1,210
Views
12
CrossRef citations to date
0
Altmetric
Review

Recent advances on the impact of novel non-thermal technologies on structure and functionality of plant proteins: A comprehensive review

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahmed, J., N. Al-Ruwaih, M. Mulla, and M. H. Rahman. 2018. Effect of high pressure treatment on functional, rheological and structural properties of kidney bean protein isolate. LWT 91:191–7. doi: 10.1016/j.lwt.2018.01.054.
  • Akharume, F. U., R. E. Aluko, and A. A. Adedeji. 2021. Modification of plant proteins for improved functionality: A review. Comprehensive Reviews in Food Science and Food Safety 20 (1):198–224. doi: 10.1111/1541-4337.12688.
  • Al-Ruwaih, N., J. Ahmed, M. F. Mulla, and Y. A. Arfat. 2019. High-pressure assisted enzymatic proteolysis of kidney beans protein isolates and characterization of hydrolysates by functional, structural, rheological and antioxidant properties. LWT 100:231–6. doi: 10.1016/j.lwt.2018.10.074.
  • Alavi, F., L. Chen, and Z. Emam-Djomeh. 2021. Effect of ultrasound-assisted alkaline treatment on functional property modifications of faba bean protein. Food Chemistry 354:129494. doi: 10.1016/j.foodchem.2021.129494.
  • Arora, B., P. Singha, S., and S. H. Rizvi. 2021. Supercritical fluid extrusion: Die design and physicochemical properties of milk protein extrudates. Innovative Food Science & Emerging Technologies 68:102637. doi: 10.1016/j.ifset.2021.102637.
  • Aryee, A. N. A., D. Agyei, and C. C. Udenigwe. 2018. Impact of processing on the chemistry and functionality of food proteins. In Proteins in food processing, 2 ed, 27–45. Woodhead Publishing. doi: 10.1016/b978-0-08-100722-8.00003-6.
  • Asaithambi, N., P. Singha, and S. K. Singh. 2022c. Comparison of the effect of hydrodynamic and acoustic cavitations on functional, rheological and structural properties of egg white proteins. Innovative Food Science & Emerging Technologies. 82:103166. doi: 10.1016/j.ifset.2022.103166
  • Asaithambi, N., S. K. Singh, and P. Singha. 2021. Current status of non-thermal processing of probiotic foods: A review. Journal of Food Engineering 303:110567. doi: 10.1016/j.jfoodeng.2021.110567.
  • Asaithambi, N., P. Singha, M. Dwivedi, and S. K. Singh. 2019. Hydrodynamic cavitation and its application in food and beverage industry: A review. Journal of Food Process Engineering 42 (5):e13144. doi: 10.1111/jfpe.13144.
  • Asaithambi, N., P. Singha, and S. K. Singh. 2022a. Comparison of the effect of different desugarization techniques on the functionality of egg white protein hydrolysates. Applied Food Research 2 (2):100152. doi: 10.1016/j.afres.2022.100152.
  • Asaithambi, N., P. Singha, and S. K. Singh. 2022b. Recent application of protein hydrolysates in food texture modification. Critical Reviews in Food Science and Nutrition: 1–32. doi: 10.1080/10408398.2022.2081665.
  • Barbhuiya, R. I., P. Singha, N. Asaithambi, and S. K. Singh. 2022. Ultrasound-assisted rapid biological synthesis and characterization of silver nanoparticles using pomelo peel waste. Food Chemistry 385:132602. doi: 10.1016/j.foodchem.2022.132602.
  • Barbhuiya, R. I., P. Singha, and S. K. Singh. 2021. A comprehensive review on impact of non-thermal processing on the structural changes of food components. Food Research International (Ottawa, Ont.) 149:110647. doi: 10.1016/j.foodres.2021.110647.
  • Biswas, B., and N. Sit. 2020. Effect of ultrasonication on functional properties of tamarind seed protein isolates. Journal of Food Science and Technology 57 (6):2070–8. doi: 10.1007/s13197-020-04241-8.
  • Bußler, S., V. Steins, J. Ehlbeck, and O. Schlüter. 2015. Impact of thermal treatment versus cold atmospheric plasma processing on the techno-functional protein properties from Pisum sativum ‘Salamanca’. Journal of Food Engineering 167:166–74. doi: 10.1016/j.jfoodeng.2015.05.036.
  • Cao, Y., and R. Mezzenga. 2019. Food protein amyloid fibrils: Origin, structure, formation, characterization, applications and health implications. Advances in Colloid and Interface Science 269:334–56. doi: 10.1016/j.cis.2019.05.002.
  • Dabbour, M., R. He, B. Mintah, J. Xiang, and H. Ma. 2019. Changes in functionalities, conformational characteristics and antioxidative capacities of sunflower protein by controlled enzymolysis and ultrasonication action. Ultrasonics Sonochemistry 58:104625. doi: 10.1016/j.ultsonch.2019.104625.
  • de Oliveira, A., P. H. M. H. Omura, É. d A. A. Barbosa, G. C. Bressan, É. N. R. Vieira, J. S. d. R. Coimbra, and E. B. de Oliveira. 2020. Combined adjustment of pH and ultrasound treatments modify techno-functionalities of pea protein concentrates. Colloids and Surfaces A: Physicochemical and Engineering Aspects 603:125156. doi: 10.1016/j.colsurfa.2020.125156.
  • Dong, S., A. Gao, Y. Zhao, Y.-t. Li, and Y. Chen. 2017. Characterization of physicochemical and structural properties of atmospheric cold plasma (ACP) modified zein. Food and Bioproducts Processing 106:65–74. doi: 10.1016/j.fbp.2017.05.011.
  • Eckert, E., J. Han, K. Swallow, Z. Tian, M. Jarpa‐Parra, and L. Chen. 2019. Effects of enzymatic hydrolysis and ultrafiltration on physicochemical and functional properties of faba bean protein. Cereal Chemistry 96 (4):725–41. doi: 10.1002/cche.10169.
  • Esteghlal, S., H. H. Gahruie, M. Niakousari, F. J. Barba, A. E.-D. Bekhit, K. Mallikarjunan, and S. Roohinejad. 2019. Bridging the knowledge gap for the impact of non-thermal processing on proteins and amino acids. Foods 8 (7):262. doi: 10.3390/foods8070262.
  • Farkas, D. F. 2016. A short history of research and development efforts leading to the commercialization of high-pressure processing of food. In High pressure processing of food 19–36. New York, NY: Springer.
  • Fathi, N., H. Almasi, and M. K. Pirouzifard. 2018. Effect of ultraviolet radiation on morphological and physicochemical properties of sesame protein isolate based edible films. Food Hydrocolloids. 85:136–43. doi: 10.1016/j.foodhyd.2018.07.018.
  • Flores-Jiménez, N. T., J. A. Ulloa, J. E. U. Silvas, J. C. R. Ramírez, P. R. Ulloa, P. U. B. Rosales, Y. S. Carrillo, and R. G. Leyva. 2019. Effect of high-intensity ultrasound on the compositional, physicochemical, biochemical, functional and structural properties of canola (Brassica napus L.) protein isolate. Food Research International (Ottawa, ON) 121:947–56. doi: 10.1016/j.foodres.2019.01.025.
  • Foegeding, E. A. 2015. Food protein functionality—A new model. Journal of Food Science 80 (12):C2670–C2677. doi: 10.1111/1750-3841.13116.
  • Giteru, S. G., I. Oey, and M. A. Ali. 2018. Feasibility of using pulsed electric fields to modify biomacromolecules: A review. Trends in Food Science & Technology 72:91–113. doi: 10.1016/j.tifs.2017.12.009.
  • Gopirajah, R., P. Singha, S. Javad, and S. S. H. Rizvi. 2020. Emulsifying properties of milk protein concentrate functionalized by supercritical fluid extrusion. Journal of Food Processing and Preservation 44 (10):e14754. doi: 10.1111/jfpp.14754.
  • Gozé, P., L. Rhazi, L. Lakhal, P. Jacolot, A. Pauss, and T. Aussenac. 2017. Effects of ozone treatment on the molecular properties of wheat grain proteins. Journal of Cereal Science 75:243–51. doi: 10.1016/j.jcs.2017.04.016.
  • Hall, A. E., and C. I. Moraru. 2021. Effect of High Pressure Processing and heat treatment on in vitro digestibility and trypsin inhibitor activity in lentil and faba bean protein concentrates. LWT 152:112342. doi: 10.1016/j.lwt.2021.112342.
  • Han, Z., M.-j. Cai, J.-H. Cheng, and D.-W. Sun. 2018. Effects of electric fields and electromagnetic wave on food protein structure and functionality: A review. Trends in Food Science & Technology 75:1–9. doi: 10.1016/j.tifs.2018.02.017.
  • Hassan, A. B., N. S. Mahmoud, K. Elmamoun, O. Q. Adiamo, and I. A. Mohamed Ahmed. 2018. Effects of gamma irradiation on the protein characteristics and functional properties of sesame (Sesamum indicum L.) seeds. Radiation. Radiation Physics and Chemistry 144:85–91. doi: 10.1016/j.radphyschem.2017.11.020.
  • He, R., H.-Y. He, D. Chao, X. Ju, and R. Aluko. 2014. Effects of high pressure and heat treatments on physicochemical and gelation properties of rapeseed protein isolate. Food and Bioprocess Technology 7 (5):1344–53. doi: 10.1007/s11947-013-1139-z.
  • Huang, L., X. Ding, Y. Li, and H. Ma. 2019. The aggregation, structures and emulsifying properties of soybean protein isolate induced by ultrasound and acid. Food Chemistry 279:114–9. doi: 10.1016/j.foodchem.2018.11.147.
  • Jadhav, H. B., U. S. Annapure, and R. R. Deshmukh. 2021. Non-thermal technologies for food processing. Frontiers in Nutrition 8:657090. doi: 10.3389/fnut.2021.657090.
  • Ji, H., S. Dong, F. Han, Y. Li, G. Chen, L. Li, and Y. Chen. 2018. Effects of dielectric barrier discharge (DBD) cold plasma treatment on physicochemical and functional properties of peanut protein. Food and Bioprocess Technology 11 (2):344–54. doi: 10.1007/s11947-017-2015-z.
  • Ji, H., X. Tang, L. Li, S. Peng, C. Gao, and Y. Chen. 2020. Improved physicochemical properties of peanut protein isolate glycated by atmospheric pressure cold plasma (ACP) treatment. Food Hydrocolloids. 109:106124. doi: 10.1016/j.foodhyd.2020.106124.
  • Jin, J., O. D. Okagu, A. E. A. Yagoub, and C. C. Udenigwe. 2021. Effects of sonication on the in vitro digestibility and structural properties of buckwheat protein isolates. Ultrasonics Sonochemistry 70:105348. doi: 10.1016/j.ultsonch.2020.105348.
  • Karabulut, G., and O. Yemiş. 2022. Modification of hemp seed protein isolate (Cannabis sativa L.) by high-intensity ultrasound treatment. Part 1: Functional properties. Food Chemistry 375:131843. doi: 10.1016/j.foodchem.2021.131843.
  • Kasera, R., A. B. Singh, R. Kumar, S. Lavasa, K. N. Prasad, and N. Arora. 2012. Effect of thermal processing and γ-irradiation on allergenicity of legume proteins. Food and Chemical Toxicology 50 (10):3456–61. doi: 10.1016/j.fct.2012.07.031.
  • Kuan, Y.-H., R. Bhat, A. Patras, and A. A. Karim. 2013. Radiation processing of food proteins – A review on the recent developments. Trends in Food Science & Technology 30 (2):105–20. doi: 10.1016/j.tifs.2012.12.002.
  • Kumar, A., R. Nayak, S. R. Purohit, and P. S. Rao. 2021. Impact of UV-C irradiation on solubility of Osborne protein fractions in wheat flour. Food Hydrocolloids. 110:105845. doi: 10.1016/j.foodhyd.2020.105845.
  • Kumar, A., P. Rani, S. R. Purohit, and P. S. Rao. 2020. Effect of ultraviolet irradiation on wheat (Triticum aestivum) flour: Study on protein modification and changes in quality attributes. Journal of Cereal Science 96:103094. doi: 10.1016/j.jcs.2020.103094.
  • Kumar, V., A. Rani, L. Hussain, P. Jha, V. Pal, V. C. Petwal, and J. Dwivedi. 2017. Impact of electron beam on storage protein subunits, in vitro protein digestibility and trypsin inhibitor content in soybean seeds. Food and Bioprocess Technology 10 (2):407–12. doi: 10.1007/s11947-016-1823-x.
  • Kyriakopoulou, K., B. Dekkers, and A. J. van der Goot. 2019. Plant-based meat analogues. In Sustainable meat production and processing, 103–26. doi: 10.1016/b978-0-12-814874-7.00006-7.
  • Lafarga, T. 2018. Potential applications of plant-derived proteins in the food industry. In Novel proteins for food, pharmaceuticals and agriculture, 117–37. Academic Press. doi: 10.1002/9781119385332.ch6.
  • Laguna, L., P. Picouet, M. D. Guàrdia, C. M. G. C. Renard, and A. Sarkar. 2017. In vitro gastrointestinal digestion of pea protein isolate as a function of pH, food matrices, autoclaving, high-pressure and re-heat treatments. LWT 84:511–9. doi: 10.1016/j.lwt.2017.06.021.
  • Lee, H., G. Yildiz, L. C. dos Santos, S. Jiang, J. E. Andrade, N. J. Engeseth, and H. Feng. 2016. Soy protein nano-aggregates with improved functional properties prepared by sequential pH treatment and ultrasonication. Food Hydrocolloids. 55:200–9. doi: 10.1016/j.foodhyd.2015.11.022.
  • Li, N., J. j Yu, N. Jin, Y. Chen, S. H. Li, and Y. Chen. 2020. Modification of the physicochemical and structural characteristics of zein suspension by dielectric barrier discharge cold plasma treatment. Journal of Food Science 85 (8):2452–60. doi: 10.1111/1750-3841.15350.
  • Li, T., L. Wang, Z. Chen, D. Sun, and Y. Li. 2019. Electron beam irradiation induced aggregation behaviour, structural and functional properties changes of rice proteins and hydrolysates. Food Hydrocolloids. 97:105192. doi: 10.1016/j.foodhyd.2019.105192.
  • Liang, R., S. Cheng, and X. Wang. 2018. Secondary structure changes induced by pulsed electric field affect antioxidant activity of pentapeptides from pine nut (Pinus koraiensis) protein. Food Chemistry 254:170–84. doi: 10.1016/j.foodchem.2018.01.090.
  • Liu, D., L. Zhang, Y. Wang, Z. Li, Z. Wang, and J. Han. 2020. Effect of high hydrostatic pressure on solubility and conformation changes of soybean protein isolate glycated with flaxseed gum. Food Chemistry 333:127530. doi: 10.1016/j.foodchem.2020.127530.
  • Liu, Y. F., I. Oey, P. Bremer, A. Carne, and P. Silcock. 2019. Modifying the functional properties of egg proteins using novel processing techniques: A review. Comprehensive Reviews in Food Science and Food Safety 18 (4):986–1002. doi: 10.1111/1541-4337.12464.
  • Loveday, S. M. 2019. Food proteins: Technological, nutritional, and sustainability attributes of traditional and emerging proteins. Annual Review of Food Science and Technology 10 (1):311–39. doi: 10.1146/annurev-food-032818-121128.
  • Malik, M. A., and C. S. Saini. 2017. Gamma irradiation of alkali extracted protein isolate from dephenolized sunflower meal. LWT 84:204–11. doi: 10.1016/j.lwt.2017.05.067.
  • Malik, M. A., H. K. Sharma, and C. S. Saini. 2017. Effect of gamma irradiation on structural, molecular, thermal and rheological properties of sunflower protein isolate. Food Hydrocolloids. 72:312–22. doi: 10.1016/j.foodhyd.2017.06.011.
  • Manzocco, L. 2015. Photo-induced modification of food protein structure and functionality. Food Engineering Reviews 7 (3):346–56. doi: 10.1007/s12393-015-9110-6.
  • Mehr, H. M., and A. Koocheki. 2020. Effect of atmospheric cold plasma on structure, interfacial and emulsifying properties of Grass pea (Lathyrus sativus L.) protein isolate. Food Hydrocolloids. 106:105899.
  • Mehr, H. M., and A. Koocheki. 2021. Physicochemical properties of Grass pea (Lathyrus sativus L.) protein nanoparticles fabricated by cold atmospheric-pressure plasma. Food Hydrocolloids. 112:106328. doi: 10.1016/j.foodhyd.2020.106328.
  • Meinlschmidt, P., E. Ueberham, J. Lehmann, K. Reineke, O. Schlüter, U. Schweiggert-Weisz, and P. Eisner. 2016. The effects of pulsed ultraviolet light, cold atmospheric pressure plasma, and gamma-irradiation on the immunoreactivity of soy protein isolate. Innovative Food Science & Emerging Technologies 38:374–83. doi: 10.1016/j.ifset.2016.06.007.
  • Melchior, S., S. Calligaris, G. Bisson, and L. Manzocco. 2020. Understanding the impact of moderate-intensity pulsed electric fields (MIPEF) on structural and functional characteristics of pea, rice and gluten concentrates. Food and Bioprocess Technology 13 (12):2145–55. doi: 10.1007/s11947-020-02554-2.
  • Mir, N. A., C. S. Riar, and S. Singh. 2019a. Physicochemical, molecular and thermal properties of high-intensity ultrasound (HIUS) treated protein isolates from album (Chenopodium album) seed. Food Hydrocolloids. 96:433–41. doi: 10.1016/j.foodhyd.2019.05.052.
  • Mir, N. A., C. S. Riar, and S. Singh. 2019b. Structural modification of quinoa seed protein isolates (QPIs) by variable time sonification for improving its physicochemical and functional characteristics. Ultrasonics Sonochemistry 58:104700. doi: 10.1016/j.ultsonch.2019.104700.
  • Mirmoghtadaie, L., S. S. Aliabadi, and S. M. Hosseini. 2016. Recent approaches in physical modification of protein functionality. Food Chemistry 199:619–27. doi: 10.1016/j.foodchem.2015.12.067.
  • Mulla, M. Z., P. Subramanian, and B. N. Dar. 2022. Functionalization of legume proteins using high pressure processing: Effect on technofunctional properties and digestibility of legume proteins. LWT 158:113106. doi: 10.1016/j.lwt.2022.113106.
  • Neacsu, M., D. McBey, and A. M. Johnstone. 2017. Meat reduction and plant-based food. In Sustainable protein sources, 359–75. Academic Press. doi: 10.1016/b978-0-12-802778-3.00022-6.
  • Nickhil, C., D. Mohapatra, A. Kar, S. K. Giri, M. K. Tripathi, and Y. Sharma. 2021. Gaseous ozone treatment of chickpea grains, part I: Effect on protein, amino acid, fatty acid, mineral content, and microstructure. Food Chemistry 345:128850. doi: 10.1016/j.foodchem.2020.128850.
  • Nikbakht Nasrabadi, M., S. A. H. Goli, A. Sedaghat Doost, K. Dewettinck, and P. Van der Meeren. 2019. Bioparticles of flaxseed protein and mucilage enhance the physical and oxidative stability of flaxseed oil emulsions as a potential natural alternative for synthetic surfactants. Colloids and Surfaces, B, Biointerfaces 184:110489. doi: 10.1016/j.colsurfb.2019.110489.
  • Niveditha, A., R. Pandiselvam, V. A. Prasath, S. K. Singh, K. Gul, and A. Kothakota. 2021. Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods - A review. Food Control. 130:108338. doi: 10.1016/j.foodcont.2021.108338.
  • Nunes, L., and G. M. Tavares. 2019. Thermal treatments and emerging technologies: Impacts on the structure and techno-functional properties of milk proteins. Trends in Food Science & Technology 90:88–99. doi: 10.1016/j.tifs.2019.06.004.
  • Obadi, M., K.-X. Zhu, W. Peng, A.-F. Ammar, and H.-M. Zhou. 2016. Effect of ozone gas processing on physical and chemical properties of wheat proteins. Tropical Journal of Pharmaceutical Research 15 (10):2147–54. doi: 10.4314/tjpr.v15i10.13.
  • Obadi, M., K.-X. Zhu, W. Peng, A. A. Sulieman, K. Mohammed, and H.-M. Zhou. 2018. Effects of ozone treatment on the physicochemical and functional properties of whole grain flour. Journal of Cereal Science 81:127–32. doi: 10.1016/j.jcs.2018.04.008.
  • O’Sullivan, J. J., M. Park, J. Beevers, R. W. Greenwood, and I. T. Norton. 2017. Applications of ultrasound for the functional modification of proteins and nanoemulsion formation: A review. Food Hydrocolloids. 71:299–310. doi: 10.1016/j.foodhyd.2016.12.037.
  • Panozzo, A., L. Manzocco, G. Lippe, and M. C. Nicoli. 2016. Effect of pulsed light on structure and immunoreactivity of gluten. Food Chemistry 194:366–72. doi: 10.1016/j.foodchem.2015.08.042.
  • Pavani, M., P. Singha, D. R. Dash, N. Asaithambi, and S. K. Singh. 2022. Novel encapsulation approaches for phytosterols and their importance in food products: A review. Journal of Food Process Engineering 45 (8):e14041. doi: 10.1111/jfpe.14041.
  • Pereira, R. N., and A. A. Vicente. 2010. Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International 43 (7):1936–43. doi: 10.1016/j.foodres.2009.09.013.
  • Peyrano, F., F. Speroni, and M. V. Avanza. 2016. Physicochemical and functional properties of cowpea protein isolates treated with temperature or high hydrostatic pressure. Innovative Food Science & Emerging Technologies 33:38–46. doi: 10.1016/j.ifset.2015.10.014.
  • Poore, J., and T. Nemecek. 2018. Reducing food’s environmental impacts through producers and consumers. Science (New York, N.Y.) 360 (6392):987–92. 10.1126/science.aaq0216.
  • Queirós, R. P., J. A. Saraiva, and J. A. L. da Silva. 2018. Tailoring structure and technological properties of plant proteins using high hydrostatic pressure. Critical Reviews in Food Science and Nutrition 58 (9):1538–56. doi: 10.1080/10408398.2016.1271770.
  • Ren, X., X. Wei, H. Ma, H. Zhou, J. Guo, S. Mao, and A. Hu. 2015. Effects of a dual-frequency frequency-sweeping ultrasound treatment on the properties and structure of the zein protein. Cereal Chemistry Journal 92 (2):193–7. doi: 10.1094/CCHEM-03-14-0043-R.
  • Rendueles, E., M. Omer, O. Alvseike, C. Alonso-Calleja, R. Capita, and M. Prieto. 2011. Microbiological food safety assessment of high hydrostatic pressure processing: A review. LWT - Food Science and Technology 44 (5):1251–60. doi: 10.1016/j.lwt.2010.11.001.
  • Sá, A. G. A., Y. M. F. Moreno, and B. A. M. Carciofi. 2020a. Food processing for the improvement of plant proteins digestibility. Critical Reviews in Food Science and Nutrition 60 (20):3367–86. doi: 10.1080/10408398.2019.1688249.
  • Sá, A. G. A., Y. M. F. Moreno, and B. A. M. Carciofi. 2020b. Plant proteins as high-quality nutritional source for human diet. Trends in Food Science & Technology 97:170–84. doi: 10.1016/j.tifs.2020.01.011.
  • Sharma, S., and R. K. Singh. 2020. Cold plasma treatment of dairy proteins in relation to functionality enhancement. Trends in Food Science & Technology 102:30–6. doi: 10.1016/j.tifs.2020.05.013.
  • Singh, S. K., B. Rajpurohit, and P. Singha. 2021. Camelina (Camelina sativa) Seed. In B. Tanwar & A. Goyal (Eds.), Oilseeds: Health attributes and food applications, 455–71. Springer. doi: 10.1007/978-981-15-4194-0_18.
  • Singh, S. K., P. Singha, and K. Muthukumarappan. 2019. Modeling and optimizing the effect of extrusion processing parameters on nutritional properties of soy white flakes-based extrudates using response surface methodology. Animal Feed Science and Technology 254:114197. doi: 10.1016/j.anifeedsci.2019.06.001.
  • Tan, M., M. A. Nawaz, and R. Buckow. 2021. Functional and food application of plant proteins – A review. Food Reviews International: 1–29. doi: 10.1080/87559129.2021.1955918.
  • Tolouie, H., M. A. Mohammadifar, H. Ghomi, and M. Hashemi. 2018. Cold atmospheric plasma manipulation of proteins in food systems. Critical Reviews in Food Science and Nutrition 58 (15):2583–97. doi: 10.1080/10408398.2017.1335689.
  • Tomé Constantino, A. B., and E. E. Garcia-Rojas. 2020. Modifications of physicochemical and functional properties of amaranth protein isolate (Amaranthus cruentus BRS Alegria) treated with high-intensity ultrasound. Journal of Cereal Science 95:103076. doi: 10.1016/j.jcs.2020.103076.
  • Uzun, H., E. Ibanoglu, H. Catal, and S. Ibanoglu. 2012. Effects of ozone on functional properties of proteins. Food Chemistry 134 (2):647–54. doi: 10.1016/j.foodchem.2012.02.146.
  • Vanga, S. K., J. Wang, V. Orsat, and V. Raghavan. 2020. Effect of pulsed ultrasound, a green food processing technique, on the secondary structure and in-vitro digestibility of almond milk protein. Food Research International (Ottawa, ON) 137:109523. doi: 10.1016/j.foodres.2020.109523.
  • Vanga, S. K., J. Wang, and V. Raghavan. 2020. Effect of ultrasound and microwave processing on the structure, in-vitro digestibility and trypsin inhibitor activity of soymilk proteins. LWT 131:109708. doi: 10.1016/j.lwt.2020.109708.
  • Venkateswara Rao, M., C. K. Sunil, A. Rawson, D. V. Chidanand, and N. Venkatachlapathy. 2021. Modifying the plant proteins techno-functionalities by novel physical processing technologies: A review. Critical Reviews in Food Science and Nutrition: 1–22. doi: 10.1080/10408398.2021.1997907.
  • Wang, L., T. Li, D. Sun, M. Tang, Z. Sun, L. Chen, X. Luo, Y. Li, R. Wang, Y. Li, et al. 2019. Effect of electron beam irradiation on the functional properties and antioxidant activity of wheat germ protein hydrolysates. Innovative Food Science & Emerging Technologies 54:192–9. doi: 10.1016/j.ifset.2018.09.003.
  • Wang, Y., A. Zhang, Y. Wang, X. Wang, N. Xu, and L. Jiang. 2020. Effects of irradiation on the structure and properties of glycosylated soybean proteins. Food & Function 11 (2):1635–46. doi: 10.1039/c9fo01879d.
  • Warnakulasuriya, S. N., and M. T. Nickerson. 2018. Review on plant protein-polysaccharide complex coacervation, and the functionality and applicability of formed complexes. Journal of the Science of Food and Agriculture 98 (15):5559–71. doi: 10.1002/jsfa.9228.
  • Wen, C., J. Zhang, H. Yao, J. Zhou, Y. Duan, H. Zhang, and H. Ma. 2019. Advances in renewable plant-derived protein source: The structure, physicochemical properties affected by ultrasonication. Ultrasonics Sonochemistry 53:83–98. doi: 10.1016/j.ultsonch.2018.12.036.
  • Xiong, T., W. Xiong, M. Ge, J. Xia, B. Li, and Y. Chen. 2018. Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Research International (Ottawa, ON) 109:260–7. doi: 10.1016/j.foodres.2018.04.044.
  • Yang, J., and J. R. Powers. 2016. Effects of high pressure on food proteins. In High pressure processing of food, 353–89. New York, NY: Springer.
  • Yang, N., K. Huang, C. Lyu, and J. Wang. 2016. Pulsed electric field technology in the manufacturing processes of wine, beer, and rice wine: A review. Food Control. 61:28–38. doi: 10.1016/j.foodcont.2015.09.022.
  • Yogesh, K. 2016. Pulsed electric field processing of egg products: A review. Journal of Food Science and Technology 53 (2):934–45. doi: 10.1007/s13197-015-2061-3.
  • Yoon, A. K., P. Singha, and S. S. H. Rizvi. 2021. Steam vs. SC–CO2–based extrusion: Comparison of physical properties of milk protein concentrate extrudates. Journal of Food Engineering 292:110244. doi: 10.1016/j.jfoodeng.2020.110244.
  • Zhang, L., L.-J. Wang, W. Jiang, and J.-Y. Qian. 2017. Effect of pulsed electric field on functional and structural properties of canola protein by pretreating seeds to elevate oil yield. LWT 84:73–81. doi: 10.1016/j.lwt.2017.05.048.
  • Zhang, Q., Z. Cheng, J. Zhang, M. M. Nasiru, Y. Wang, and L. Fu. 2021. Atmospheric cold plasma treatment of soybean protein isolate: Insights into the structural, physicochemical, and allergenic characteristics. Journal of Food Science 86 (1):68–77. doi: 10.1111/1750-3841.15556.
  • Zhang, X., L. Wang, Z. Chen, Y. Li, X. Luo, and Y. Li. 2020. Effect of high energy electron beam on proteolysis and antioxidant activity of rice proteins. Food & Function 11 (1):871–82. doi: 10.1039/C9FO00038K.
  • Zhao, J., T. Zhou, Y. Zhang, Y. Ni, and Q. Li. 2015. Optimization of arachin extraction from defatted peanut (Arachis hypogaea) cakes and effects of ultra-high pressure (UHP) treatment on physiochemical properties of arachin. Food and Bioproducts Processing 95:38–46. doi: 10.1016/j.fbp.2015.03.009.
  • Zhao, Y., N. Sun, Y. Li, S. Cheng, C. Jiang, and S. Lin. 2017. Effects of electron beam irradiation (EBI) on structure characteristics and thermal properties of walnut protein flour. Food Research International 100:850–7. doi: 10.1016/j.foodres.2017.08.004.
  • Zhao, Z.-K., T.-H. Mu, M. Zhang, and A. Richel. 2018. Chemical forces, structure, and gelation properties of sweet potato protein as affected by pH and high hydrostatic pressure. Food and Bioprocess Technology 11 (9):1719–32. doi: 10.1007/s11947-018-2137-y.
  • Zhong, Z., and Y. L. Xiong. 2020. Thermosonication-induced structural changes and solution properties of mung bean protein. Ultrasonics Sonochemistry 62:104908. doi: 10.1016/j.ultsonch.2019.104908.
  • Zhou, H., C. Wang, J. Ye, H. Chen, R. Tao, and F. Cao. 2016. Effects of high hydrostatic pressure treatment on structural, allergenicity, and functional properties of proteins from ginkgo seeds. Innovative Food Science & Emerging Technologies 34:187–95. doi: 10.1016/j.ifset.2016.02.001.
  • Zhou, M., J. Liu, Y. Zhou, X. Huang, F. Liu, S. Pan, and H. Hu. 2016. Effect of high intensity ultrasound on physicochemical and functional properties of soybean glycinin at different ionic strengths. Innovative Food Science & Emerging Technologies 34:205–13. doi: 10.1016/j.ifset.2016.02.007.
  • Zhu, S. M., S. L. Lin, H. S. Ramaswamy, Y. Yu, and Q. T. Zhang. 2017. Enhancement of functional properties of rice bran proteins by high pressure treatment and their correlation with surface hydrophobicity. Food and Bioprocess Technology 10 (2):317–27. doi: 10.1007/s11947-016-1818-7.
  • Zhu, Z., W. Zhu, J. Yi, N. Liu, Y. Cao, J. Lu, E. A. Decker, and D. J. McClements. 2018. Effects of sonication on the physicochemical and functional properties of walnut protein isolate. Food Research International (Ottawa, ON) 106:853–61. doi: 10.1016/j.foodres.2018.01.060.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.