390
Views
0
CrossRef citations to date
0
Altmetric
Review

Cocoa seeds and chocolate products interaction with gut microbiota; mining microbial and functional biomarkers from mechanistic studies, clinical trials and 16S rRNA amplicon sequencing

, , , , &

References

  • Abdelmageed, M. E., G. S. G. Shehatou, G. M. Suddek, and H. A. Salem. 2021. Protocatechuic acid improves hepatic insulin resistance and restores vascular oxidative status in type-2 diabetic rats. Environmental Toxicology and Pharmacology 83:103577. doi: 10.1016/j.etap.2020.103577.
  • Ackar, D., K. V. Lendic, M. Valek, D. Subaric, B. Milicevic, J. Babic, and I. Nedic. 2013. Cocoa polyphenols: can we consider cocoa and chocolate as potential functional food? Journal of Chemistry 2013:1–7. doi: 10.1155/2013/289392.
  • Acquaviva, R., B. Tomasello, C. Di Giacomo, R. Santangelo, A. La Mantia, I. Naletova, M. G. Sarpietro, F. Castelli, and G. A. Malfa. 2021. Protocatechuic acid, a simple plant secondary metabolite, induced apoptosis by promoting oxidative stress through HO-1 downregulation and p21 upregulation in colon cancer cells. Biomolecules 11 (10):1485. doi: 10.3390/biom11101485.
  • Alegbe, E. O., K. Terali, K. A. Olofinsan, S. Surgun, C. C. Ogbaga, and T. O. Ajiboye. 2019. Antidiabetic activity-guided isolation of gallic and protocatechuic acids from Hibiscus sabdariffa calyxes. Journal of Food Biochemistry 43 (7):e12927. doi: 10.1111/jfbc.12927.
  • Ali, F., A. Ismail, N. M. Esa, C. P. Pei, and S. Kersten. 2015. Hepatic genome-wide expression of lipid metabolism in diet-induced obesity rats treated with cocoa polyphenols. Journal of Functional Foods 17:969–78. doi: 10.1016/j.jff.2015.06.047.
  • Ali, F., A. Ismail, and S. Kersten. 2014. Molecular mechanisms underlying the potential antiobesity-related diseases effect of cocoa polyphenols. Molecular Nutrition & Food Research 58 (1):33–48.
  • Alsahaf, A., N. Petkov, V. Shenoy, and G. Azzopardi. 2022. A framework for feature selection through boosting. Expert Systems with Applications 187:115895. doi: 10.1016/j.eswa.2021.115895.
  • Álvarez-Cilleros, D., S. Ramos, M. E. López-Oliva, F. Escrivá, C. Álvarez, E. Fernández-Millán, and M. Martín. 2020. Cocoa diet modulates gut microbiota composition and improves intestinal health in Zucker diabetic rats. Food Research International (Ottawa, Ont.) 132:109058.
  • Andres-Lacueva, C., M. Monagas, N. Khan, M. Izquierdo-Pulido, M. Urpi-Sarda, J. Permanyer, and R. M. Lamuela-Raventos. 2008. Flavanol and flavonol contents of cocoa powder products: influence of the manufacturing process. Journal of Agricultural and Food Chemistry 56 (9):3111–7.
  • A. Martin., M. Cordero-Herrera, I. Bravo, L. Ramos, S, and Goya, L. 2014. Cocoa flavanols show beneficial effects in cultured pancreatic beta cells and liver cells to prevent the onset of type 2 diabetes. Food Research International 63:400–8. doi: 10.1016/j.foodres.2014.05.006.
  • Angelino, D., D. Carregosa, C. Domenech-Coca, M. Savi, I. Figueira, N. Brindani, S. Jang, S. Lakshman, A. Molokin, J. E. Urban, et al. 2019. 5-(Hydroxyphenyl)-gamma-valerolactone-sulfate, a key microbial metabolite of flavan-3-ols, is able to reach the brain: evidence from different in silico in vitro and in vivo experimental models. Nutrients 11:2678.
  • Aono, Y., T. Kaido, N. Kita, K. Sugiyama, M. Sumikawa, S. Nakayama, and Y. Fukushima. 2021. Dose-dependent effects of cacao polyphenol intake on lipid metabolism in rats. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 76 (2):254–5.
  • Arboleya, S., C. Watkins, C. Stanton, and R. P. Ross. 2016. Gut bifidobacteria populations in human health and aging. Frontiers in Microbiology 7:1204. doi: 10.3389/fmicb.2016.01204.
  • Arlorio, M., C. Bottini, F. Travaglia, M. Locatelli, M. Bordiga, J. D. Coisson, A. Martelli, and L. Tessitore. 2009. Protective activity of Theobroma cacao L. phenolic extract on AML12 and MLP29 liver cells by preventing apoptosis and inducing autophagy. Journal of Agricultural and Food Chemistry 57 (22):10612–8.
  • Armour, C. R., S. Nayfach, K. S. Pollard, and T. J. Sharpton. 2019. A metagenomic meta-analysis reveals functional signatures of health and disease in the human gut microbiome. mSystems 4 (4):e00332-18. doi: 10.1128/mSystems.00332-18.
  • Bai, L., H. J. Kee, X. Han, T. Zhao, S.-J. Kee, and M. H. Jeong. 2021. Protocatechuic acid attenuates isoproterenol-induced cardiac hypertrophy via downregulation of ROCK1-Sp1-PKC gamma axis. Scientific Reports 11 (1):1–16. doi: 10.1038/s41598-021-96761-2.
  • Barragués, J. I., Adolfo Morais, and Jenaro Guisasola, eds. 2014. Probability and statistics: A didactic introduction. CRC Press.
  • B. Granado-Serrano., A. Angeles Martin, M. Bravo, L. Goya, L, and Ramos, S. 2009. A diet rich in cocoa attenuates N-nitrosodiethylamine-induced liver injury in rats. Food and Chemical Toxicology 47 (10):2499–506. doi: 10.1016/j.fct.2009.07.007.
  • Belen Martinez-Hernandez, G., E. Jimenez-Ferrer, R. Roman-Ramos, A. Zamilpa, M. Gonzalez-Cortazar, I. Leon-Rivera, G. Vargas-Villa, and M. Herrera-Ruiz. 2021. A mixture of quercetin 4 ‘-O-rhamnoside and isoquercitrin from Tilia americana var. mexicana and its biotransformation products with antidepressant activity in mice. Journal of Ethnopharmacology 267:113619. doi: 10.1016/j.jep.2020.113619.
  • Bhattacharjee, N., T. K. Dua, R. Khanra, S. Joardar, A. Nandy, A. Saha, V. De Feo, and S. Dewanjee. 2017. Protocatechuic acid, a phenolic from Sansevieria roxburghiana leaves, suppresses diabetic cardiomyopathy via stimulating glucose metabolism, ameliorating oxidative stress, and inhibiting inflammation. Frontiers in Pharmacology 8:251. doi: 10.3389/fphar.2017.00251.
  • Bhattacharjee, R, and L. Kumar. 2007. Cacao. In 127–42.
  • Bitner, B. F., J. D. Ray, K. B. Kener, J. A. Herring, J. A. Tueller, D. K. Johnson, C. M. T. Freitas, D. W. Fausnacht, M. E. Allen, A. H. Thomson, et al. 2018. Common gut microbial metabolites of dietary flavonoids exert potent protective activities in beta-cells and skeletal muscle cells. The Journal of Nutritional Biochemistry 62:95–107.
  • Bonet-Costa, V., Pomatto, L. C.-D. Davies, K., and J. A. 2016. The proteasome and oxidative stress in Alzheimer’s disease. Antioxidants & Redox Signaling 25 (16):886–901. doi: 10.1089/ars.2016.6802.
  • Bordiga, M., M. Locatelli, F. Travaglia, J. D. Coisson, G. Mazza, and M. Arlorio. 2015. Evaluation of the effect of processing on cocoa polyphenols: antiradical activity, anthocyanins and procyanidins profiling from raw beans to chocolate. International Journal of Food Science & Technology 50 (3):840–8. doi: 10.1111/ijfs.12760.
  • Brickman, A. M., U. A. Khan, F. A. Provenzano, L.-K. Yeung, W. Suzuki, H. Schroeter, M. Wall, R. P. Sloan, and S. A. Small. 2014. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nature Neuroscience 17 (12):1798–803.
  • Buitrago-Lopez, A., J. Sanderson, L. Johnson, S. Warnakula, A. Wood, E. Di Angelantonio, and O. H. Franco. 2011. Chocolate consumption and cardiometabolic disorders: systematic review and meta-analysis. BMJ (Clinical Research ed.) 343:d4488. doi: 10.1136/bmj.d4488.
  • Cardona, F., C. Andrés-Lacueva, S. Tulipani, F. J. Tinahones, and M. I. Queipo-Ortuño. 2013. Benefits of polyphenols on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry 24 (8):1415–22.
  • Carey, M. A., G. L. Medlock, M. Alam, M. Kabir, M. J. Uddin, U. Nayak, J. Papin, A. Faruque, S. G. Haque, R. Petri, Jr, et al. 2021. Megasphaera in the stool microbiota is negatively associated with diarrheal cryptosporidiosis. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America 73 (6):e1242–e1251. doi: 10.1093/cid/ciab207.
  • Carnésecchi, S., Y. Schneider, S. A. Lazarus, D. Coehlo, F. Gossé, and F. Raul. 2002. Flavanols and procyanidins of cocoa and chocolate inhibit growth and polyamine biosynthesis of human colonic cancer cells. Cancer Letters 175 (2):147–55.
  • Castell, M., S. Saldaña-Ruíz, M. J. Rodríguez-Lagunas, À. Franch, and F. J. Pérez-Cano. 2015. Second international congress on chocolate and cocoa in medicine held in Barcelona, Spain, 25–26th September 2015. Nutrients 7 (12):9785–803. doi: 10.3390/nu7125502.
  • Cecarini, V., M. Cuccioloni, Y. D. Zheng, L. Bonfili, C. M. Gong, M. Angeletti, P. Mena, D. Del Rio, and A. M. Eleuteri. 2021. Flavan-3-ol microbial metabolites modulate proteolysis in neuronal cells reducing amyloid-beta (1-42) levels. Molecular Nutrition & Food Research 65:2100380.
  • Cecilia Castro, M., H. Villagarcia, A. Nazar, L. Gonzalez Arbelaez, M. Laura Massa, H. Del Zotto, J. Luis Rios, G. R. Schinella, and F. Francini. 2020. Cacao extract enriched in polyphenols prevents endocrine-metabolic disturbances in a rat model of prediabetes triggered by a sucrose rich diet. Journal of Ethnopharmacology 247:112263. doi: 10.1016/j.jep.2019.112263.
  • Checler, F., C. Alves da Costa, K. Ancolio, N. Chevallier, E. Lopez-Perez, and P. Marambaud. 2000. Role of the proteasome in Alzheimer’s disease. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1502 (1):133–8. doi: 10.1016/S0925-4439(00)00039-9.
  • Cinar, Z. O., M. Atanassova, T. B. Tumer, G. Caruso, G. Antika, S. Sharma, J. Sharifi-Rad, and R. Pezzani. 2021. Cocoa and cocoa bean shells role in human health: an updated review. Journal of Food Composition and Analysis 103:104115. doi: 10.1016/j.jfca.2021.104115.
  • Cintio, M., E. Scarsella, S. Sgorlon, M. Sandri, and B. Stefanon. 2020. Gut microbiome of healthy and arthritic dogs. Veterinary Sciences 7 (3):92. doi: 10.3390/vetsci7030092.
  • Cordero-Herrera, I., M. Angeles Martin, L. Goya, and S. Ramos. 2014. Cocoa flavonoids attenuate high glucose-induced insulin signalling blockade and modulate glucose uptake and production in human HepG2 cells. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 64:10–9.
  • Corral-Jara, K. F., S. Nuthikattu, J. Rutledge, A. Villablanca, C. Morand, H. Schroeter, and D. Milenkovic. 2021. Integrated multi-omic analyses of the genomic modifications by gut microbiome-derived metabolites of epicatechin, 5-(4 ‘-hydroxyphenyl)-gamma-valerolactone, in TNFalpha-stimulated primary human brain microvascular endothelial cells. Frontiers in Neuroscience 15:622640. doi: 10.3389/fnins.2021.622640.
  • Darand, M., M. Hajizadeh Oghaz, A. Hadi, M. Atefi, and R. Amani. 2021. The effect of cocoa/dark chocolate consumption on lipid profile, glycemia, and blood pressure in diabetic patients: a meta-analysis of observational studies. Phytotherapy Research: PTR 35 (10):5487–501. doi: 10.1002/ptr.7183.
  • Desideri, G., C. Kwik-Uribe, D. Grassi, S. Necozione, L. Ghiadoni, D. Mastroiacovo, A. Raffaele, L. Ferri, R. Bocale, M. C. Lechiara, et al. 2012. Benefits in cognitive function, blood pressure, and insulin resistance through cocoa flavanol consumption in elderly subjects with mild cognitive impairment the cocoa. Cognition, and Aging (CoCoA) Study. Hypertension 60 (3):794–801. doi: 10.1161/HYPERTENSIONAHA.112.193060.
  • Drevensek, G., M. Lunder, E. T. Benkovic, B. Strukelj, and S. Kreft. 2016. Cardioprotective effects of silver fir (Abies alba) extract in ischemic-reperfused isolated rat hearts. Food & Nutrition Research 60 (1):29623. doi: 10.3402/fnr.v60.29623.
  • Elshahed, M. S., A. Miron, A. C. Aprotosoaie, and M. A. Farag. 2021. Pectin in diet: interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions. Carbohydrate Polymers 255:117388.
  • Favari, C., P. Mena, C. Curti, G. Istas, C. Heiss, D. Del Rio, and A. Rodriguez-Mateos. 2020. Kinetic profile and urinary excretion of phenyl-gamma-valerolactones upon consumption of cranberry: a dose-response relationship. Food & Function 11 (5):3975–85.
  • Fernandez-Millan, E., Cordero-Herrera, I. Ramos, S. Escriva, F. Alvarez, C. Goya, L. A, and Martin, M. 2015. Cocoa-rich diet attenuates beta cell mass loss and function in young Zucker diabetic fatty rats by preventing oxidative stress and beta cell apoptosis. Molecular Nutrition & Food Research 59 (4):820–4. doi: 10.1002/mnfr.201400746.
  • Ferreira, A. J, and M. A. Figueiredo. 2012. Efficient feature selection filters for high-dimensional data. Pattern Recognition Letters 33 (13):1794–804. doi: 10.1016/j.patrec.2012.05.019.
  • Fusar-Poli, L., A. Gabbiadini, A. Ciancio, L. Vozza, M. S. Signorelli, and E. Aguglia. 2021. The effect of cocoa-rich products on depression, anxiety, and mood: a systematic review and meta-analysis. Critical Reviews in Food Science and Nutrition 62:1–13.
  • Genuer, R., J.-M. Poggi, and C. Tuleau-Malot. 2010. Variable selection using random forests. Pattern Recognition Letters 31 (14):2225–36. doi: 10.1016/j.patrec.2010.03.014.
  • Giacometti, J., D. Muhvic, A. Pavletic, and L. Dudaric. 2016. Cocoa polyphenols exhibit antioxidant, anti-inflammatory, anticancerogenic, and anti-necrotic activity in carbon tetrachloride-intoxicated mice. Journal of Functional Foods 23:177–87. doi: 10.1016/j.jff.2016.02.036.
  • Gong, F., S. Yao, J. Wan, and X. Gan. 2017. Chocolate consumption and risk of heart failure: a meta-analysis of prospective studies. Nutrients 9 (4):402. doi: 10.3390/nu9040402.
  • Gonzalez-Dominguez, R., P. Castellano-Escuder, F. Carmona, S. Lefevre-Arbogast, D. Y. Low, A. Du Preez, S. R. Ruigrok, C. Manach, M. Urpi-Sarda, A. Korosi, et al. 2021. Food and microbiota metabolites associate with cognitive decline in older subjects: a 12-year prospective study. Molecular Nutrition & Food Research 65 (23):2100606. doi: 10.1002/mnfr.202100606.
  • Han, S. J., S. N. Ryu, H. T. Trinh, E. H. Joh, S. Y. Jang, M. J. Han, and D. H. Kim. 2009. Metabolism of cyanidin-3-O-??-D-glucoside isolated from black colored rice and its antiscratching behavioral effect in mice. Journal of Food Science 74 (8):H253–H258. doi: 10.1111/j.1750-3841.2009.01327.x.
  • Hara-Terawaki, A., A. Takagaki, H. Kobayashi, and F. Nanjo. 2017. Inhibitory activity of catechin metabolites produced by intestinal microbiota on proliferation of HeLa cells. Biological & Pharmaceutical Bulletin 40 (8):1331–5. doi: 10.1248/bpb.b17-00127.
  • Henning, S. M., P. W. Wang, N. Abgaryan, R. Vicinanza, D. M. de Oliveira, Y. J. Zhang, R. P. Lee, C. L. Carpenter, W. J. Aronson, and D. Heber. 2013. Phenolic acid concentrations in plasma and urine from men consuming green or black tea and potential chemopreventive properties for colon cancer. Molecular Nutrition & Food Research 57 (3):483–93493. doi: 10.1002/mnfr.201200646.
  • Hou, J., N. E. Reid, B. J. Tromberg, and E. O. Potma. 2020. Kinetic analysis of lipid metabolism in breast cancer cells via nonlinear optical microscopy. Biophysical Journal 119 (2):258–64. doi: 10.1016/j.bpj.2020.06.007.
  • Hussein, J., D. A. El-Matty, and Z. El-Khayat. 2011. The protective effect of some polyphenolic compounds on lipopolysaccharide-induced hepatitis in D-galactosamine sensitized rats. Journal of Medicinal Plants Research 5:191–9.
  • Jalil, A. M. M, and A. Ismail. 2008. Polyphenols in cocoa and cocoa products: is there a link between antioxidant properties and health? Molecules (Basel, Switzerland) 13 (9):2190–219. doi: 10.3390/molecules13092190.
  • Janbaz, K. H., S. A. Saeed, and A. H. Gilani. 2004. Studies on the protective effects of caffeic acid and quercetin on chemical-induced hepatotoxicity in rodents. Phytomedicine 11 (5):424–30. doi: 10.1016/j.phymed.2003.05.002.
  • Janevski, M., K. N. Antonas, M. J. Sullivan-Gunn, M. A. McGlynn, and P. A. Lewandowski. 2011. The effect of cocoa supplementation on hepatic steatosis, reactive oxygen species and LFABP in a rat model of NASH. Comparative Hepatology 10 (1):10. doi: 10.1186/1476-5926-10-10.
  • Jang, L.-G., G. Choi, S.-W. Kim, B.-Y. Kim, S. Lee, and H. Park. 2019. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: an observational study. Journal of the International Society of Sports Nutrition 16 (1):10. doi: 10.1186/s12970-019-0290-y.
  • Jean-Marie, E., D. Bereau, and J.-C. Robinson. 2021. Benefits of polyphenols and methylxanthines from cocoa beans on dietary metabolic disorders. Foods 10 (9):2049. doi: 10.3390/foods10092049.
  • Jourdain, C., G. Tenca, A. Deguercy, P. Troplin, and D. Poelman. 2006. In-vitro effects of polyphenols from cocoa and β-sitosterol on the growth of human prostate cancer and normal cells. European Journal of Cancer Prevention 15: 353–361.
  • Kang, N. J., K. W. Lee, D. E. Lee, E. A. Rogozin, A. M. Bode, H. J. Lee, and Z. Dong. 2008. Cocoa procyanidins suppress transformation by inhibiting mitogen-activated protein kinase kinase*. The Journal of Biological Chemistry 283 (30):20664–73.
  • Karthikesan, K, and L. Pari. 2007. Beneficial effect of caffeic acid on alcohol-induced alterations in lipid peroxidation and antioxidant defense in rats. Toxicology Mechanisms and Methods 17 (9):527–34.
  • Kaufman, D. W., J. P. Kelly, G. C. Curhan, T. E. Anderson, S. P. Dretler, G. M. Preminger, and D. R. Cave. 2008. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. Journal of the American Society of Nephrology 19 (6):1197–203. doi: 10.1681/ASN.2007101058.
  • Khan, N., M. Monagas, C. Andres-Lacueva, R. Casas, M. Urpi-Sarda, R. M. Lamuela-Raventos, and R. Estruch. 2012. Regular consumption of cocoa powder with milk increases HDL cholesterol and reduces oxidized LDL levels in subjects at high-risk of cardiovascular disease. Nutrition Metabolism and Cardiovascular Diseases 22 (12):1046–53. doi: 10.1016/j.numecd.2011.02.001.
  • Kilicgun, H, and A. Dehen. 2009. The antioxidant activity of cocoa. Pharmacognosy Magazine 5 (20):298–300. doi: 10.4103/0973-1296.58148.
  • Kim, J.-E., J. E. Son, S. Jung, N. Kang, C. Lee, K. Lee, and H. Lee. 2010. Cocoa polyphenols suppress TNF-α-induced vascular endothelial growth factor expression by inhibiting phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase kinase-1 (MEK1) activities in mouse epidermal cells. The British Journal of Nutrition 104 (7):957–64. doi: 10.1017/S0007114510001704.
  • Kishino, T. D. a H. 2022. Forward variable selection improves the power of random forest for high-dimensional micro biome data. Journal of Cancer Science and Clinical Therapeutics 87–105.
  • Koliada, A., G. Syzenko, V. Moseiko, L. Budovska, K. Puchkov, V. Perederiy, Y. Gavalko, A. Dorofeyev, M. Romanenko, S. Tkach, et al. 2017. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiology 17 (1):6. doi: 10.1186/s12866-017-1027-1.
  • Kord-Varkaneh, H., E. Ghaedi, A. Nazary-Vanani, H. Mohammadi, and S. Shab-Bidar. 2019. Does cocoa/dark chocolate supplementation have favorable effect on body weight, body mass index and waist circumference? A systematic review, meta-analysis and dose-response of randomized clinical trials. Critical Reviews in Food Science and Nutrition 59 (15):2349–62.
  • Kothe, L., B. F. Zimmermann, and R. Galensa. 2013. Temperature influences epimerization and composition of flavanol monomers, dimers and trimers during cocoa bean roasting. Food Chemistry 141 (4):3656–63.
  • Krga, I., N. Vidovic, D. Milenkovic, A. Konic-Ristic, F. Stojanovic, C. Morand, and M. Glibetic. 2018. Effects of anthocyanins and their gut metabolites on adenosine diphosphate-induced platelet activation and their aggregation with monocytes and neutrophils. Archives of Biochemistry and Biophysics 645:34–41.
  • Krzysztoforska, K., A. Piechal, K. Blecharz-Klin, J. Pyrzanowska, I. Joniec-Maciejak, D. Mirowska-Guzel, and E. Widy-Tyszkiewicz. 2022. Effect of protocatechuic acid on cognitive processes and central nervous system neuromodulators in the hippocampus, prefrontal cortex, and striatum of healthy rats. Nutritional Neuroscience 25 (7):1362–1373.
  • Kwok, C. S., Boekholdt, S. M. Lentjes, M. A. H. Loke, Y. K. Luben, R. N. Yeong, J. K. Wareham, N. J. Myint, P. K, and Khaw, K.-T. 2015. Habitual chocolate consumption and risk of cardiovascular disease among healthy men and women. Heart (British Cardiac Society) 101 (16):1279–87.
  • Larsen, P. E, and Y. Dai. 2015. Metabolome of human gut microbiome is predictive of host dysbiosis. GigaScience 4:42–13015. doi: 10.1186/s13742-015-0084-3.
  • Larsson, S. C., A. Åkesson, B. Gigante, and A. Wolk. 2016. Chocolate consumption and risk of myocardial infarction: a prospective study and meta-analysis. Heart (British Cardiac Society) 102 (13):1017–22. doi: 10.1136/heartjnl-2015-309203.
  • Lee, D. E., N. J. Kang, K. M. Lee, B. K. Lee, J. H. Kim, K. W. Lee, and H. J. Lee. 2010. Cocoa polyphenols attenuate hydrogen peroxide-induced inhibition of gap-junction intercellular communication by blocking phosphorylation of connexin 43 via the MEK/ERK signaling pathway. The Journal of Nutritional Biochemistry 21 (8):680–6. doi: 10.1016/j.jnutbio.2009.03.014.
  • Lee, J., J. H. Song, M. Y. Chung, J. H. Lee, T. G. Nam, J. H. Park, J. T. Hwang, and H. K. Choi. 2021. 3,4-dihydroxytoluene, a metabolite of rutin, suppresses the progression of nonalcoholic fatty liver disease in mice by inhibiting p300 histone acetyltransferase activity. Acta Pharmacologica Sinica 42 (9):1449–60. doi: 10.1038/s41401-020-00571-7.
  • Li, K. K., C. L. Liu, H. T. Shiu, H. L. Wong, W. S. Siu, C. Zhang, X. Q. Han, C. X. Ye, P. C. Leung, and C. H. Ko. 2016. Cocoa tea (Camellia ptilophylla) water extract inhibits adipocyte differentiation in mouse 3T3-L1 preadipocytes. Scientific Reports 82 (9):1387–1394.
  • Li, L., S. Liu, H. Tang, S. Song, L. Lu, P. Zhang, and X. Li. 2020. Effects of protocatechuic acid on ameliorating lipid profiles and cardio-protection against coronary artery disease in high fat and fructose diet fed in rats. Journal of Veterinary Medical Science 82 (9):1387–94. doi: 10.1292/jvms.20-0245.
  • Liu, X., B. Mao, J. Gu, J. Wu, S. Cui, G. Wang, J. Zhao, H. Zhang, and W. Chen. 2021. Blautia-a new functional genus with potential probiotic properties? Gut Microbes 13 (1):1–21.
  • Liu, Y., X. Jin, H. G. Hong, L. Xiang, Q. Jiang, Y. Ma, Z. Chen, L. Cheng, Z. Jian, Z. Wei, et al. 2020. The relationship between gut microbiota and short chain fatty acids in the renal calcium oxalate stones disease. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 34 (8):11200–14. doi: 10.1096/fj.202000786R.
  • Loffredo, L., F. Baratta, P. Ludovica, S. Battaglia, R. Carnevale, C. Nocella, M. Novo, G. Pannitteri, F. Ceci, F. Angelico, et al. 2018. Effects of dark chocolate on endothelial function in patients with non-alcoholic steatohepatitis. Nutrition Metabolism and Cardiovascular Diseases 28 (2):143–9. doi: 10.1016/j.numecd.2017.10.027.
  • Loffredo, L., M. Del Ben, L. Perri, R. Carnevale, C. Nocella, E. Catasca, F. Baratta, F. Ceci, L. Polimeni, P. Gozzo, et al. 2016. Effects of dark chocolate on NOX-2-generated oxidative stress in patients with non-alcoholic steatohepatitis. Alimentary Pharmacology & Therapeutics 44 (3):279–86. doi: 10.1111/apt.13687.
  • Ma, G, and Y. Chen. 2020. Polyphenol supplementation benefits human health via gut microbiota: a systematic review via meta-analysis. Journal of Functional Foods 66:103829. doi: 10.1016/j.jff.2020.103829.
  • Maldonado-Mateus, L. Y., S. Perez-Burillo, A. Lerma-Aguilera, D. Hinojosa-Nogueira, S. Ruíz-Pérez, M. J. Gosalbes, M. P. Francino, J. Á. Rufián-Henares, and S. Pastoriza de la Cueva. 2021. Effect of roasting conditions on cocoa bioactivity and gut microbiota modulation. Food & Function 12 (20):9680–92. doi: 10.1039/D1FO01155C.
  • Martin, F.-P J., N. Antille, S. Rezzi, and S. Kochhar. 2012. Everyday eating experiences of chocolate and non-chocolate snacks impact postprandial anxiety, energy and emotional states. Nutrients 4 (6):554–67.
  • Martin, M. A, and S. Ramos. 2021. Impact of cocoa flavanols on human health. Food and Chemical Toxicology 151:112121. doi: 10.1016/j.fct.2021.112121.
  • Massot-Cladera, M., T. Pérez-Berezo, A. Franch, M. Castell, and F. J. Pérez-Cano. 2012. Cocoa modulatory effect on rat faecal microbiota and colonic crosstalk. Archives of Biochemistry and Biophysics 527 (2):105–12.
  • Matsui, N., R. Ito, E. Nishimura, M. Yoshikawa, M. Kato, M. Kamei, H. Shibata, I. Matsumoto, K. Abe, and S. Hashizume. 2005. Ingested cocoa can prevent high-fat diet-induced obesity by regulating the expression of genes for fatty acid metabolism. Nutrition 21 (5):594–601. doi: 10.1016/j.nut.2004.10.008.
  • McKim, S. E., A. Konno, E. Gabele, T. Uesugi, M. Froh, H. Sies, R. G. Thurman, and G. E. Arteel. 2002. Cocoa extract protects against early alcohol-induced liver injury in the rat. Archives of Biochemistry and Biophysics 406 (1):40–6.
  • Miranda, P. M., F. Bertolini, Haja, and N. Kadarmideen. 2019. Investigation of gut microbiome association with inflammatory bowel disease and depression: a machine learning approach. F1000Research 7:702. doi: 10.12688/f1000research.15091.2.
  • Monagas, M., M. Urpi-Sarda, F. Sanchez-Patan, R. Llorach, I. Garrido, C. Gomez-Cordoves, C. Andres-Lacueva, and B. Bartolome. 2010. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food & Function 1 (3):233–53. doi: 10.1039/c0fo00132e.
  • Montagnana, M., E. Danese, D. Angelino, P. Mena, A. Rosi, M. Benati, M. Gelati, G. L. Salvagno, E. J. Favaloro, D. Del Rio, et al. 2018. Dark chocolate modulates platelet function with a mechanism mediated by flavan-3-ol metabolites. Medicine 97:49.
  • Mu, Q., V. J. Tavella, and X. M. Luo. 2018. Role of Lactobacillus reuteri in human health and diseases. Frontiers in Microbiology 9:757. doi: 10.3389/fmicb.2018.00757.
  • Natsume, M., N. Osakabe, M. Yamagishi, T. Takizawa, T. Nakamura, H. Miyatake, T. Hatano, and T. Yoshida. 2000. Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Bioscience, Biotechnology, and Biochemistry 64 (12):2581–7.
  • Noori, S., K. Nasir, and T. Mahboob. 2009. Effects of cocoa powder on oxidant/antioxidant status in liver, heart and kidney tissues of rats. Journal of Animal and Plant Sciences-Japs 19:174–8.
  • Nour, O. A., H. A. Ghoniem, M. A. Nader, and G. M. Suddek. 2021. Impact of protocatechuic acid on high fat diet-induced metabolic syndrome sequelae in rats. European Journal of Pharmacology 907:174257.
  • O’Callaghan, A, and D. van Sinderen. 2016. Bifidobacteria and their role as members of the human gut microbiota. Frontiers in Microbiology 7:925. doi: 10.3389/fmicb.2016.00925.
  • Oracz, J., E. Nebesny, D. Zyzelewicz, G. Budryn, and B. Luzak. 2020. Bioavailability and metabolism of selected cocoa bioactive compounds: a comprehensive review. Critical Reviews in Food Science and Nutrition 60 (12):1947–85. doi: 10.1080/10408398.2019.1619160.
  • Pandurangan, A. K., Z. Saadatdoust, N. Mohd. Esa, H. Hamzah, and A. Ismail. 2015. Dietary cocoa protects against colitis-associated cancer by activating the Nrf2/Keap1 pathway. BioFactors (Oxford, England) 41 (1):1–14.
  • Pari, L, and K. KarthiKesan. 2007. Protective role of caffeic acid against alcohol-induced biochemical changes in rats. Fundamental & Clinical Pharmacology 21 (4):355–61. doi: 10.1111/j.1472-8206.2007.00505.x.
  • Pase, M. P., A. B. Scholey, A. Pipingas, M. Kras, K. Nolidin, A. Gibbs, K. Wesnes, and C. Stough. 2013. Cocoa polyphenols enhance positive mood states but not cognitive performance: a randomized, placebo-controlled trial. Journal of Psychopharmacology (Oxford, England) 27 (5):451–8. doi: 10.1177/0269881112473791.
  • Peiffer, D. S., N. P. Zimmerman, L.-S. Wang, B. W. S. Ransom, S. G. Carmella, C.-T. Kuo, J. Siddiqui, J.-H. Chen, K. Oshima, Y.-W. Huang, et al. 2014. Chemoprevention of esophageal cancer with black raspberries, their component anthocyanins, and a major anthocyanin metabolite, protocatechuic acid. Cancer Prevention Research 7 (6):574–84. doi: 10.1158/1940-6207.CAPR-14-0003.
  • Peng, M., U. Aryal, B. Cooper, and D. Biswas. 2015. Metabolites produced during the growth of probiotics in cocoa supplementation and the limited role of cocoa in host-enteric bacterial pathogen interactions. Food Control 53:124–33. doi: 10.1016/j.foodcont.2015.01.014.
  • Perez-Alvarez, V., R. A. Bobadilla, A. Alias, M. Rico, and P. Muriel. 1999. Dose-regimen dependent caffeic acid prevention of acute liver damage. In 42nd Annual Meeting of the Western-Pharmacology-Society (Vol. 42, pp. 17–18). Maui, Hi.
  • Rabadan-Chavez, G., L. Quevedo-Corona, A. M. Garcia, E. Reyes-Maldonado, and M. E. Jaramillo-Flores. 2016. Cocoa powder, cocoa extract and epicatechin attenuate hypercaloric diet-induced obesity through enhanced beta-oxidation and energy expenditure in white adipose tissue. Journal of Functional Foods 20:54–67. doi: 10.1016/j.jff.2015.10.016.
  • Rechner, A. R., M. A. Smith, G. Kuhnle, G. R. Gibson, E. S. Debnam, S. K. S. Srai, K. P. Moore, and C. A. Rice-Evans. 2004. Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radical Biology & Medicine 36 (2):212–25.
  • Ren, Y., Y. Liu, X.-Z. Sun, B.-Y. Wang, Y. Zhao, D.-C. Liu, D.-D. Zhang, X.-J. Liu, R.-Y. Zhang, H.-H. Sun, et al. 2019. Chocolate consumption and risk of cardiovascular diseases: a meta-analysis of prospective studies. Heart 105 (1):49–55. doi: 10.1136/heartjnl-2018-313131.
  • Rodríguez-Daza, M. C., E. C. Pulido-Mateos, J. Lupien-Meilleur, D. Guyonnet, Y. Desjardins, and D. Roy. 2021. Polyphenol-mediated gut microbiota modulation: toward prebiotics and further. Frontiers in Nutrition 8 (49):30-41. doi: 10.3389/fnut.2021.689456.
  • Rowley, T. J., B. F. Bitner, J. D. Ray, D. R. Lathen, A. T. Smithson, B. W. Dallon, C. J. Plowman, B. T. Bikman, J. M. Hansen, M. R. Dorenkott, et al. 2017. Monomeric cocoa catechins enhance beta-cell function by increasing mitochondrial respiration. The Journal of Nutritional Biochemistry 49:30–41.
  • Ruotolo, R., I. Minato, P. La Vitola, L. Artioli, C. Curti, V. Franceschi, N. Brindani, D. Amidani, L. Colombo, M. Salmona, et al. 2020. Flavonoid-derived human phenyl-gamma-valerolactone metabolites selectively detoxify amyloid-beta oligomers and prevent memory impairment in a mouse model of Alzheimer’s disease. Molecular Nutrition & Food Research 64:1900890.
  • Rupasinghe, H. P. V., I. Parmar, and S. V. Neir. 2019. Biotransformation of cranberry proanthocyanidins to probiotic metabolites by Lactobacillus rhamnosus enhances their anticancer activity in HepG2 cells in vitro. Oxidative Medicine and Cellular Longevity 2019:4750795. doi: 10.1155/2019/4750795.
  • Ryan, K. K., V. Tremaroli, C. Clemmensen, P. Kovatcheva-Datchary, A. Myronovych, R. Karns, H. E. Wilson-Pérez, D. A. Sandoval, R. Kohli, F. Bäckhed, et al. 2014. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509 (7499):183–8. doi: 10.1038/nature13135.
  • Sarria, B., M. Gomez-Juaristi, S. M. Lopez, J. G. Cordero, L. Bravo, and M. R. M. Briz. 2020. Cocoa colonic phenolic metabolites are related to HDL-cholesterol raising effects and methylxanthine metabolites and insoluble dietary fibre to anti-inflammatory and hypoglycemic effects in humans. PeerJ 8:e9953. doi: 10.7717/peerj.9953.
  • Sathyapalan, T., S. Beckett, A. S. Rigby, D. D. Mellor, and S. L. Atkin. 2010. High cocoa polyphenol rich chocolate may reduce the burden of the symptoms in chronic fatigue syndrome. Nutrition Journal 9 (1):1–5. doi: 10.1186/1475-2891-9-55.
  • Scholey, A. B., S. J. French, P. J. Morris, D. O. Kennedy, A. L. Milne, and C. F. Haskell. 2010. Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. Journal of Psychopharmacology (Oxford, England) 24 (10):1505–14.
  • Servin, A. L. 2004. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiology Reviews 28 (4):405–40. doi: 10.1016/j.femsre.2004.01.003.
  • Shair, R. M., M. Y. Maskat, M. K. Ayob, and R. Kasran. 2020. Protective effect of cocoa extract on ethanol induced liver injury in sprague-dawley rats. Sains Malaysiana 49 (1):93–101. doi: 10.17576/jsm-2020-4901-11.
  • Shimizu, J., T. Kubota, E. Takada, K. Takai, N. Fujiwara, N. Arimitsu, Y. Ueda, S. Wakisaka, T. Suzuki, and N. Suzuki. 2019. Relative abundance of Megamonas hypermegale and Butyrivibrio species decreased in the intestine and its possible association with the T cell aberration by metabolite alteration in patients with Behcet’s disease. Clinical Rheumatology 38 (5):1437–45. doi: 10.1007/s10067-018-04419-8.
  • Shin, J. H., C. S. Kim, L. Cha, S. Kim, S. Lee, S. Chae, W. Y. Chun, and D. M. Shin. 2022. Consumption of 85% cocoa dark chocolate improves mood in association with gut microbial changes in healthy adults: a randomized controlled trial. Journal of Nutritional Biochemistry 99:2440–2447.
  • Song, H, and J. Ren. 2019. Protocatechuic acid attenuates angiotensin II-induced cardiac fibrosis in cardiac fibroblasts through inhibiting the NOX4/ROS/p38 signaling pathway. Phytotherapy Research: PTR 33 (9):2440–7.
  • Sorrenti, V., S. Ali, L. Mancin, S. Davinelli, A. Paoli, and G. Scapagnini. 2020. Cocoa polyphenols and gut microbiota interplay: bioavailability, prebiotic effect, and impact on human health. Nutrients 12 (7):1908. doi: 10.3390/nu12071908.
  • Stark, T., H. Justus, and T. Hofmann. 2006. Quantitative analysis of N-phenylpropenoyl-L-amino acids in roasted coffee and cocoa powder by means of a stable isotope dilution assay. Journal of Agricultural and Food Chemistry 54 (8):2859–67.
  • Stark, T., R. Lang, D. Keller, A. Hensel, and T. Hofmann. 2008. Absorption of N-phenylpropenoyl-L-amino acids in healthy humans by oral administration of cocoa (Theobroma cacao). Molecular Nutrition & Food Research 52 (10):1201–14. doi: 10.1002/mnfr.200700447.
  • Sun, M., Y. Gu, S. L. Glisan, and J. D. Lambert. 2021. Dietary cocoa ameliorates non-alcoholic fatty liver disease and increases markers of antioxidant response and mitochondrial biogenesis in high fat-fed mice. Journal of Nutritional Biochemistry 92:108618.
  • Tagliazucchi, D., S. Martini, and A. Conte. 2019. Protocatechuic and 3,4-dihydroxyphenylacetic acids inhibit protein glycation by binding lysine through a metal-catalyzed oxidative mechanism. Journal of Agricultural and Food Chemistry 67 (28):7821–31.
  • Talagavadi, V., P. Rapisarda, F. Galvano, P. Pelicci, and M. Giorgio. 2016. Cyanidin-3-O-beta-glucoside and protocatechuic acid activate AMPK/mTOR/S6K pathway and improve glucose homeostasis in mice. Journal of Functional Foods 21:338–48. doi: 10.1016/j.jff.2015.12.007.
  • Techtmann, R. B. G. a S. M. 2021. Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring. Computational and Structural Biotechnology Journal 19:1092–107.
  • Tzounis, X., A. Rodriguez-Mateos, J. Vulevic, G. R. Gibson, C. Kwik-Uribe, and J. P. Spencer. 2010. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. The American Journal of Clinical Nutrition 93 (1):62–72. doi: 10.3945/ajcn.110.000075.
  • Tzounis, X., J. Vulevic, G. G. C. Kuhnle, T. George, J. Leonczak, G. R. Gibson, C. Kwik-Uribe, and J. P. E. Spencer. 2007. Flavanol monomer-induced changes to the human faecal microflora. British Journal of Nutrition 99 (4):782–92. doi: 10.1017/S0007114507853384.
  • Unno, K., M. Pervin, A. Nakagawa, K. Iguchi, A. Hara, A. Takagaki, F. Nanjo, A. Minami, and Y. Nakamura. 2017. Blood-brain barrier permeability of green tea catechin metabolites and their neuritogenic activity in human neuroblastoma SH-SY5Y cells. Molecular Nutrition & Food Research 61 (12):1700294. doi: 10.1002/mnfr.201700294.
  • Urpi-Sarda, M., R. Llorach, N. Khan, M. Monagas, M. Rotches-Ribalta, R. Lamuela-Raventos, R. Estruch, F. J. Tinahones, and C. Andres-Lacueva. 2010. Effect of milk on the urinary excretion of microbial phenolic acids after cocoa powder consumption in humans. Journal of Agricultural and Food Chemistry 58 (8):4706–11.
  • Urpi-Sarda, M., M. Monagas, N. Khan, R. Llorach, R. M. Lamuela-Raventos, O. Jauregui, R. Estruch, M. Izquierdo-Pulido, and C. Andres-Lacueva. 2009. Targeted metabolic profiling of phenolics in urine and plasma after regular consumption of cocoa by liquid chromatography-tandem mass spectrometry. Journal of Chromatography. A 1216 (43):7258–67.
  • Vissiennon, C., K. Nieber, O. Kelber, and V. Butterweck. 2011. Route of administration determines the anxiolytic activity of the flavonols kaempferol, quercetin and myricetin—are they prodrugs? The Journal of Nutritional Biochemistry 23 (7):733–40.
  • Wang, Z., D. Liu, A. Varin, V. Nicolas, D. Courilleau, P. Mateo, C. Caubere, P. Rouet, A.-M. Gomez, G. Vandecasteele, et al. 2016. A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death. Cell Death & Disease 7:e2198–e2198.
  • Wiese, M., Y. Bashmakov, N. Chalyk, D. S. Nielsen, Ł. Krych, W. Kot, V. Klochkov, D. Pristensky, T. Bandaletova, M. Chernyshova, et al. 2019. Prebiotic effect of lycopene and dark chocolate on gut microbiome with systemic changes in liver metabolism, skeletal muscles and skin in moderately obese persons. BioMed Research International 2019:1–15. doi: 10.1155/2019/4625279.
  • Winter, A. N., M. C. Brenner, N. Punessen, M. Snodgrass, C. Byars, Y. Arora, and D. A. Linseman. 2017. Comparison of the neuroprotective and anti-inflammatory effects of the anthocyanin metabolites, protocatechuic acid and 4-hydroxybenzoic acid. Oxidative Medicine and Cellular Longevity 2017:6297080. doi: 10.1155/2017/6297080.
  • Wong, C. B., T. Odamaki, and J-z Xiao. 2019. Beneficial effects of Bifidobacterium longum subsp. longum BB536 on human health: modulation of gut microbiome as the principal action. Journal of Functional Foods 54:506–19. doi: 10.1016/j.jff.2019.02.002.
  • Xie, Z., Z. Guo, Y. Wang, J. Lei, and J. Yu. 2018. Protocatechuic acid inhibits the growth of ovarian cancer cells by inducing apoptosis and autophagy. Phytotherapy Research: PTR 32 (11):2256–63.
  • Ya, F. L., K. Y. Li, H. Chen, Z. Z. Tian, D. Fan, Y. L. Shi, F. L. Song, X. P. Xu, W. H. Ling, R. Adili, et al. 2021. Protocatechuic acid protects platelets from apoptosis via inhibiting oxidative stress-mediated PI3K/Akt/GSK3 beta signaling. Thrombosis and Haemostasis 121 (07):931–43. doi: 10.1055/s-0040-1722621.
  • Yagi, S., N. Drouart, F. Bourgaud, M. Henry, Y. Chapleur, and D. Laurain-Mattar. 2013. Antioxidant and antiglycation properties of Hydnora johannis roots. South African Journal of Botany 84:124–7. doi: 10.1016/j.sajb.2012.10.006.
  • Yamagishi, M., M. Natsume, A. Nagaki, T. Adachi, N. Osakabe, T. Takizawa, H. Kumon, and T. Osawa. 2000. Antimutagenic activity of cacao: inhibitory effect of cacao liquor polyphenols on the mutagenic action of heterocyclic amines. Journal of Agricultural and Food Chemistry 48 (10):5074–8.
  • Yang, M. H., S. H. Baek, A. Chinnathambi, S. A. Alharbi, and K. S. Ahn. 2021. Identification of protocatechuic acid as a novel blocker of epithelial-to-mesenchymal transition in lung tumor cells. Phytotherapy Research: PTR 35 (4):1953–66. doi: 10.1002/ptr.6938.
  • Yasuda, A., M. Natsume, N. Osakabe, K. Kawahata, and J. Koga. 2011. Cacao polyphenols influence the regulation of apolipoprotein in HepG2 and Caco2 cells. Journal of Agricultural and Food Chemistry 59 (4):1470–6.
  • Yin, M.-C., C.-C. Lin, H.-C. Wu, S.-M. Tsao, and C.-K. Hsu. 2009. Apoptotic effects of protocatechuic acid in human breast, lung, liver, cervix, and prostate cancer cells: potential mechanisms of action. Journal of Agricultural and Food Chemistry 57 (14):6468–73. doi: 10.1021/jf9004466.
  • Yuan, S., X. Li, Y. Jin, and J. Lu. 2017. Chocolate consumption and risk of coronary heart disease, stroke, and diabetes: a meta-analysis of prospective studies. Nutrients 9 (7):688. doi: 10.3390/nu9070688.
  • Yuan, S., X. Li, Y. Jin, and J. Lu. 2017. Chocolate consumption and risk of coronary heart disease, stroke, and diabetes: a meta-analysis of prospective studies. Nutrients 9 (7):688. doi: 10.3390/nu9070688.
  • Zabela, V., C. Sampath, M. Oufir, F. Moradi-Afrapoli, V. Butterweck, and M. Hamburger. 2016. Pharmacokinetics of dietary kaempferol and its metabolite 4-hydroxyphenylacetic acid in rats. Fitoterapia 115:189–97.
  • Zafar, H, and M. H. Saier. Jr 2021. Gut bacteroides species in health and disease. Gut Microbes 13 (1):1–20.
  • Zhao, H., Z. Jiang, X. Chang, H. Xue, W. Yahefu, and X. Zhang. 2018. 4-hydroxyphenylacetic acid prevents acute APAP-induced liver injury by increasing phase II and antioxidant enzymes in mice. Frontiers in Pharmacology 9:653. doi: 10.3389/fphar.2018.00653.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.