The impact of signal pre-processing on the final interpretation of analytical outcomes—A tutorial. Analytica Chimica Acta 1058:9–17. doi: 10.1016/j.aca.2018.10.055.
  • Oliveri, P, and R. Simonetti. 2016. Chemometrics for food authenticity applications. In Advances in food authenticity testing. Woodhead Publishing, Elsevier Ltd. doi: 10.1016/b978-0-08-100220-9.00025-4.
  • Orhan, N., M. Aslan, M. Süküroğlu, and D. Deliorman Orhan. 2013. In vivo and in vitro antidiabetic effect of Cistus laurifolius L. and detection of major phenolic compounds by UPLC-TOF-MS analysis. Journal of Ethnopharmacology 146 (3):859–65. doi: 10.1016/j.jep.2013.02.016.
  • Ozaki, Y., W. F. Mcclure, and A. Christy. 2006. Near-infrared spectroscopy in food science and technology. Near-Infrared spectroscopy in food science and technology 1 (2):405. doi: 10.1016/s0022-3182(69)80078-6.
  • Palafox-Carlos, H., E. M. Yahia, and G. A. González-Aguilar. 2012. Identification and quantification of major phenolic compounds from mango (Mangifera indica, cv. Ataulfo) fruit by HPLC-DAD-MS/MS-ESI and their individual contribution to the antioxidant activity during ripening. Food Chemistry 135 (1):105–11. doi: 10.1016/j.foodchem.2012.04.103.
  • Pasquini, C. 2003. Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. Journal of the Brazilian Chemical Society 14 (2):198–219. doi: 10.1590/S0103-50532003000200006.
  • Pinela, J., M. A. Prieto, L. Barros, A. M. Carvalho, M. B. P. P. Oliveira, J. A. Saraiva, and I. C. F. R. Ferreira. 2018. Cold extraction of phenolic compounds from watercress by high hydrostatic pressure: Process modelling and optimization. Separation and Purification Technology 192:501–12. doi: 10.1016/j.seppur.2017.10.007.
  • Pissard, A., P. Dupont, M. Lateur, V. Baeten, and P. Dardenne. 2018. Use of NIR spectroscopy on fresh apples to determine the phenolic compounds and dry matter content in peel and flesh. BASE 22 (1):3–12. doi: 10.25518/1780-4507.16241.
  • Pissard, A., A. Fern, V. Baeten, G. Sinnaeve, G. Lognay, A. Mouteau, P. Dupont, A. Rondia, and M. Lateur. 2013. Non-destructive measurement of vitamin C, total polyphenol and sugar content in apples using near-infrared spectroscopy. Journal of the Science of Food and Agriculture 93 (2):238–44. May 2012 doi: 10.1002/jsfa.5779.
  • Rashid, N. A., Hussain, W. S. E. C. Ahmad, A. R, and Abdullah, F. N. 2019. Performance of classification analysis: A comparative study between PLS-DA and integrating PCA + LDA. Mathematics and Statistics 7 (4):24–8. doi: 10.13189/ms.2019.070704.
  • Resende, L. M., A. S. Franca, and L. S. Oliveira. 2019. Buriti (Mauritia flexuosa L. f.) fruit by-products flours: Evaluation as source of dietary fibers and natural antioxidants. Food Chemistry 270:53–60. doi: 10.1016/j.foodchem.2018.07.079.
  • Resende, L. M., L. S. Oliveira, and A. S. Franca. 2020. Characterization of jabuticaba (Plinia cauliflora) peel flours and prediction of compounds by FTIR analysis. LWT 133 (August):110135. doi: 10.1016/j.lwt.2020.110135.
  • Reynertson, K. A., H. Yang, B. Jiang, M. J. Basile, and E. J. Kennelly. 2008. Quantitative analysis of antiradical phenolic constituents from fourteen edible Myrtaceae fruits. Food Chemistry 109 (4):883–90. doi: 10.1016/j.foodchem.2008.01.021.
  • Ribeiro, S. M., L. C. A. Barbosa, J. H. Queiroz, M. Knödler, and A. Schieber. 2008. Phenolic compounds and antioxidant capacity of Brazilian mango (Mangifera indica L.) varieties. Food Chemistry 110 (3):620–6. doi: 10.1016/j.foodchem.2008.02.067.
  • Rincón, E., A. M. Balu, R. Luque, and L. Serrano. 2019. Mechanochemical extraction of antioxidant phenolic compounds from Mediterranean and medicinal Laurus nobilis: A comparative study with other traditional and green novel techniques. Industrial Crops and Products 141 (July):111805. doi: 10.1016/j.indcrop.2019.111805.
  • Rodríguez-Pulido, F. J., M. Gil-Vicente, B. Gordillo, F. J. Heredia, and M. L. González-Miret. 2017. Measurement of ripening of raspberries (Rubus idaeus L) by near infrared and colorimetric imaging techniques. Journal of Food Science and Technology 54 (9):2797–803. doi: 10.1007/s13197-017-2716-3.
  • Rufino, M. S. M., R. E. Alves, E. S. Brito, J. Perez-Jimenez, and F. D. Saura-Calixto. 2009. Total phenolic content and antioxidant activity in Acerola, Açaí, Mangaba and Uvaia fruits by DPPH method. Acta Horticulturae 841 (841):459–62. doi: 10.17660/ActaHortic.2009.841.58.
  • Saad, A. G., Azam, M. M. Amer, B., and M. A. 2022. Quality Analysis Prediction and Discriminating Strawberry Maturity with a Hand-held Vis–NIR Spectrometer. Food Analytical Methods 15 (3):689–99. doi: 10.1007/s12161-021-02166-2.
  • Santos, G. M. d., G. A. Maia, P. H. M. d Sousa, J. M. C. d Costa, R. W. d Figueiredo, and G. M. d Prado. 2008. Correlação entre atividade antioxidante e compostos bioativos de polpas comerciais de açaí (Euterpe oleracea Mart). Archivos Latinoamericanos de Nutricion 58 (2):187–92.
  • Santos-Buelga, C., S. Gonzalez-Manzano, M. Dueñas, and A. M. Gonzalez-Paramas. 2012. Extraction and isolation of phenolic compounds. In Methods in molecular biology, vol. 864:427–464. doi: 10.1007/978-1-61779-624-1_17.
  • Schmutzler, M, and C. W. Huck. 2016. Simultaneous detection of total antioxidant capacity and total soluble solids content by Fourier transform near-infrared (FT-NIR) spectroscopy : A quick and sensitive method for on-site analyses of apples. Food Control. 66:27–37. doi: 10.1016/j.foodcont.2016.01.026.
  • Silva, P. B., C. R. Duarte, and M. A. S. Barrozo. 2016. Dehydration of acerola (Malpighia emarginata D.C.) residue in a new designed rotary dryer: Effect of process variables on main bioactive compounds. Food and Bioproducts Processing 98:62–70. doi: 10.1016/j.fbp.2015.12.008.
  • Silva, P. B., Duarte, C. R. Barrozo, and M. A. S. 2019. A novel system for drying of agro-industrial acerola (Malpighia emarginata, D. C.) waste for use as bioactive compound source. Innovative Food Science & Emerging Technologies 52:350–357. (November 2018), doi: 10.1016/j.ifset.2019.01.018.
  • Silva, W. P. N., Nascimento, A. E. G. D. Moura, M. C. P. D. A. Oliveira, H. N. M. D. Barros Neto, and E. L. De. 2015. Study of phenol removal by cloud point extraction: A process optimization using experimental design. Separation and Purification Technology 152:133–9. doi: 10.1016/j.seppur.2015.08.007.
  • Sinelli, N., A. Spinardi, V. Di Egidio, I. Mignani, and E. Casiraghi. 2008. Evaluation of quality and nutraceutical content of blueberries (Vaccinium corymbosum L.) by near and mid-infrared spectroscopy. Postharvest Biology and Technology 50 (1):31–6. doi: 10.1016/j.postharvbio.2008.03.013.
  • Singh, B., J. P. Singh, A. Kaur, and N. Singh. 2020. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Research International (Ottawa, Ont.) 132:109114. doi: 10.1016/j.foodres.2020.109114.
  • Soares, J. C., P. L. Rosalen, J. G. Lazarini, J. D. C. O. Sardi, A. P. Massarioli, B. D. Nani, M. Franchin, and S. M. De Alencar. 2020. Phenolic profile and potential beneficial effects of underutilized Brazilian native fruits on scavenging of ROS and RNS and anti-inflammatory and antimicrobial properties. Food & Function 11 (10):8905–17. doi: 10.1039/d0fo01763a.
  • Sobeh, M., A. Esmat, G. Petruk, M. A. O. Abdelfattah, M. Dmirieh, D. M. Monti, A. B. Abdel-Naim, and M. Wink. 2018. Phenolic compounds from Syzygium jambos (Myrtaceae) exhibit distinct antioxidant and hepatoprotective activities in vivo. Journal of Functional Foods 41:223–31. (June 2017), doi: 10.1016/j.jff.2017.12.055.
  • Sobolev, A. P., F. Thomas, J. Donarski, C. Ingallina, S. Circi, F. Cesare Marincola, D. Capitani, and L. Mannina. 2019. Use of NMR applications to tackle future food fraud issues. Trends in Food Science & Technology 91 (July):347–53. doi: 10.1016/j.tifs.2019.07.035.
  • Spagolla, L. C., M. M. Santos, L. M. L. Passos, and C. L. De Aguiar. 2009. Extração alcoólica de fenólicos e flavonóides totais de mirtilo “Rabbiteye” (Vaccinium ashei) e sua atividade antioxidante. Revista de Ciencias Farmaceuticas Basica e Aplicada 30 (2):187–91.
  • Stalikas, C. D. 2007. Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of Separation Science 30 (18):3268–95. doi: 10.1002/jssc.200700261.
  • Stanimirova, I, and L. Komsta. 2014. Chemometrics in analytical chemistry. Journal of AOAC International 97 (1):1–2. doi: 10.5740/jaoacint.SGEStanimirovaKomsta_Intro.
  • Stratil, P., B. Klejdus, and V. Kubán. 2006. Determination of total content of phenolic compounds and their antioxidant activity in vegetables - evaluation of spectrophotometric methods. Journal of Agricultural and Food Chemistry 54 (3):607–16. doi: 10.1021/jf052334j.
  • Stuart, B. H. 2005. Infrared spectroscopy: fundamentals and applications. Infrared Spectroscopy: Fundamentals and Applications 8:1–221. doi: 10.1002/0470011149.
  • Su, W. H, and D. W. Sun. 2019. Mid-infrared (MIR) spectroscopy for quality analysis of liquid foods. Food Engineering Reviews 11 (3):142–58. doi: 10.1007/s12393-019-09191-2.
  • Tahir, H. E., Z. Xiaobo, X. Jianbo, G. K. Mahunu, S. Jiyong, J. L. Xu, and D. W. Sun. 2019. Recent progress in rapid analyses of vitamins, phenolic, and volatile compounds in foods using vibrational spectroscopy combined with chemometrics: A review. Food Analytical Methods 12 (10):2361–82. doi: 10.1007/s12161-019-01573-w.
  • Tahir, H. E., Z. Xiaobo, S. Tinting, S. Jiyong, and A. A. Mariod. 2016. Near-Infrared (NIR) spectroscopy for rapid measurement of antioxidant properties and discrimination of sudanese honeys from different botanical origin. Food Analytical Methods 9 (9):2631–41. doi: 10.1007/s12161-016-0453-2.
  • Valyon, J, and G. Horváth. 2016. A robust LS-SVM regression A robust LS-SVM regression. International Journal of Computational Intelligence 3 (February):148–53.
  • Veberic, R., M. Trobec, K. Herbinger, M. Hofer, D. Grill, and F. Stampar. 2005. Phenolic compounds in some apple (Malus domestica Borkh) cultivars of organic and integrated production. Journal of the Science of Food and Agriculture 85 (10):1687–94. doi: 10.1002/jsfa.2113.
  • Vizzoto, M, and M. C. Pereira. 2009. Metodologia Científica: Otimização do Processo de Extração de Compostos Fenólicos Antioxidantes de Mirtilo (Vaccinium ashei Reade). Embrapa Clima Temperado. Boletim de Pesquisa e Desenvolvimento 101:19.
  • Vizzotto, M, and M. C. Pereira. 2011. Amora-preta (Rubus sp.): Otimização do processo de extração para determinação de compostos fenólicos antioxidantes. Revista Brasileira de Fruticultura 33 (4):1209–14. doi: 10.1590/S0100-29452011000400020.
  • Vizzotto, M., M. d C. B. Raseira, M. C. Pereira, and M. d R. Fetter. 2012. Teor de compostos fenólicos e atividade antioxidante em diferentes genótipos de amoreira-preta (Rubus sp.). Revista Brasileira de Fruticultura 34 (3):853–8. doi: 10.1590/S0100-29452012000300027.
  • Wang, H., J. Peng, C. Xie, Y. Bao, and Y. He. 2015. Fruit quality evaluation using spectroscopy technology: A review. Sensors (Basel, Switzerland) 15 (5):11889–927. doi: 10.3390/s150511889.
  • Wells, M, and M. Dantus. 1994. Validation of chromatographic methods. Analytical Instrumentation Handbook, Third Edition, November :1015–33. doi: 10.1201/9781315118024-31.
  • Wold, S., J. Trygg, A. Berglund, and H. Antti. 2001. Some recent developments in PLS modeling. Chemometrics and Intelligent Laboratory Systems 58 (2):131–50. doi: 10.1016/S0169-7439(01)00156-3.
  • Xiao, H., A. Li, M. Li, Y. Sun, K. Tu, S. Wang, and L. Pan. 2018. Quality assessment and discrimination of intact white and red grapes from Vitis vinifera L. at five ripening stages by visible and near-infrared spectroscopy. Scientia Horticulturae 233 (1):99–107. doi: 10.1016/j.scienta.2018.01.041.
  • Xie, Y., L. Wang, H. Sun, Y. Wang, Z. Yang, G. Zhang, and W. Yang. 2019. Immunomodulatory, antioxidant and intestinal morphology-regulating activities of alfalfa polysaccharides in mice. International Journal of Biological Macromolecules 133:1107–14. doi: 10.1016/j.ijbiomac.2019.04.144.
  • Yang, J., X. Zhong, S. Kim, D. Kim, H. S. Kim, J. Lee, H. Yum, J. Lee, H. Na, and Y. Surh. 2018. Comparative effects of curcumin and tetrahydrocurcumin on dextran sulfate sodium-induced colitis and inflammatory signaling in mice. Journal of Cancer Prevention 23 (1):18–24.
  • Yeniay, O, and A. Gokta. 2002. A comparison of partial least squares regression with other prediction methods. Journal of Mathematics and Statistics 31:99–111. doi: 10.1016/b978-0-12-397178-4.05001-5.
  • Zhang, P, and Z. Zhou. 2019. Postharvest ethephon degreening improves fruit color, flavor quality and increases antioxidant capacity in ‘Eureka’ lemon (Citrus limon (L.) Burm. f.). Scientia Horticulturae 248 (January):70–80. doi: 10.1016/j.scienta.2019.01.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.