2,496
Views
2
CrossRef citations to date
0
Altmetric
Review

The potential role of yeasts in the mitigation of health issues related to beer consumption

, , , , &

References

  • Achón, M., M. Serrano, Á. García-González, E. Alonso-Aperte, and G. Varela-Moreiras. 2017. Present food shopping habits in the Spanish adultss population: A cross-sectional study. Nutrients 9 (5):508. doi: 10.3390/nu9050508.
  • Álvarez-Fernández, M. A., E. Fernández-Cruz, E. Cantos-Villar, A. M. Troncoso, and M. C. García-Parrilla. 2018. Determination of hydroxytyrosol produced by winemaking yeasts during alcoholic fermentation using a validated UHPLC–HRMS method. Food Chemistry 242:345–51. doi: 10.1016/j.foodchem.2017.09.072.
  • Arevalo-Villena, M., A. Briones-Perez, M. R. Corbo, M. Sinigaglia, A. Bevilacqua, and C. A. Bevilacqua. 2017. Biotechnological application of yeasts in food science: Starter cultures, probiotics and enzyme production. Journal of Applied Microbiology 123 (6):1360–72. doi: 10.1111/jam.13548.
  • Baker, E. C., B. Wang, N. Bellora, D. Peris, A. B. Hulfachor, J. A. Koshalek, M. Adams, D. Libkind, and C. T. Hittinger. 2015. The genome sequence of saccharomyces eubayanus and the domestication of lager-brewing yeasts. Molecular Biology and Evolution 32 (11):2818–31. doi: 10.1093/molbev/msv168.
  • Bakker, B. M., K. M. Overkamp, A. J. A. Van Maris, P. Kötter, M. A. H. Luttik, J. P. Van Dijken, and J. T. Pronk. 2001. Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiology Reviews 25 (1):15–37. doi: 10.1016/S0168-6445(00)00039-5.
  • Bamforth, C. W. 2002. Nutritional aspects of beer-a review. Nutrition Research 22 (1–2):227–37. doi: 10.1016/S0271-5317(01)00360-8.
  • Banach, A. A., and B. G. Ooi. 2014. Enhancing the yields of phenolic compounds during fermentation using Saccharomyces cerevisiae strain 96581. Food and Nutrition Sciences 5 (21):2063–70. doi: 10.4236/fns.2014.521218.
  • Barreto-Bergter, E., and R. T. Figueiredo. 2014. Fungal glycans and the innate immune recognition. In Frontiers in cellular and infection microbiology, 4, 145. doi: 10.3389/fcimb.2014.00145.
  • Bascuñán, K. A., M. C. Vespa, and M. Araya. 2017. Celiac disease: Understanding the gluten-free diet. European Journal of Nutrition 56 (2):449–59. doi: 10.1007/S00394-016-1238-5.
  • Baur, X., Z. Chen, and I. Sander. 1994. Isolation and denomination of an important allergen in baking additives: A -amylase from Aspergillus oryzae (Asp o II). Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 24 (5):465–70. doi: 10.1111/j.1365-2222.1994.tb00935.x.
  • Bellut, K., M. Michel, M. Zarnkow, M. Hutzler, F. Jacob, D. P. Schutter, L. de Daenen, K. M. Lynch, E. Zannini, E. K. Arendt, et al. 2018. Application of non-saccharomyces yeasts isolated from Kombucha in the production of alcohol-free beer. Fermentation 4 (3):66. ( doi: 10.3390/fermentation4030066.
  • Bindesboll Nielsen, N., and F. Schmidt. 1985. The fate of carbohydrates during fermentation of low calorie beer. Carlsberg Research Communications 50 (6):325–32. doi: 10.1007/BF02907155.
  • Bisquert, R., S. Muñiz-Calvo, and J. M. Guillamón. 2018. Protective role of intracellular Melatonin against oxidative stress and UV radiation in Saccharomyces cerevisiae. Frontiers in Microbiology 9 (FEB):318. doi: 10.3389/fmicb.2018.00318.
  • Bisquert, R., A. Planells‐Cárcel, E. Valera‐García, J. M. Guillamón, and S. Muñiz‐Calvo. 2022. Metabolic engineering of Saccharomyces cerevisiae for hydroxytyrosol overproduction directly from glucose. Microbial Biotechnology 15 (5):1499–510. doi: 10.1111/1751-7915.13957.
  • Blanco, C. A., C. Andrés-Iglesias, and O. Montero. 2016. Low-alcohol beers: Flavor compounds, defects, and improvement strategies. Critical Reviews in Food Science and Nutrition 56 (8):1379–88. doi: 10.1080/10408398.2012.733979.
  • Boronat, A., N. Soldevila-Domenech, J. Rodríguez-Morató, M. Martínez-Huélamo, R. M. Lamuela-Raventós, and R. de La Torre. 2020. Beer phenolic composition of simple phenols, prenylated flavonoids and alkylresorcinols. Molecules 25 (11):2582. doi: 10.3390/molecules25112582.
  • Brinton, E. A. 2010. Effects of ethanol intake on lipoproteins and atherosclerosis. Current Opinion in Lipidology 21 (4):346–51. doi: 10.1097/MOL.0b013e32833c1f41.
  • Cadière, A., A. Ortiz-Julien, C. Camarasa, and S. Dequin. 2011. Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway. Metabolic Engineering 13 (3):263–71. doi: 10.1016/j.ymben.2011.01.008.
  • Cambon, B., V. Monteil, F. Remize, C. Camarasa, and S. Dequin. 2006. Effects of GPD1 overexpression in Saccharomyces cerevisiae commercial wine yeast strains lacking ALD6 genes. Applied and Environmental Microbiology 72 (7):4688–94. doi: 10.1128/AEM.02975-05.
  • Catallo, M., J. Nikulin, L. Johansson, K. Krogerus, M. Laitinen, F. Magalhães, M. Piironen, A. Mikkelson, C. L. Randazzo, L. Solieri, et al. 2020. Sourdough derived strains of Saccharomyces cerevisiae and their potential for farmhouse ale brewing. Journal of the Institute of Brewing 126 (2):168–75. doi: 10.1002/jib.608.
  • Chambers, P. J., J. R. Bellon, S. A. Schmidt, C. Varela, and I. S. Pretorius. 2009. Non-genetic engineering approaches for isolating and generating novel yeasts for industrial applications. In Yeast biotechnology: Diversity and applications, 433–57. Netherlands: Springer. doi: 10.1007/978-1-4020-8292-4_20.
  • Cherry, J. M., E. L. Hong, C. Amundsen, R. Balakrishnan, G. Binkley, E. T. Chan, K. R. Christie, M. C. Costanzo, S. S. Dwight, S. R. Engel, et al. 2012. Saccharomyces genome database: The genomics resource of budding yeast. Nucleic Acids Research 40 (Database issue):D700–D705. doi: 10.1093/nar/gkr1029.
  • Coloretti, F., C. Zambonelli, and V. Tini. 2006. Characterization of flocculent Saccharomyces interspecific hybrids for the production of sparkling wines. Food Microbiology 23 (7):672–6. doi: 10.1016/j.fm.2005.11.002.
  • Contreras, A., C. Hidalgo, P. A. Henschke, P. J. Chambers, C. Curtin, and C. Varela. 2014. Evaluation of non-Saccharomyces yeasts for the reduction of alcohol content in wine. Applied and Environmental Microbiology 80 (5):1670–8. doi: 10.1128/AEM.03780-13.
  • Cordente, A. G., D. E. Nandorfy, M. Solomon, A. Schulkin, R. Kolouchova, I. L. Francis, and S. A. Schmidt. 2021. Aromatic higher alcohols in wine: Implication on aroma and palate attributes during chardonnay aging. Molecules 26 (16):4979. doi: 10.3390/molecules26164979.
  • Cordente, A. G., M. Solomon, A. Schulkin, I. Leigh Francis, A. Barker, A. R. Borneman, and C. D. Curtin. 2018. Novel wine yeast with ARO4 and TYR1 mutations that overproduce ‘floral’ aroma compounds 2-phenylethanol and 2-phenylethyl acetate. Applied Microbiology and Biotechnology 102 (14):5977–88. doi: 10.1007/s00253-018-9054-x.
  • Cordier, H., F. Mendes, I. Vasconcelos, and J. Francois. 2007. A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production. Metabolic Engineering 9 (4):364–78. doi: 10.1016/j.ymben.2007.03.002.
  • Crestani, C. C., A. Lopes da Silva, A. A. Scopinho, S. G. Ruginsk, E. T. Uchoa, F. M. A. Correa, L. L. K. Elias, J. Antunes-Rodrigues, and L. B. M. Resstel. 2014. Cardiovascular alterations at different stages of hypertension development during ethanol consumption: Time-course of vascular and autonomic changes. Toxicology and Applied Pharmacology 280 (2):245–55. doi: 10.1016/j.taap.2014.08.012.
  • de Gaetano, G., S. Costanzo, A. Castelnuovo, L. di Badimon, D. Bejko, A. Alkerwi, G. Chiva-Blanch, R. Estruch, C. Vecchia, S. la Panico, et al. 2016. Effects of moderate beer consumption on health and disease: A consensus document. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD 26 (6):443–67. doi: 10.1016/j.numecd.2016.03.007.
  • Dequin, S., E. Baptista, and P. Barre. 1999. Acidification of grape musts by Saccharomyces cerevisiae wine yeast strains genetically engineered to produce lactic acid. American Journal of Enology and Viticulture 50:45–50.
  • de Smidt, O., J. C. Du Preez, and J. Albertyn. 2012. Molecular and physiological aspects of alcohol dehydrogenases in the ethanol metabolism of Saccharomyces cerevisiae. FEMS Yeast Research 12 (1):33–47. doi: 10.1111/j.1567-1364.2011.00760.x.
  • de Vuyst, L., H. Harth, S. van Kerrebroeck, and F. Leroy. 2016. Yeast diversity of sourdoughs and associated metabolic properties and functionalities. International Journal of Food Microbiology 239:26–34. doi: 10.1016/j.ijfoodmicro.2016.07.018.
  • Dzialo, M. C., R. Park, J. Steensels, B. Lievens, and K. J. Verstrepen. 2017. Physiology, ecology and industrial applications of aroma ­formation in yeast. FEMS Microbiology Reviews 41 (Supp_1):S95–S128. doi: 10.1093/femsre/fux031.
  • Ehrlich, F. 1906. Ehrlich pathway. Biochem Ztschr 2:1027–47.
  • Fernández-Cruz, E., M. A. Álvarez-Fernández, E. Valero, A. M. Troncoso, and M. C. García-Parrilla. 2017. Melatonin and derived L-tryptophan metabolites produced during alcoholic fermentation by different wine yeast strains. Food Chemistry 217:431–7. doi: 10.1016/j.foodchem.2016.08.020.
  • Fernández-Cruz, E., F. Carrasco-Galán, A. B. Cerezo-López, E. Valero, M. Á. Morcillo-Parra, G. Beltran, M. J. Torija, A. M. Troncoso, and M. C. García-Parrilla. 2020. Occurrence of melatonin and indolic compounds derived from L-tryptophan yeast metabolism in fermented wort and commercial beers. Food Chemistry 331:127192. doi: 10.1016/j.foodchem.2020.127192.
  • Fernández-Solà, J. 2015. Cardiovascular risks and benefits of moderate and heavy alcohol consumption. Nature Reviews. Cardiology 12 (10):576–87. doi: 10.1038/nrcardio.2015.91.
  • Fu, W., C. Liu, X. Meng, S. Tao, and W. Xue. 2021. Co-culture fermentation of Pediococcus acidilactici XZ31 and yeast for enhanced degradation of wheat allergens. International Journal of Food Microbiology 347:109190. doi: 10.1016/J.IJFOODMICRO.2021.109190.
  • Gallardo-Fernández, M., J. Valls-Fonayet, E. Valero, R. Hornedo-Ortega, T. Richard, A. M. Troncoso, and M. C. Garcia-Parrilla. 2022. Isotopic labelling-based analysis elucidates biosynthesis pathways in Saccharomyces cerevisiae for Melatonin, Serotonin and Hydroxytyrosol formation. Food Chemistry 374:131742. doi: 10.1016/j.foodchem.2021.131742.
  • Gallone, B., S. Mertens, J. L. Gordon, S. Maere, K. J. Verstrepen, and J. Steensels. 2018. Origins, evolution, domestication and diversity of Saccharomyces beer yeasts. Current Opinion in Biotechnology 49:148–55. doi: 10.1016/j.copbio.2017.08.005.
  • Garcia-Moreno, H., J. R. Calvo, and M. D. Maldonado. 2013. High levels of melatonin generated during the brewing process. Journal of Pineal Research 55 (1):26–30. doi: 10.1111/jpi.12005.
  • George, A., and V. M. Figueredo. 2010. Alcohol and arrhythmias: A comprehensive review. Journal of Cardiovascular Medicine (Hagerstown, MD) 11 (4):221–8. doi: 10.2459/JCM.0b013e328334b42d.
  • Giannakou, K., F. Visinoni, P. Zhang, N. Nathoo, P. Jones, M. Cotterrell, U. Vrhovsek, and D. Delneri. 2021. Biotechnological exploitation of Saccharomyces jurei and its hybrids in craft beer fermentation uncovers new aroma combinations. Food Microbiology 100:103838. doi: 10.1016/j.fm.2021.103838.
  • Gibson, B., J. M. A. Geertman, C. T. Hittinger, K. Krogerus, D. Libkind, E. J. Louis, F. Magalhães, and J. P. Sampaio. 2017. New yeasts-new brews: Modern approaches to brewing yeast design and development. FEMS Yeast Research 17 (4):1–13. doi: 10.1093/femsyr/fox038.
  • Glissen Brown, J. R., and P. Singh. 2019. Coeliac disease. Paediatrics and International Child Health 39 (1):23–31. doi: 10.1080/20469047.2018.1504431.
  • Gobbi, M., L. de Vero, L. Solieri, F. Comitini, L. Oro, P. Giudici, and M. Ciani. 2014. Fermentative aptitude of non-saccharomyces wine yeast for reduction in the ethanol content in wine. European Food Research and Technology 239 (1):41–8. doi: 10.1007/s00217-014-2187-y.
  • González, B., J. Vázquez, M. Á. Morcillo-Parra, A. Mas, M. J. Torija, and G. Beltran. 2018. The production of aromatic alcohols in non-Saccharomyces wine yeast is modulated by nutrient availability. Food Microbiology 74:64–74. doi: 10.1016/j.fm.2018.03.003.
  • Gonzalez, R., A. M. Guindal, J. Tronchoni, and P. Morales. 2021. Biotechnological approaches to lowering the ethanol yield during wine fermentation. Biomolecules 11 (11):1569–16. doi: 10.3390/biom11111569.
  • Gumienna, M., and B. Górna. 2020. Gluten hypersensitivities and their impact on the production of gluten-free beer. European Food Research and Technology 246 (11):2147–60. doi: 10.1007/s00217-020-03579-9.
  • Guzzo-Merello, G., M. Cobo-Marcos, M. Gallego-Delgado, and P. Garcia-Pavia. 2014. Alcoholic cardiomyopathy. World Journal of Cardiology 6 (8):771–81. doi: 10.4330/wjc.v6.i8.771.
  • Hansen, M., W. Röcken, and C. Emeis. 1990. Construction of yeast strains for the production of low-carbonhydrate beer. Journal of the Institute of Brewing 96 (3):125–9. doi: 10.1002/j.2050-0416.1990.tb01022.x.
  • Hu, F., Y. Niu, X. Xu, Q. Hu, Q. Su, and H. Zhang. 2020. Resistant dextrin improves high-fat-high-fructose diet induced insulin resistance. Nutrition & Metabolism 17 (1), 36. doi: 10.1186/s12986-020-00450-2.
  • Jahn, H. U., R. Ullrich, T. Schneider, R. M. Liehr, H. L. Schieferdecker, H. Holst, and M. Zeitz. 1996. Immunological and trophical effects of saccharomyces boulardii on the small intestine in healthy human volunteers. Digestion 57 (2):95–104. doi: 10.1159/000201320.
  • Johansson, L., J. Nikulin, R. Juvonen, K. Krogerus, F. Magalhães, A. Mikkelson, M. Nuppunen-Puputti, E. Sohlberg, G. de Francesco, G. Perretti, et al. 2021. Sourdough cultures as reservoirs of maltose-negative yeasts for low-alcohol beer brewing. Food Microbiology 94:103629. doi: 10.1016/j.fm.2020.103629.
  • Kanny, D., R. D. Brewer, J. B. Mesnick, L. J. Paulozzi, T. S. Naimi, and H. Lu. 2015. Vital signs: Alcohol poisoning deaths - United States, 2010-2012. MMWR. Morbidity and Mortality Weekly Report 63 (53):1238–42.
  • Kesmodel, U., K. Wisborg, S. F. Olsen, T. B. Henriksen, and N. J. Secher. 2002. Moderate alcohol intake in pregnancy and the risk of spontaneous abortion. Alcohol and Alcoholism (Oxford, Oxfordshire) 37 (1):87–92. doi: 10.1093/alcalc/37.1.87.
  • Kim, M. K., J. Shin, S. S. Kweon, D. H. Shin, Y. H. Lee, B. Y. Chun, and B. Y. Choi. 2014. Harmful and beneficial relationships between alcohol consumption and subclinical atherosclerosis. Nutrition, Metabolism and Cardiovascular Diseases 24 (7):767–76. doi: 10.1016/j.numecd.2014.02.004.
  • Kim, S. K., R. B. Guevarra, Y. T. Kim, J. Kwon, H. Kim, J. H. Cho, H. B. Kim, and J. H. Lee. 2019. Role of probiotics in human gut microbiome-associated diseases. Journal of Microbiology and Biotechnology 29 (9):1335–40. doi: 10.4014/jmb.1906.06064.
  • Koller, H., and L. B. Perkins. 2022. Brewing and the chemical composition of amine-containing compounds in beer: A review. Foods 11 (3):257. doi: 10.3390/foods11030257.
  • Koshinaka, K., R. Ando, and A. Sato. 2018. Shorttterm replacement of starch with isomaltulose enhances both insulinndependent and independent glucose uptake in rat skeletal muscle. Journal of Clinical Biochemistry and Nutrition 63 (2):113–22. doi: 10.3164/jcbn.17798.
  • Krogerus, K., R. Eerikäinen, H. Aisala, and B. Gibson. 2022. Repurposing brewery contaminant yeast as production strains for low-alcohol beer fermentation. Yeast 39 (1–2):156–69. doi: 10.1002/yea.3674.
  • Krogerus, K., and B. Gibson. 2020. A re-evaluation of diastatic Saccharomyces cerevisiae strains and their role in brewing. Applied Microbiology and Biotechnology 104 (9):3745–56. doi: 10.1007/s00253-020-10531-0.
  • Krogerus, K., F. Magalhães, J. Kuivanen, and B. Gibson. 2019. A deletion in the STA1 promoter determines maltotriose and starch utilization in STA1+ Saccharomyces cerevisiae strains. Applied Microbiology and Biotechnology 103 (18):7597–615. doi: 10.1007/s00253-019-10021-y.
  • Krogerus, K., F. Magalhães, V. Vidgren, and B. Gibson. 2017. Novel brewing yeast hybrids: Creation and application. Applied Microbiology and Biotechnology 101 (1):65–78. doi: 10.1007/s00253-016-8007-5.
  • Kutyna, D. R., C. Varela, P. A. Henschke, P. J. Chambers, and G. A. Stanley. 2010. Microbiological approaches to lowering ethanol concentration in wine. Trends in Food Science & Technology 21 (6):293–302. doi: 10.1016/j.tifs.2010.03.004.
  • Lairón-Peris, M., L. Pérez-Través, S. Muñiz-Calvo, J. M. Guillamón, J. M. Heras, E. Barrio, and A. Querol. 2020. Differential contribution of the parental genomes to a S. cerevisiae × S. uvarum hybrid, inferred by phenomic, genomic, and transcriptomic analyses, at different industrial stress conditions. Frontiers in Bioengineering and Biotechnology 8 (129):129. doi: 10.3389/fbioe.2020.00129.
  • Leskovac, V., S. Trivić, and D. Peričin. 2002. The three zinc-containing alcohol dehydrogenases from baker’s yeast, Saccharomyces cerevisiae. FEMS Yeast Research 2 (4):481–94. doi: 10.1016/S1567-1356(02)00157-5.
  • Liu, H., Y. Tian, Y. Zhou, Y. Kan, T. Wu, W. Xiao, and Y. Luo. 2021. Multi-modular engineering of Saccharomyces cerevisiae for high-titre production of tyrosol and salidroside. Microbial Biotechnology 14 (6):2605–16. doi: 10.1111/1751-7915.13667.
  • Liu, L., J. Wang, D. Rosenberg, H. Zhao, G. Lengyel, and D. Nadel. 2018. Fermented beverage and food storage in 13,000 y-old stone mortars at Raqefet Cave, Israel: Investigating Natufian ritual feasting. Journal of Archaeological Science: Reports 21:783–93. doi: 10.1016/j.jasrep.2018.08.008.
  • Lorencová, E., R. H. Salek, M. Černíková, L. Buňková, A. Hýlková, and F. Buňka. 2020. Biogenic amines occurrence in beers produced in Czech microbreweries. Food Control 117:107335. doi: 10.1016/j.foodcont.2020.107335.
  • Lucatto, J. N., R. A. da Silva-Buzanello, S. N. T. G. de Mendonça, T. C. Lazarotto, J. L. Sanchez, E. Bona, and D. A. Drunkler. 2020. Performance of different microbial cultures in potentially probiotic and prebiotic yoghurts from cow and goat milks. International Journal of Dairy Technology 73 (1):144–56. doi: 10.1111/1471-0307.12655.
  • Magyar, I., and T. Tóth. 2011. Comparative evaluation of some oenological properties in wine strains of Candida stellata, Candida zemplinina, Saccharomyces uvarum and Saccharomyces cerevisiae. Food Microbiology 28 (1):94–100. doi: 10.1016/j.fm.2010.08.011.
  • Maldonado, M. D., H. Moreno, and J. R. Calvo. 2009. Melatonin present in beer contributes to increase the levels of melatonin and antioxidant capacity of the human serum. Clinical Nutrition (Edinburgh, Scotland) 28 (2):188–91. doi: 10.1016/j.clnu.2009.02.001.
  • Marković, A. K., J. Torić, M. Barbarić, and C. J. Brala. 2019. Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules 24 (10):2001–39. doi: 10.3390/molecules24102001.
  • Martinez-Gomez, A., I. Caballero, and C. A. Blanco. 2020. Phenols and melanoidins as natural antioxidants in beer. Structure, reactivity and antioxidant activity. Biomolecules 10 (3):400. doi: 10.3390/biom10030400.
  • Mateo-Gallego, R., S. Pérez-Calahorra, I. Lamiquiz-Moneo, V. Marco-Benedí, A. M. Bea, A. J. Fumanal, A. Prieto-Martín, M. Laclaustra, A. Cenarro, and F. Civeira. 2020. Effect of an alcohol-free beer enriched with isomaltulose and a resistant dextrin on insulin resistance in diabetic patients with overweight or obesity. Clinical Nutrition (Edinburgh, Scotland) 39 (2):475–83. doi: 10.1016/j.clnu.2019.02.025.
  • Matukas, M., V. Starkute, E. Zokaityte, G. Zokaityte, D. Klupsaite, E. Mockus, J. M. Rocha, R. Ruibys, and E. Bartkiene. 2022. Effect of different yeast strains on biogenic amines, volatile compounds and sensory profile of beer. Foods 11 (15):2317. doi: 10.3390/foods11152317.
  • Meier-Dörnberg, T., O. I. Kory, F. Jacob, M. Michel, and M. Hutzler. 2018. Saccharomyces cerevisiae variety diastaticus friend or foe?-spoilage potential and brewing ability of different Saccharomyces cerevisiae variety diastaticus yeast isolates by genetic, phenotypic and physiological characterization. FEMS Yeast Research 18 (4), foy023. doi: 10.1093/femsyr/foy023.
  • Mertens, S., B. Gallone, J. Steensels, B. Herrera-Malaver, J. Cortebeek, R. Nolmans, V. Saels, V. K. Vyas, and K. J. Verstrepen. 2019. Reducing phenolic off-flavors through CRISPR-based gene editing of the FDC1 gene in Saccharomyces cerevisiae x Saccharomyces eubayanus hybrid lager beer yeasts. Plos ONE 14 (1):e0209124. doi: 10.1371/journal.pone.0209124.
  • Mertens, S., J. Steensels, B. Gallone, B. Souffriau, P. Malcorps, and K. J. Verstrepen. 2017. Rapid screening method for phenolic off-flavor (POF) production in yeast. Journal of the American Society of Brewing Chemists 75 (4):318–23. doi: 10.1094/ASBCJ-2017-4142-01.
  • Methner, Y., N. Weber, O. Kunz, M. Zarnkow, M. Rychlik, M. Hutzler, and F. Jacob. 2022. Investigations into metabolic properties and selected nutritional metabolic by-products of different non-saccharomyces yeast strains when producing non-alcoholic beer. FEMS Yeast Research, foac042. doi: 10.1093/femsyr/foac042.
  • Mulero-Cerezo, J., Á. Briz-Redón, and Á. Serrano-Aroca. 2019. Saccharomyces cerevisiae var. boulardii: Valuable probiotic starter for craft beer production. Applied Sciences 9 (16):3250. doi: 10.3390/app9163250.
  • Muñiz-Calvo, S., R. Bisquert, E. Fernández-Cruz, M. C. García-Parrilla, and J. M. Guillamón. 2019. Deciphering the melatonin metabolism in Saccharomyces cerevisiae by the bioconversion of related metabolites. Journal of Pineal Research 66 (3):e12554. doi: 10.1111/jpi.12554.
  • Muñiz-Calvo, S., R. Bisquert, S. Puig, and J. M. Guillamón. 2020. Overproduction of hydroxytyrosol in Saccharomyces cerevisiae by heterologous overexpression of the Escherichia coli 4-hydroxyphenylacetate 3-monooxygenase. Food Chemistry 308:125646. doi: 10.1016/j.foodchem.2019.125646.
  • Muñiz-Calvo, S., J. M. Guillamón, I. Domínguez, and A. Doménech-Carbó. 2017. Detecting and monitoring the production of melatonin and other related indole compounds in different saccharomyces strains by solid-state electrochemical techniques. Food Analytical Methods 10 (5):1408–18. doi: 10.1007/s12161-016-0699-8.
  • Nalazek-Rudnicka, K., W. Wojnowski, and A. Wasik. 2021. Occurrence and levels of biogenic amines in beers produced by different methods. Foods 10 (12):2902. doi: 10.3390/foods10122902.
  • Ogata, T., Y. Iwashita, and T. Kawada. 2017. Construction of a brewing yeast expressing the glucoamylase gene STA1 by mating. Journal of the Institute of Brewing 123 (1):66–9. doi: 10.1002/jib.394.
  • Oliveira, G., A. E. Beezer, J. Hadgraft, and M. E. Lane. 2010. Alcohol enhanced permeation in model membranes. Part I. Thermodynamic and kinetic analyses of membrane permeation. International Journal of Pharmaceutics 393 (1–2):61–7. doi: 10.1016/j.ijpharm.2010.03.062.
  • Orman, E. S., G. Odena, and R. Bataller. 2013. Alcoholic liver disease: Pathogenesis, management, and novel targets for therapy. Journal of Gastroenterology and Hepatology 28 (SUPPL 1):77–84. doi: 10.1111/jgh.12030.
  • Panghal, A., S. Janghu, K. Virkar, Y. Gat, V. Kumar, and N. Chhikara. 2018. Potential non-dairy probiotic products – A healthy approach. Food Bioscience 21:80–9. doi: 10.1016/j.fbio.2017.12.003.
  • Park, J. Y., J. Y. Lee, S. H. Choi, H. M. Ko, I. C. Kim, H. B. Lee, and S. Bai. 2014. Construction of dextrin and isomaltose-assimilating brewer’s yeasts for production of low-carbohydrate beer. Biotechnology Letters 36 (8):1693–9. doi: 10.1007/s10529-014-1530-5.
  • Peris, D., W. G. Alexander, K. J. Fisher, R. v Moriarty, M. G. Basuino, E. J. Ubbelohde, R. L. Wrobel, and C. T. Hittinger. 2020. Synthetic hybrids of six yeast species. Nature Communications 11 (1):2085. doi: 10.1038/s41467-020-15559-4.
  • Petersen, M. C., and G. I. Shulman. 2018. Mechanisms of insulin action and insulin resistance. Physiological Reviews 98 (4):2133–223. doi: 10.1152/physrev.
  • Pietraszek, A., S. Gregersen, and K. Hermansen. 2010. Alcohol and type 2 diabetes. A review. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD 20 (5):366–75. doi: 10.1016/j.numecd.2010.05.001.
  • Piškur, J., E. Rozpedowska, S. Polakova, A. Merico, and C. Compagno. 2006. How did Saccharomyces evolve to become a good brewer? Trends in Genetics: TIG 22 (4):183–6. doi: 10.1016/J.TIG.2006.02.002.
  • Pothoulakis, C. 2009. Review article: Anti-inflammatory mechanisms of action of Saccharomyces boulardii. Alimentary Pharmacology & Therapeutics 30 (8):826–33. doi: 10.1111/j.1365-2036.2009.04102.x.
  • Rai, A. K., A. Pandey, and D. Sahoo. 2019. Biotechnological potential of yeasts in functional food industry. Trends in Food Science & Technology 83:129–37. doi: 10.1016/j.tifs.2018.11.016.
  • Ramírez-Cota, G. Y., E. O. López-Villegas, A. R. Jiménez-Aparicio, and H. Hernández-Sánchez. 2021. Modeling the ethanol tolerance of the probiotic yeast saccharomyces cerevisiae var. boulardii CNCM I-745 for its possible use in a functional beer. Probiotics and Antimicrobial Proteins 13 (1):187–94. doi: 10.1007/s12602-020-09680-5.
  • Rebollo-Romero, I., E. Fernández-Cruz, F. Carrasco-Galán, E. Valero, E. Cantos-Villar, A. B. Cerezo, A. M. Troncoso, and M. C. Garcia-Parrilla. 2020. Factors influencing the production of the antioxidant hydroxytyrosol during alcoholic fermentation: Yeast strain, initial tyrosine concentration and initial must. LWT 130 (109631):109631. doi: 10.1016/j.lwt.2020.109631.
  • Reitenbach, A. F., I. J. Iwassa, and B. C. B. Barros. 2021. Production of functional beer with the addition of probiotic: Saccharomyces boulardii. Research, Society and Development 10 (2):e5010212211. doi: 10.33448/rsd-v10i2.12211.
  • Rimm, E. B., P. Williams, K. Fosher, M. Criqui, and M. J. Stampfer. 1999. Moderate alcohol intake and lower risk of coronary heart disease: Meta-analysis of effects on lipids and haemostatic factors. BMJ (Clinical Research ed.) 319 (7224):1523–8. doi: 10.1136/bmj.319.7224.1523.
  • Rodríguez-Morató, J., P. Robledo, J. A. Tanner, A. Boronat, C. Pérez-Mañá, C. Y. Oliver Chen, R. F. Tyndale, and R. de la Torre. 2017. CYP2D6 and CYP2A6 biotransform dietary tyrosol into hydroxytyrosol. Food Chemistry 217:716–25. doi: 10.1016/j.foodchem.2016.09.026.
  • Rodriguez-Naranjo, M. I., M. J. Torija, A. Mas, E. Cantos-Villar, and M. D. C. Garcia-Parrilla. 2012. Production of melatonin by Saccharomyces strains under growth and fermentation conditions. Journal of Pineal Research 53 (3):219–24. doi: 10.1111/j.1600-079X.2012.00990.x.
  • Ruiz-Ruiz, J. C., G. Aldana, C. E. del, A. I. C. Cruz, and M. R. Segura-Campos. 2019. Antioxidant activity of polyphenols extracted from hop used in craft beer. ACTA PORTUGUESA DE NUTRIÇÃO, 25:84–89. doi: 10.21011/apn.2021.2515.
  • Rumgay, H., K. Shield, H. Charvat, P. Ferrari, B. Sornpaisarn, I. Obot, F. Islami, V. E. P. P. Lemmens, J. Rehm, and I. Soerjomataram. 2021. Global burden of cancer in 2020 attributable to alcohol consumption: A population-based study. The Lancet Oncology 22 (8):1071–80. doi: 10.1016/S1470-2045(21)00279-5.
  • Ryan, J., S. C. Hutchings, Z. Fang, N. Bandara, S. Gamlath, S. Ajlouni, and C. S. Ranadheera. 2020. Microbial, physico-chemical and sensory characteristics of mango juice-enriched probiotic dairy drinks. International Journal of Dairy Technology 73 (1):182–90. doi: 10.1111/1471-0307.12630.
  • Saada, O. A., A. Tsouris, C. Large, A. Friedrich, M. J. Dunham, and J. Schacherer. 2022. Phased polyploid genomes provide deeper insight into the multiple origins of domesticated Saccharomyces cerevisiae beer yeasts. Current Biology 32 (6):1350–61.e3. doi: 10.1016/j.cub.2022.01.068.
  • Sakandar, H. A., K. Usman, and M. Imran. 2018. Isolation and characterization of gluten-degrading Enterococcus mundtii and Wickerhamomyces anomalus, potential probiotic strains from indigenously fermented sourdough (Khamir). LWT 91:271–7. doi: 10.1016/j.lwt.2018.01.023.
  • Sánchez-Estébanez, C., S. Ferrero, C. M. Alvarez, F. Villafañe, I. Caballero, and C. A. Blanco. 2018. Nuclear Magnetic Resonance methodology for the analysis of regular and non-alcoholic lager beers. Food Analytical Methods 11 (1):11–22. doi: 10.1007/s12161-017-0953-8.
  • Schneider, S. M., F. Girard-Pipau, J. Filippi, X. Hébuterne, D. Moyse, G. C. Hinojosa, A. Pompei, P. R. Elsevier, and P. Rampal. 2005. Effects of Saccharomyces boulardii on fecal short-chain fatty acids and microflora in patients on long-term total enteral nutrition. World Journal of Gastroenterology 11 (39):6165–9. doi: 10.3748/wjg.v11.i39.6165.
  • Selecký, R., D. Šmogrovičová, and P. Sulo. 2008. Beer with reduced ethanol content produced using Saccharomyces cerevisiae yeasts deficient in various tricarboxylic acid cycle enzymes. Journal of the Institute of Brewing 114 (2):97–101. doi: 10.1002/j.2050-0416.2008.tb00312.x.
  • Senkarcinova, B., I. A. G. Dias, J. Nespor, and T. Branyik. 2019. Probiotic alcohol-free beer made with Saccharomyces cerevisiae var. boulardii. LWT 100:362–7. doi: 10.1016/j.lwt.2018.10.082.
  • Shield, K. D., C. Parry, and J. Rehm. 2013. Chronic diseases and conditions related to alcohol use. Alcohol Research: Current Reviews 35 (2):155–73.
  • Sievenpiper, J. L. 2020. Low-carbohydrate diets and cardiometabolic health: The importance of carbohydrate quality over quantity. Nutrition Reviews 78 (Suppl 1):69–77. doi: 10.1093/NUTRIT/NUZ082.
  • Silva, L. C., H. de Souza Lago, M. O. T. Rocha, V. S. de Oliveira, R. Laureano-Melo, E. T. G. Stutz, B. P. de Paula, J. F. P. Martins, R. H. Luchese, A. F. Guerra, et al. 2021. Craft beers fermented by potential probiotic yeast or lacticaseibacilli strains promote antidepressant-like behavior in Swiss webster mice. Probiotics and Antimicrobial Proteins 13 (3):698–708. doi: 10.1007/s12602-020-09736-6.
  • Silva, L. C., G. B. Schmidt, L. G. O. Alves, V. S. Oliveira, R. Laureano-Melo, E. Stutz, J. F. P. Martins, B. P. Paula, R. H. Luchese, A. F. Guerra, et al. 2020. Use of probiotic strains to produce beers by axenic or semi-separated co-culture system. Food and Bioproducts Processing 124:408–18. doi: 10.1016/j.fbp.2020.10.001.
  • Soejima, H., K. Tsuge, T. Yoshimura, K. Sawada, and H. Kitagaki. 2012. Breeding of a high tyrosol-producing sake yeast by isolation of an ethanol-resistant mutant from a TRP3 mutant. Journal of the Institute of Brewing 118 (3):264–8. doi: 10.1002/jib.46.
  • Soldevila-Domenech, N., A. Boronat, J. Mateus, P. Diaz-Pellicer, I. Matilla, M. Pérez-Otero, A. Aldea-Perona, and R. de La Torre. 2019. Generation of the antioxidant hydroxytyrosol from tyrosol present in beer and red wine in a randomized clinical trial. Nutrients 11 (9):2241. doi: 10.3390/nu11092241.
  • Spitaels, F., A. D. Wieme, M. Janssens, M. Aerts, H. M. Daniel, A. van Landschoot, L. de Vuyst, and P. Vandamme. 2014. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS One. 9 (4):e95384. doi: 10.1371/journal.pone.0095384.
  • Sprenger, J., R. Hardeland, B. Fuhrberg, and S.-Z. Han. 1999. Melatonin and other 5-methoxylated indoles in yeast. Presence in high concentrations and dependence on tryptophan availability. The Japan Mendel Society, Cytología, 64:209–13.
  • Swidsinski, A., V. Ung, B. C. Sydora, V. Loening-Baucke, Y. Doerffel, H. Verstraelen, and R. N. Fedorak. 2009. Bacterial overgrowth and inflammation of small intestine after carboxymethylcellulose ingestion in genetically susceptible mice. Inflammatory Bowel Diseases 15 (3):359–64. doi: 10.1002/ibd.20763.
  • Thomson, J. M., Gaucher, E. A. Burgan, M. F. de Kee, D. W., Li, T. Aris, J. P, and Benner, S. A. 2005. Resurrecting ancestral alcohol dehydrogenases from yeast. Nature Genetics 37 (6):630–5. doi: 10.1038/ng1553.
  • Tiago, F. C. P., F. S. Martins, E. L. S. Souza, P. F. P. Pimenta, H. R. C. Araujo, I. M. Castro, R. L. Brandão, and J. R. Nicoli. 2012. Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics. Journal of Medical Microbiology 61 (Pt 9):1194–207. doi: 10.1099/jmm.0.042283-0.
  • Tilloy, V., A. Ortiz-Julien, and S. Dequin. 2014. Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast saccharomyces cerevisiae under hyperosmotic conditions. Applied and Environmental Microbiology 80 (8):2623–32. doi: 10.1128/AEM.03710-13.
  • Troilo, A., de Francesco, G., Marconi, O. Sileoni, V. Turchetti, B, and Perretti, G. 2020. Low carbohydrate beers produced by a selected yeast strain from an alternative source. Journal of the American Society of Brewing Chemists 78 (1):80–8. doi: 10.1080/03610470.2019.1682887.
  • Varela, C., P. R. Dry, D. R. Kutyna, I. L. Francis, P. A. Henschke, C. D. Curtin, and P. J. Chambers. 2015. Strategies for reducing alcohol concentration in wine. Australian Journal of Grape and Wine Research 21:670–9. doi: 10.1111/ajgw.12187.
  • Varela, J., and C. Varela. 2019. Microbiological strategies to produce beer and wine with reduced ethanol concentration. Current Opinion in Biotechnology 56:88–96. doi: 10.1016/j.copbio.2018.10.003.
  • Xu, P., S. Y. Zhang, Z. G. Luo, M. H. Zong, X. X. Li, and W. Y. Lou. 2021. Biotechnology and bioengineering of pullulanase: State of the art and perspectives. In World journal of microbiology and biotechnology, Vol. 37. Springer Science and Business Media B.V. doi: 10.1007/s11274-021-03010-9.
  • Yılmaz, C., and V. Gökmen. 2018. Determination of tryptophan derivatives in kynurenine pathway in fermented foods using liquid chromatography tandem mass spectrometry. Food Chemistry 243:420–7. doi: 10.1016/j.foodchem.2017.10.004.
  • Yılmaz, C., and V. Gökmen. 2019. Kinetic evaluation of the formation of tryptophan derivatives in the kynurenine pathway during wort fermentation using Saccharomyces pastorianus and Saccharomyces cerevisiae. Food Chemistry 297 (124975):124975. doi: 10.1016/j.foodchem.2019.124975.
  • Zamakhchari, M., G. Wei, F. Dewhirst, J. Lee, D. Schuppan, F. G. Oppenheim, and E. J. Helmerhorst. 2011. Identification of rothia bacteria as gluten-degrading natural colonizers of the upper gastro-intestinal tract. PLoS One 6 (9):e24455. doi: 10.1371/journal.pone.0024455.
  • Zendeboodi, F., M. M. Gholian, E. Khanniri, S. Sohrabvandi, and A. M. Mortazavian. 2021. Beer as a vehicle for probiotics. Applied Food Biotechnology 8 (4):329–37. doi: 10.22037/afb.v8i4.35303.