3,084
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Technological and structural aspects of scaffold manufacturing for cultured meat: recent advances, challenges, and opportunities

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Ahmad, K., J.-H. Lim, E.-J. Lee, H.-J. Chun, S. Ali S, S. S. Ahmad, S. Shaikh, and I. Choi. 2021. Extracellular matrix and the production of cultured meat. Foods 10 (12):3116.
  • Akbari, M., A. Tamayol, N. Annabi, D. Juncker, and A. Khademhosseini. 2014. Microtechnologies in the fabrication of fibers for tissue engineering. In Microfluidics for Medical Applications, ed. A. V. Berg and L. Segerink, London: Royal Society of Chemistry.
  • Allan, S. J., P. A. De Bank, and M. J. Ellis. 2019. Bioprocess design considerations for cultured meat production with a focus on the expansion bioreactor. Frontiers in Sustainable Food Systems 3:44. doi: 10.3389/fsufs.2019.00044.
  • Andreassen, R. C., S. B. Rønning, N. T. Solberg, K. G. Grønlien, K. A. Kristoffersen, V. Høst, S. O. Kolset, and M. E. Pedersen. 2022. Production of food-grade microcarriers based on by-products from the food industry to facilitate the expansion of bovine skeletal muscle satellite cells for cultured meat production. Biomaterials 286:121602. doi: 10.1016/j.biomaterials.2022.121602.
  • Asghar, A., K. Samejima, T. Yasui, and R. L. Henrickson. 1985. Functionality of muscle proteins in gelation mechanisms of structured meat products. Critical Reviews in Food Science and Nutrition 22 (1):27–106. doi: 10.1080/10408398509527408.
  • Balasubramanian, B., W. Liu, K. Pushparaj, and S. Park. 2021. The epic of in vitro meat production—A fiction into reality. Foods 10 (6):1395. doi: 10.3390/foods10061395.
  • Barnes, M. J., F. Uruakpa, C, and Udenigwe, C. 2015. Influence of cowpea (Vigna unguiculata) peptides on insulin resistance. Journal of Nutritional Health & Food Science 3:1–3. doi: 10.15226/jnhfs.2015.00144.
  • Ben-Arye, T., and S. Levenberg. 2019. Tissue engineering for clean meat production. Frontiers in Sustainable Food Systems 3:46. doi: 10.3389/fsufs.2019.00046.
  • Ben-Arye, T., Y. Shandalov, S. Ben-Shaul, S. Landau, Y. Zagury, I. Ianovici, N. Lavon, and S. Levenberg. 2020. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nature Food 1 (4):210–20. doi: 10.1038/s43016-020-0046-5.
  • Bhat, Z. F., H. Bhat, and S. Kumar. 2020. Cultured meat-A humane meat production system. Principles of tissue engineering. 1369–88. Amsterdam, Netherlands: Elsevier.
  • Bhat, Z. F., J. D. Morton, S. Kumar, H. F. Bhat, R. M. Aadil, and A. E.-D. A. Bekhit. 2021. 3D printing: Development of animal products and special foods. Trends in Food Science & Technology 118:87–105. doi: 10.1016/j.tifs.2021.09.020.
  • Bishop, E. S., S. Mostafa, M. Pakvasa, H. H. Luu, M. J. Lee, J. M. Wolf, G. A. Ameer, T.-C. He, and R. R. Reid. 2017. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes & Diseases 4 (4):185–95. doi: 10.1016/j.gendis.2017.10.002.
  • Bosnakovski, D., M. Mizuno, G. Kim, S. Takagi, M. Okumura, and T. Fujinaga. 2005. Isolation and multilineage differentiation of bovine bone marrow mesenchymal stem cells. Cell and Tissue Research 319 (2):243–53. doi: 10.1007/s00441-004-1012-5.
  • Bryant, C., and J. Barnett. 2020. Consumer acceptance of cultured meat: An updated review (2020). Applied Sciences 10 (15):5201. doi: 10.3390/app10155201.
  • Burk, J., I. Erbe, D. Berner, J. Kacza, C. Kasper, B. Pfeiffer, K. Winter, and W. Brehm. 2014. Freeze-thaw cycles enhance decellularization of large tendons. Tissue Engineering. Part C, Methods 20 (4):276–84. doi: 10.1089/ten.TEC.2012.0760.
  • Burton, N. M., J. Vierck, L. Krabbenhoft, K. Bryne, and M. V. Dodson. 2000. Methods for animal satellite cell culture under a variety of conditions. Methods in Cell Science 22 (1):51–61. doi: 10.1023/A:1009830114804.
  • Chan, W. P., F. C. Kung, Y. L. Kuo, M. C. Yang, and W. F. Lai. 2015. Alginate/poly(γ-glutamic acid) base biocompatible gel for bone tissue engineering. BioMed Research International 2015:185841. doi: 10.1155/2015/185841.
  • Chen, J., and X. Zou. 2019. Self-assemble peptide biomaterials and their biomedical applications. Bioactive Materials 4:120–31. doi: 10.1016/j.bioactmat.2019.01.002.
  • Chen, L., D. Guttieres, A. Koenigsberg, P. W. Barone, A. J. Sinskey, and S. L. Springs. 2022. Large-scale cultured meat production: Trends, challenges and promising biomanufacturing technologies. Biomaterials 280:121274.
  • Chen, R. N., H. O. Ho, Y. T. Tsai, and M. T. Sheu. 2004. Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 25 (13):2679–86. doi: 10.1016/j.biomaterials.2003.09.070.
  • Chen, X., L. Zhou, H. Xu, M. Yamamoto, M. Shinoda, M. Kishimoto, T. Tanaka, and H. Yamane. 2020. Effect of the application of a dehydrothermal treatment on the structure and the mechanical properties of collagen film. Materials 13 (2):377. doi: 10.3390/ma13020377.
  • Chen, Y., C. Guo, E. Manousiouthakis, X. Wang, D. M. Cairns, T. T. Roh, C. Du, and D. L. Kaplan. 2020. Bi‐layered tubular microfiber scaffolds as functional templates for engineering human intestinal smooth muscle tissue. Advanced Functional Materials 30 (17):2000543. doi: 10.1002/adfm.202000543.
  • Cheng, J., Y. Jun, J. Qin, and S.-H. Lee. 2017. Electrospinning versus microfluidic spinning of functional fibers for biomedical applications. Biomaterials 114:121–43. doi: 10.1016/j.biomaterials.2016.10.040.
  • Choi, S. H., K. Y. Chung, B. J. Johnson, G. W. Go, K. H. Kim, C. W. Choi, and S. B. Smith. 2013. Co-culture of bovine muscle satellite cells with preadipocytes increases PPARγ and C/EBPβ gene expression in differentiated myoblasts and increases GPR43 gene expression in adipocytes. The Journal of Nutritional Biochemistry 24 (3):539–43. doi: 10.1016/j.jnutbio.2012.01.015.
  • Choi, S.-W., Y. Zhang, and Y. Xia. 2010. Three-dimensional scaffolds for tissue engineering: The importance of uniformity in pore size and structure. Langmuir: The ACS Journal of Surfaces and Colloids 26 (24):19001–6. doi: 10.1021/la104206h.
  • Choudhury, D., T. W. Tseng, and E. Swartz. 2020. The business of cultured meat. Trends in Biotechnology 38 (6):573–7. doi: 10.1016/j.tibtech.2020.02.012.
  • Chryssolouris, G., P. Stavropoulos, and K. Salonitis. 2015. Process of Laser Machining. In Handbook of manufacturing engineering and technology, ed A. Y. C. Nee, 1601–28. London: Springer London.
  • Cook, W., and R. Rose. 1934. Solubility of gluten. Nature 134 (3384):380–1. doi: 10.1038/134380c0.
  • Das, S., F. Pati, Y. J. Choi, G. Rijal, J. H. Shim, S. W. Kim, A. R. Ray, D. W. Cho, and S. Ghosh. 2015. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomaterialia 11:233–46. doi: 10.1016/j.actbio.2014.09.023.
  • Datar, I., and M. Betti. 2010. Possibilities for an in vitro meat production system. Innovative Food Science & Emerging Technologies 11 (1):13–22. doi: 10.1016/j.ifset.2009.10.007.
  • DiMaio, T. 2019. This scientist is developing new cell lines for slaughter-free meat. Washington, DC: The Good Food Institute.
  • Djisalov, M., T. Knežić, I. Podunavac, K. Živojević, V. Radonic, N. Ž. Knežević, I. Bobrinetskiy, and I. Gadjanski. 2021. Cultivating multidisciplinarity: Manufacturing and sensing challenges in cultured meat production. Biology 10 (3):204. doi: 10.3390/biology10030204.
  • Do, A.-V., B. Khorsand, S. M. Geary, and A. K. Salem. 2015. 3D printing of scaffolds for tissue regeneration applications. Advanced Healthcare Materials 4 (12):1742–62. doi: 10.1002/adhm.201500168.
  • Dohmen, R. G. J., S. Hubalek, J. Melke, T. Messmer, F. Cantoni, A. Mei, R. Hueber, R. Mitic, D. Remmers, P. Moutsatsou, et al. 2022. Muscle-derived fibro-adipogenic progenitor cells for production of cultured bovine adipose tissue. NPJ Science of Food 6 (1):6–12. doi: 10.1038/s41538-021-00122-2.
  • El-Kady, A. M., R. A. Rizk, B. M. Abd El-Hady, M. W. Shafaa, and M. M. Ahmed. 2012. Characterization, and antibacterial properties of novel silver releasing nanocomposite scaffolds fabricated by the gas foaming/salt-leaching technique. Journal of Genetic Engineering and Biotechnology 10 (2):229–38. doi: 10.1016/j.jgeb.2012.07.002.
  • Elli, L., E. Dolfini, and M. T. Bardella. 2003. Gliadin cytotoxicity and in vitro cell cultures. Toxicology Letters 146 (1):1–8. doi: 10.1016/j.toxlet.2003.09.004.
  • Fernandes, A. M., O. de Souza Teixeira, A. L. Fantinel, J. P. P. Revillion, and ÂR L. de Souza. 2022. Technological prospecting: The case of cultured meat. Future Foods 6:100156. doi: 10.1016/j.fufo.2022.100156.
  • Gandolfi, F., G. Pennarossa, S. Maffei, and T. Brevini. 2012. Why is it so difficult to derive pluripotent stem cells in domestic ungulates? Reproduction in Domestic Animals 47:11–7. doi: 10.1111/j.1439-0531.2012.02106.x.
  • Gelain, F., Z. Luo, M. Rioult, and S. Zhang. 2021. Self-assembling peptide scaffolds in the clinic. NPJ Regenerative Medicine 6 (1):9. doi: 10.1038/s41536-020-00116-w.
  • Ghosal, K., A. Chandra, P. G, S. S, S. Roy, C. Agatemor, S. Thomas, and I. Provaznik. 2018. Electrospinning over solvent casting: Tuning of mechanical properties of membranes. Scientific Reports 8 (1):5058. doi: 10.1038/s41598-018-23378-3.
  • Gil, E. S., S. H. Park, J. Marchant, F. Omenetto, and D. L. Kaplan. 2010. Response of human corneal fibroblasts on silk film surface patterns. Macromolecular Bioscience 10 (6):664–73. doi: 10.1002/mabi.200900452.
  • Gillies, A. R., and R. L. Lieber. 2011. Structure and function of the skeletal muscle extracellular matrix. Muscle & Nerve 44 (3):318–31. doi: 10.1002/mus.22094.
  • Gilpin, A., and Y. Yang. 2017. Decellularization strategies for regenerative medicine: From processing techniques to applications. BioMed Research International 2017:9831534. doi: 10.1155/2017/9831534.
  • Gottipamula, S., M. Muttigi, U. Kolkundkar, and R. Seetharam. 2013. Serum‐free media for the production of human mesenchymal stromal cells: A review. Cell Proliferation 46 (6):608–27. doi: 10.1111/cpr.12063.
  • Guan, L., X. Hu, L. Liu, Y. Xing, Z. Zhou, X. Liang, Q. Yang, S. Jin, J. Bao, H. Gao, et al. 2017. bta-miR-23a involves in adipogenesis of progenitor cells derived from fetal bovine skeletal muscle. Scientific Reports 7 (1):43716–2. doi: 10.1038/srep43716.
  • Guan, X., J. Zhou, G. Du, and J. Chen. 2022. Bioprocessing technology of muscle stem cells: Implications for cultured meat. Trends in Biotechnology 40 (6):721–34. doi: 10.1016/j.tibtech.2021.11.004.
  • Guan, X., Q. Lei, Q. Yan, X. Li, J. Zhou, G. Du, and J. Chen. 2021. Trends and ideas in technology, regulation and public acceptance of cultured meat. Future Foods 3:100032. doi: 10.1016/j.fufo.2021.100032.
  • Handral, H., S. Hua Tay, W. Wan Chan, and D. Choudhury. 2022. 3D Printing of cultured meat products. Critical Reviews in Food Science and Nutrition 62 (1):272–81. doi: 10.1080/10408398.2020.1815172.
  • Haraguchi, Y., T. Shimizu, T. Sasagawa, H. Sekine, K. Sakaguchi, T. Kikuchi, W. Sekine, S. Sekiya, M. Yamato, M. Umezu, et al. 2012. Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nature Protocols 7 (5):850–8. doi: 10.1038/nprot.2012.027.
  • Hong, T. K., D.-M. Shin, J. Choi, J. T. Do, and S. G. Han. 2021. Current issues and technical advances in cultured meat production: A review. Food Science of Animal Resources 41 (3):355–72. doi: 10.5851/kosfa.2021.e14.
  • Hu, J. C., and K. A. Athanasiou. 2006. A self-assembling process in articular cartilage tissue engineering. Tissue Engineering 12 (4):969–79. doi: 10.1089/ten.2006.12.969.
  • Huang, Y., A. K. Das, Q.-Y. Yang, M.-J. Zhu, and M. Du. 2012. Zfp423 promotes adipogenic differentiation of bovine stromal vascular cells. Plos one 7 (10):e47496. doi: 10.1371/journal.pone.0047496.
  • Hubalek, S., M. J. Post, and P. Moutsatsou. 2022. Towards resource-efficient and cost-efficient cultured meat. Current Opinion in Food Science 47:100885. doi: 10.1016/j.cofs.2022.100885.
  • Hulko, M., V. Dietrich, I. Koch, A. Gekeler, M. Gebert, W. Beck, and B. Krause. 2019. Pyrogen retention: Comparison of the novel medium cut-off (MCO) membrane with other dialyser membranes. Scientific Reports 9 (1):6791. doi: 10.1038/s41598-019-43161-2.
  • Ianovici, I., Y. Zagury, I. Redenski, N. Lavon, and S. Levenberg. 2022. 3D-printable plant protein-enriched scaffolds for cultivated meat development. Biomaterials 284:121487. doi: 10.1016/j.biomaterials.2022.121487.
  • Jackson, D. W., G. E. Windler, and T. M. Simon. 1990. Intraarticular reaction associated with the use of freeze-dried, ethylene oxide-sterilized bone-patella tendon-bone allografts in the reconstruction of the anterior cruciate ligament. The American Journal of Sports Medicine 18 (1):1–10.
  • Jaques, A., E. Sánchez, N. Orellana, J. Enrione, and C. A. Acevedo. 2021. Modelling the growth of in-vitro meat on microstructured edible films. Journal of Food Engineering 307:110662. doi: 10.1016/j.jfoodeng.2021.110662.
  • Ji, W., F. Yang, J. J. Van den Beucken, Z. Bian, M. Fan, Z. Chen, and J. A. Jansen. 2010. Fibrous scaffolds loaded with protein prepared by blend or coaxial electrospinning. Acta Biomaterialia 6 (11):4199–207. doi: 10.1016/j.actbio.2010.05.025.
  • Jiang, T., E. J. Carbone, K. W. H. Lo, and C. T. Laurencin. 2015. Electrospinning of polymer nanofibers for tissue regeneration. Progress in Polymer Science 46:1–24. doi: 10.1016/j.progpolymsci.2014.12.001.
  • Jones, J. D., A. S. Rebello, and G. R. Gaudette. 2021. Decellularized spinach: An edible scaffold for laboratory-grown meat. Food Bioscience 41:100986. doi: 10.1016/j.fbio.2021.100986.
  • Ju, Y. M., J. San Choi, A. Atala, J. J. Yoo, and S. J. Lee. 2010. Bilayered scaffold for engineering cellularized blood vessels. Biomaterials 31 (15):4313–21. doi: 10.1016/j.biomaterials.2010.02.002.
  • Jung, J. W., J.-S. Lee, and D.-W. Cho. 2016. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs. Scientific Reports 6 (1):21685. doi: 10.1038/srep21685.
  • Kamalapuram, S. K., H. Handral, and D. Choudhury. 2021. Cultured Meat Prospects for a Billion!. Foods 10 (12):2922. doi: 10.3390/foods10122922.
  • Kang, D.-H., F. Louis, H. Liu, H. Shimoda, Y. Nishiyama, H. Nozawa, M. Kakitani, D. Takagi, D. Kasa, E. Nagamori, et al. 2021. Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. Nature Communications 12 (1):5059. doi: 10.1038/s41467-021-25236-9.
  • Karnieli, O., O. M. Friedner, J. G. Allickson, N. Zhang, S. Jung, D. Fiorentini, E. Abraham, S. S. Eaker, T. K. Yong, A. Chan, et al. 2017. A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy 19 (2):155–69. doi: 10.1016/j.jcyt.2016.11.011.
  • Karuppuswamy, P., J. R. Venugopal, B. Navaneethan, A. L. Laiva, S. Sridhar, and S. Ramakrishna. 2014. Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications. Applied Surface Science 322:162–8. doi: 10.1016/j.apsusc.2014.10.074.
  • Kattamis, N. T., P. E. Purnick, R. Weiss, and C. B. Arnold. 2007. Thick film laser induced forward transfer for deposition of thermally and mechanically sensitive materials. Applied Physics Letters 91 (17):171120. doi: 10.1063/1.2799877.
  • Keane, T. J., I. T. Swinehart, and S. F. Badylak. 2015. Methods of tissue decellularization used for preparation of biologic scaffolds and in vivo relevance. Methods (San Diego, Calif.) 84:25–34. doi: 10.1016/j.ymeth.2015.03.005.
  • Kidoaki, S., I. K. Kwon, and T. Matsuda. 2005. Mesoscopic spatial designs of nano-and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26 (1):37–46. doi: 10.1016/j.biomaterials.2004.01.063.
  • Kim, Y., Y. W. Kim, S. B. Lee, K. Kang, S. Yoon, D. Choi, S.-H. Park, and J. Jeong. 2021. Hepatic patch by stacking patient-specific liver progenitor cell sheets formed on multiscale electrospun fibers promotes regenerative therapy for liver injury. Biomaterials 274:120899. doi: 10.1016/j.biomaterials.2021.120899.
  • Knežić, T., L. Janjušević, M. Djisalov, S. Yodmuang, and I. Gadjanski. 2022. Using vertebrate stem and progenitor cells for cellular agriculture-state-of-the-art, challenges, and future perspectives. Biomolecules 12 (5):699. doi: 10.3390/biom12050699.
  • Ko, H. J., Y. Wen, J. H. Choi, B. R. Park, H. W. Kim, and H. J. Park. 2021. Meat analog production through artificial muscle fiber insertion using coaxial nozzle-assisted three-dimensional food printing. Food Hydrocolloids 120:106898. doi: 10.1016/j.foodhyd.2021.106898.
  • Koide, Y., H. Ikake, Y. Muroga, and S. Shimizu. 2013. Effect of the cast-solvent on the morphology of cast films formed with a mixture of stereoisomeric poly(lactic acids). Polymer Journal 45 (6):645–50. doi: 10.1038/pj.2012.192.
  • Koo, M.-A., S. H. Hong, M. H. Lee, B.-J. Kwon, G. M. Seon, M. S. Kim, D. Kim, K. C. Nam, and J. K.-C. Park. 2019. Effective stacking and transplantation of stem cell sheets using exogenous ROS-producing film for accelerated wound healing. Acta Biomaterialia 95:418–26. doi: 10.1016/j.actbio.2019.01.019.
  • Kumar, A., S. Kargozar, F. Baino, and S. S. Han. 2019. Additive manufacturing methods for producing hydroxyapatite and hydroxyapatite-based composite scaffolds: A review. Frontiers in Materials 6:313. doi: 10.3389/fmats.2019.00313.
  • Kuo, H.-H., X. Gao, J.-M. DeKeyser, K. A. Fetterman, E. A. Pinheiro, C. J. Weddle, H. Fonoudi, M. V. Orman, M. Romero-Tejeda, M. Jouni, et al. 2020. Negligible-cost and weekend-free chemically defined human iPSC culture. Stem Cell Reports 14 (2):256–70. doi: 10.1016/j.stemcr.2019.12.007.
  • Kyriakopoulou, K., B. Dekkers, and A. J. van der Goot. 2019. Plant-based meat analogues. In Sustainable meat production and processing. 103–26. Amsterdam, Netherlands: Elsevier.
  • Lawrence, B. D., J. K. Marchant, M. A. Pindrus, F. G. Omenetto, and D. L. Kaplan. 2009. Silk film biomaterials for cornea tissue engineering. Biomaterials 30 (7):1299–308. doi: 10.1016/j.biomaterials.2008.11.018.
  • Lee, E. J., A. T. Jan, M. H. Baig, K. Ahmad, A. Malik, G. Rabbani, T. Kim, I.-K. Lee, Y. H. Lee, S.-Y. Park, et al. 2018. Fibromodulin and regulation of the intricate balance between myoblast differentiation to myocytes or adipocyte‐like cells. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 32 (2):768–81. doi: 10.1096/fj.201700665R.
  • Lee, J. K., J. M. Link, J. C. Y. Hu, and K. A. Athanasiou. 2017. The self-assembling process and applications in tissue engineering. Cold Spring Harbor Perspectives in Medicine 7 (11):a025668. doi: 10.1101/cshperspect.a025668.
  • Lee, J.-Y., J. An, and C. K. Chua. 2017. Fundamentals and applications of 3D printing for novel materials. Applied Materials Today 7:120–33. doi: 10.1016/j.apmt.2017.02.004.
  • Levi, S., F.-C. Yen, L. Baruch, and M. Machluf. 2022. Scaffolding technologies for the engineering of cultured meat: Towards a safe, sustainable, and scalable production. Trends in Food Science & Technology 126:13–25. doi: 10.1016/j.tifs.2022.05.011.
  • Li, L., L. Chen, X. Chen, Y. Chen, S. Ding, X. Fan, Y. Liu, X. Xu, G. Zhou, B. Zhu, et al. 2022. Chitosan‑sodium alginate-collagen/gelatin three-dimensional edible scaffolds for building a structured model for cell cultured meat. International Journal of Biological Macromolecules 209 (Pt A):668–79. doi: 10.1016/j.ijbiomac.2022.04.052.
  • Li, Q., D. G. Barrett, P. B. Messersmith, and N. Holten-Andersen. 2016. Controlling hydrogel mechanics via bio-inspired polymer–nanoparticle bond dynamics. ACS Nano 10 (1):1317–24. doi: 10.1021/acsnano.5b06692.
  • Li, X., G. Zhang, X. Zhao, J. Zhou, G. Du, and J. Chen. 2020. A conceptual air-lift reactor design for large scale animal cell cultivation in the context of in vitro meat production. Chemical Engineering Science 211:115269. doi: 10.1016/j.ces.2019.115269.
  • Li, X., X. Fu, G. Yang, and M. Du. 2020. Enhancing intramuscular fat development via targeting fibro-adipogenic progenitor cells in meat animals. Animal: An International Journal of Animal Bioscience 14 (2):312–21. doi: 10.1017/S175173111900209X.
  • Li, Y., W. Liu, S. Li, M. Zhang, F. Yang, and S. Wang. 2021. Porcine skeletal muscle tissue fabrication for cultured meat production using three-dimensional bioprinting technology. Journal of Future Foods 1 (1):88–97. doi: 10.1016/j.jfutfo.2021.09.005.
  • Liao, J., B. Xu, R. Zhang, Y. Fan, H. Xie, and X. Li. 2020. Applications of decellularized materials in tissue engineering: Advantages, drawbacks and current improvements, and future perspectives. Journal of Materials Chemistry B 8 (44):10023–49. doi: 10.1039/d0tb01534b.
  • Liao, X., H. Zhang, and T. He. 2012. Preparation of porous biodegradable polymer and its nanocomposites by supercritical CO2 foaming for tissue engineering. Journal of Nanomaterials 2012:1–12. doi: 10.1155/2012/836394.
  • López-Bote, C. 2017. Chemical and biochemical constitution of muscle. In Lawriés meat science. 99–158. Amsterdam, Netherlands: Elsevier.
  • Luo, C., S. D. Stoyanov, E. Stride, E. Pelan, and M. Edirisinghe. 2012. Electrospinning versus fibre production methods: From specifics to technological convergence. Chemical Society Reviews 41 (13):4708–35. doi: 10.1039/c2cs35083a.
  • Mabrouk, M., H. H. Beherei, and D. B. Das. 2020. Recent progress in the fabrication techniques of 3D scaffolds for tissue engineering. Materials Science & Engineering. C, Materials for Biological Applications 110:110716. doi: 10.1016/j.msec.2020.110716.
  • MacQueen, L. A., C. G. Alver, C. O. Chantre, S. Ahn, L. Cera, G. M. Gonzalez, B. B. O’Connor, D. J. Drennan, M. M. Peters, S. E. Motta, et al. 2019. Muscle tissue engineering in fibrous gelatin: Implications for meat analogs. NPJ Science of Food 3 (1):20–12. doi: 10.1038/s41538-019-0054-8.
  • Maji, K., and S. Dasgupta. 2017. Effect of βtricalcium phosphate nanoparticles additions on the properties of gelatin–chitosan scaffolds. Bioceramics Development and Applications 7 (103):2.
  • Maltin, C., D. Balcerzak, R. Tilley, and M. Delday. 2003. Determinants of meat quality: Tenderness. The Proceedings of the Nutrition Society 62 (2):337–47. doi: 10.1079/pns2003248.
  • Mandrycky, C., Z. Wang, K. Kim, and D. H. Kim. 2016. 3D bioprinting for engineering complex tissues. Biotechnology Advances 34 (4):422–34. doi: 10.1016/j.biotechadv.2015.12.011.
  • Manning, M. L., R. A. Foty, M. S. Steinberg, and E.-M. Schoetz. 2010. Coaction of intercellular adhesion and cortical tension specifies tissue surface tension. Proceedings of the National Academy of Sciences of the United States of America 107 (28):12517–22. doi: 10.1073/pnas.1003743107.
  • Mao, D., Q. Li, D. Li, Y. Tan, and Q. Che. 2018. 3D porous poly (ε-caprolactone)/58S bioactive glass–sodium alginate/gelatin hybrid scaffolds prepared by a modified melt molding method for bone tissue engineering. Materials & Design 160:1–8. doi: 10.1016/j.matdes.2018.08.062.
  • Martínez-Pérez, C. A., I. Olivas-Armendariz, J. S. Castro-Carmona, and P. E. García-Casillas. 2011. Scaffolds for tissue engineering via thermally induced phase separation. Advances in Regenerative Medicine 35: 275–94.
  • Mattick, C. S., A. E. Landis, B. R. Allenby, and N. J. Genovese. 2015. Anticipatory life cycle analysis of in vitro biomass cultivation for cultured meat production in the United States. Environmental Science & Technology 49 (19):11941–9. doi: 10.1021/acs.est.5b01614.
  • Maude, S., E. Ingham, and A. Aggeli. 2013. Biomimetic self-assembling peptides as scaffolds for soft tissue engineering. Nanomedicine (London, England) 8 (5):823–47. doi: 10.2217/nnm.13.65.
  • McMurray, R. J., M. J. Dalby, and P. M. Tsimbouri. 2015. Using biomaterials to study stem cell mechanotransduction, growth and differentiation. Journal of Tissue Engineering and Regenerative Medicine 9 (5):528–39. doi: 10.1002/term.1957.
  • Mendibil, U., R. Ruiz-Hernandez, S. Retegi-Carrion, N. Garcia-Urquia, B. Olalde-Graells, and A. Abarrategi. 2020. Tissue-specific decellularization methods: Rationale and strategies to achieve regenerative compounds. International Journal of Molecular Sciences 21 (15):5447. doi: 10.3390/ijms21155447.
  • Meyer, H.-P., W. Minas, and D. Schmidhalter. 2017. Industrial-scale fermentation. In Industrial biotechnology: Products and processes, ed. C. Wittmann and J. Cliao, 1–53. Weinheim: Wiley.
  • Miller, R. K. 2020. A 2020 synopsis of the cell-cultured animal industry. Animal Frontiers: The Review Magazine of Animal Agriculture 10 (4):64–72. doi: 10.1093/af/vfaa031.
  • Mo, X., B. Sun, T. Wu, and D. Li. 2019. Chapter 24 - Electrospun nanofibers for tissue engineering. In Electrospinning: Nanofabrication and applications, eds. B. Ding, X. Wang, and J. Yu, 719–34. Norwich, NY: William Andrew Publishing.
  • Morach, B., B. Witte, D. Walker, E. von Koeller, F. Grosse-Holz, J. Rogg, M. Brigl, N. Dehnert, P. Obloj, S. Koktenturk, et al. 2021. Food for thought: The protein transformation. Industrial Biotechnology 17 (3):125–33. doi: 10.1089/ind.2021.29245.bwi.
  • Moritz, M. S., S. E. Verbruggen, and M. J. Post. 2015. Alternatives for large-scale production of cultured beef: A review. Journal of Integrative Agriculture 14 (2):208–16. doi: 10.1016/S2095-3119(14)60889-3.
  • Muniz, M. M. M., L. F. Simielli Fonseca, D. C. B. Scalez, A. S. Vega, D. Bd, S. Silva, J. A. Ferro, A. L. Chardulo, F. Baldi, A. Cánovas, et al. 2022. Characterization of novel lncRNA muscle expression profiles associated with meat quality in beef cattle. Evolutionary Applications 15 (4):706–18. doi: 10.1111/eva.13365.
  • Nawroth, J. C., L. L. Scudder, R. T. Halvorson, J. Tresback, J. P. Ferrier, S. P. Sheehy, A. Cho, S. Kannan, I. Sunyovszki, J. A. Goss, et al. 2018. Automated fabrication of photopatterned gelatin hydrogels for organ-on-chips applications. Biofabrication 10 (2):025004. doi: 10.1088/1758-5090/aa96de.
  • Nemati, S., S.-J. Kim, Y. M. Shin, and H. hin. 2019. Current progress in application of polymeric nanofibers to tissue engineering. Nano Convergence 6 (1):36. doi: 10.1186/s40580-019-0209-y.
  • Ng, S., and M. Kurisawa. 2021. Integrating biomaterials and food biopolymers for cultured meat production. Acta Biomaterialia 124:108–29. doi: 10.1016/j.actbio.2021.01.017.
  • Nikmaram, N., S. Roohinejad, S. Hashemi, M. Koubaa, F. J. Barba, A. Abbaspourrad, and R. Greiner. 2017. Emulsion-based systems for fabrication of electrospun nanofibers: Food, pharmaceutical and biomedical applications. RSC Advances 7 (46):28951–64. doi: 10.1039/C7RA00179G.
  • Nonoyama, T., Y. W. Lee, K. Ota, K. Fujioka, W. Hong, and J. P. Gong. 2020. Instant thermal switching from soft hydrogel to rigid plastics inspired by thermophile proteins. Advanced Materials 32 (4):1905878. doi: 10.1002/adma.201905878.
  • Ofek, G., C. M. Revell, J. C. Hu, D. D. Allison, K. J. Grande-Allen, and K. A. Athanasiou. 2008. Matrix development in self-assembly of articular cartilage. PLoS One 3 (7):e2795. doi: 10.1371/journal.pone.0002795.
  • Ogilvie, O., N. Larsen, K. Sutton, L. Domigan, J. Gerrard, N. Demarais, and S. Roberts. 2020. A targeted mass spectrometry method for the accurate label-free quantification of immunogenic gluten peptides produced during simulated digestion of food matrices. MethodsX 7:101076. doi: 10.1016/j.mex.2020.101076.
  • Okamura, L. H., P. Cordero, J. Palomino, V. H. Parraguez, C. G. Torres, and O. A. Peralta. 2018. Myogenic differentiation potential of mesenchymal stem cells derived from fetal bovine bone marrow. Animal Biotechnology 29 (1):1–11. doi: 10.1080/10495398.2016.1276926.
  • O’Neill, E. N., Z. A. Cosenza, K. Baar, and D. E. Block. 2021. Considerations for the development of cost‐effective cell culture media for cultivated meat production. Comprehensive Reviews in Food Science and Food Safety 20 (1):686–709. doi: 10.1111/1541-4337.12678.
  • Ong, S., L. Loo, M. Pang, R. Tan, Y. Teng, X. Lou, S. K. Chin, M. Y. Naik, and H. Yu. 2021. Decompartmentalisation as a simple color manipulation of plant-based marbling meat alternatives. Biomaterials 277:121107. doi: 10.1016/j.biomaterials.2021.121107.
  • Orellana, N., E. Sánchez, D. Benavente, P. Prieto, J. Enrione, and C. A. Acevedo. 2020. A new edible film to produce in vitro meat. Foods 9 (2):185. doi: 10.3390/foods9020185.
  • Oryan, A., A. Kamali, A. Moshiri, H. Baharvand, and H. Daemi. 2018. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. International Journal of Biological Macromolecules 107 (Pt A):678–88. doi: 10.1016/j.ijbiomac.2017.08.184.
  • Orzechowski, A. 2015. Artificial meat? Feasible approach based on the experience from cell culture studies. Journal of Integrative Agriculture 14 (2):217–21. doi: 10.1016/S2095-3119(14)60882-0.
  • Page, H., P. Flood, and E. G. Reynaud. 2013. Three-dimensional tissue cultures: Current trends and beyond. Cell and Tissue Research 352 (1):123–31. doi: 10.1007/s00441-012-1441-5.
  • Pajčin, I., T. Knežić, I. Savic Azoulay, V. Vlajkov, M. Djisalov, L. Janjušević, J. Grahovac, and I. Gadjanski. 2022. Bioengineering outlook on cultivated meat production. Micromachines 13 (3):402. doi: 10.3390/mi13030402.
  • Panchalingam, K. M., S. Jung, L. Rosenberg, and L. A. Behie. 2015. Bioprocessing strategies for the large-scale production of human mesenchymal stem cells: A review. Stem Cell Research & Therapy 6 (1):1–10. doi: 10.1186/s13287-015-0228-5.
  • Park, S., S. Jung, J. Heo, W.-G. Koh, S. Lee, and J. Hong. 2021. Chitosan/cellulose-based porous nanofilm delivering c-phycocyanin: A novel platform for the production of cost-effective cultured meat. ACS Applied Materials & Interfaces 13 (27):32193–204. doi: 10.1021/acsami.1c07385.
  • Park, S., S. Jung, M. Choi, M. Lee, B. Choi, W.-G. Koh, S. Lee, and J. Hong. 2021. Gelatin MAGIC powder as nutrient-delivering 3D spacer for growing cell sheets into cost-effective cultured meat. Biomaterials 278:121155. doi: 10.1016/j.biomaterials.2021.121155.
  • Piluso, S., D. Flores Gomez, I. Dokter, L. Moreira Texeira, Y. Li, J. Leijten, R. van Weeren, T. Vermonden, M. Karperien, and J. Malda. 2020. Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking. Journal of Materials Chemistry B 8 (41):9566–75. doi: 10.1039/d0tb01731k.
  • Poon, C. J., E. Pereira, M. V. Cotta, S. Sinha, J. A. Palmer, A. A. Woods, W. A. Morrison, and K. M. Abberton. 2013. Preparation of an adipogenic hydrogel from subcutaneous adipose tissue. Acta Biomaterialia 9 (3):5609–20. doi: 10.1016/j.actbio.2012.11.003.
  • Post, M. J., S. Levenberg, D. L. Kaplan, N. Genovese, J. Fu, C. J. Bryant, N. Negowetti, K. Verzijden, and P. Moutsatsou. 2020. Scientific, sustainability and regulatory challenges of cultured meat. Nature Food 1 (7):403–15. doi: 10.1038/s43016-020-0112-z.
  • Raghothaman, D., M. F. Leong, T. C. Lim, J. K. Toh, A. C. Wan, Z. Yang, and E. H. Lee. 2014. Engineering cell matrix interactions in assembled polyelectrolyte fiber hydrogels for mesenchymal stem cell chondrogenesis. Biomaterials 35 (9):2607–16. doi: 10.1016/j.biomaterials.2013.12.008.
  • Rahmati, M., D. K. Mills, A. M. Urbanska, M. R. Saeb, J. R. Venugopal, S. Ramakrishna, and M. Mozafari. 2021. Electrospinning for tissue engineering applications. Progress in Materials Science 117:100721. doi: 10.1016/j.pmatsci.2020.100721.
  • Ramani, S., D. Ko, B. Kim, C. Cho, W. Kim, C. Jo, C.-K. Lee, J. Kang, S. Hur, and S. Park. 2021. Technical requirements for cultured meat production: A review. Journal of Animal Science and Technology 63 (4):681–92. doi: 10.5187/jast.2021.e45.
  • Ramírez-Espinosa, J. J., L. González-Dávalos, A. Shimada, E. Piña, A. Varela-Echavarria, and O. Mora. 2016. Bovine (bos taurus) bone marrow mesenchymal cell differentiation to adipogenic and myogenic lineages. Cells Tissues Organs 201 (1):51–64. doi: 10.1159/000440878.
  • Reiss, J., S. Robertson, and M. Suzuki. 2021. Cell sources for cultivated meat: Applications and considerations throughout the production workflow. International Journal of Molecular Sciences 22 (14):7513. doi: 10.3390/ijms22147513.
  • Rieder, E., M. T. Kasimir, G. Silberhumer, G. Seebacher, E. Wolner, P. Simon, and G. Weigel. 2004. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. The Journal of Thoracic and Cardiovascular Surgery 127 (2):399–405. doi: 10.1016/j.jtcvs.2003.06.017.
  • Rim, N. G., C. S. Shin, and H. Shin. 2013. Current approaches to electrospun nanofibers for tissue engineering. Biomedical Materials (Bristol, England) 8 (1):014102. doi: 10.1088/1748-6041/8/1/014102.
  • Rubio, N. R., N. Xiang, and D. L. Kaplan. 2020. Plant-based and cell-based approaches to meat production. Nature Communications 11 (1):1–11. doi: 10.1038/s41467-020-20061-y.
  • Russo, R., M. Malinconico, and G. Santagata. 2007. Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromolecules 8 (10):3193–7. doi: 10.1021/bm700565h.
  • Seah, J. S. H., S. Singh, S. L. P. Tan, and D. Choudhury. 2022. Scaffolds for the manufacture of cultured meat. Critical Reviews in Biotechnology 42 (2):311–23. doi: 10.1080/07388551.2021.1931803.
  • Sealy, M., K. Avegnon, A. Garrett, L. Delbreilh, S. Bapat, and A. Malshe. 2022. Understanding biomanufacturing of soy-based scaffolds for cell-cultured meat by vat polymerization. CIRP Annals 71 (1):209–12. doi: 10.1016/j.cirp.2022.04.001.
  • Seol, Y.-J., T.-Y. Kang, and D.-W. Cho. 2012. Solid freeform fabrication technology applied to tissue engineering with various biomaterials. Soft Matter 8 (6):1730–5. doi: 10.1039/C1SM06863F.
  • Serpooshan, V., M. Mahmoudi, D. A. Hu, J. B. Hu, and S. M. Wu. 2017. Bioengineering cardiac constructs using 3D printing. Journal of 3D Printing in Medicine 1 (2):123–39. doi: 10.2217/3dp-2016-0009.
  • Serrano, D. R., M. C. Terres, and A. Lalats. 2018. Applications of 3D printing in cancer. Journal of 3D Printing in Medicine 2 (3):115–27. doi: 10.2217/3dp-2018-0007.
  • Sha, L., and Y. L. Xiong. 2020. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends in Food Science & Technology 102:51–61. doi: 10.1016/j.tifs.2020.05.022.
  • Shaikh, S., E. Lee, K. Ahmad, S. S. Ahmad, H. Chun, J. Lim, Y. Lee, and I. Choi. 2021. Cell types used for cultured meat production and the importance of myokines. Foods 10 (10):2318. doi: 10.3390/foods10102318.
  • Skrivergaard, S., M. K. Rasmussen, M. Therkildsen, and J. F. Young. 2021. Bovine satellite cells isolated after 2 and 5 days of tissue storage maintain the proliferative and myogenic capacity needed for cultured meat production. International Journal of Molecular Sciences 22 (16):8376. doi: 10.3390/ijms22168376.
  • Sola, A., J. Bertacchini, D. D’Avella, L. Anselmi, T. Maraldi, S. Marmiroli, and M. Messori. 2019. Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Materials Science & Engineering. C, Materials for Biological Applications 96:153–65. doi: 10.1016/j.msec.2018.10.086.
  • Specht, E. A., D. R. Welch, E. M. R. Clayton, and C. D. Lagally. 2018. Opportunities for applying biomedical production and manufacturing methods to the development of the clean meat industry. Biochemical Engineering Journal 132:161–8. doi: 10.1016/j.bej.2018.01.015.
  • Steinfeld, H., P. Gerber, T. D. Wassenaar, V. Castel, M. Rosales, M. Rosales, and C. de Haan. 2006. Livestock’s long shadow: Environmental issues and options. Rome: Food & Agriculture Organization of the United States.
  • Stout, A. J., A. B. Mirliani, M. L. Rittenberg, M. Shub, E. C. White, J. S. K. Yuen, and D. L. Kaplan. 2022. Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Communications Biology 5 (1):466. doi: 10.1038/s42003-022-03423-8.
  • Sughanthy, A., M. Ansari, A. Siva, and M. Ansari. 2015. A review on bone scaffold fabrication methods. International Research Journal of Engineering and Technology 2 (6):1232–8.
  • Sun, L., C. Zheng, and T. J. Webster. 2017. Self-assembled peptide nanomaterials for biomedical applications: Promises and pitfalls. International Journal of Nanomedicine 12:73–86. doi: 10.2147/IJN.S117501.
  • Takahashi, K., and S. Yamanaka. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126 (4):663–76. doi: 10.1016/j.cell.2006.07.024.
  • Thakur, A. 2019. Market for plant-based meat alternatives. In Environmental, Health, and Business Opportunities in the New Meat Alternatives Market, ed. D. Bogueva, D. Marinova, T. Raphaely, and K. Schimidinger, 218–37, Pennsylvania: IGI Global.
  • Thyden, R., L. R. Perreault, J. D. Jones, H. Notman, B. M. Varieur, A. A. Patmanidis, T. Dominko, and G. R. Gaudette. 2022. An edible, decellularized plant derived cell carrier for lab grown meat. Applied Sciences 12 (10):5155. doi: 10.3390/app12105155.
  • Tiberius, V., J. Borning, and S. Seeler. 2019. Setting the table for meat consumers: An International Delphi study on in vitro meat. NPJ Science of Food 3 (1):10–6. doi: 10.1038/s41538-019-0041-0.
  • Tuomisto, H. L. 2019. The eco‐friendly burger: Could cultured meat improve the environmental sustainability of meat products? EMBO Reports 20 (1):e47395. doi: 10.15252/embr.201847395.
  • Vieira, S., A. R. Franco, E. M. Fernandes, S. Amorim, H. Ferreira, R. A. Pires, R. L. Reis, A. Martins, and N. M. Neves. 2018. Fish sarcoplasmic proteins as a high value marine material for wound dressing applications. Colloids and Surfaces B, Biointerfaces 167:310–7. doi: 10.1016/j.colsurfb.2018.04.002.
  • Wahid, F., T. Khan, Z. Hussain, and H. Ullah. 2018. 30 - Nanocomposite scaffolds for tissue engineering; properties, preparation and applications. In Applications of nanocomposite materials in drug delivery, eds. I. A. M. Asiri and A. Mohammad, 701–35. Sawston: Woodhead Publishing.
  • Weber, L., W. Ehrfeld, H. Freimuth, M. Lacher, H. Lehr, and B. Pech, eds. 1996. Micromolding: A powerful tool for large-scale production of precise microstructures. In Micromachining and microfabrication process technology II. Bellingham: SPIE.
  • Weegels, P., R. Hamer, and J. Schofield. 1996. Functional properties of wheat glutenin. Journal of Cereal Science 23 (1):1–17. doi: 10.1006/jcrs.1996.0001.
  • Whitford, W., and J. J. Cadwell. 2011. The potential application of hollow fiber bioreactors to large-scale production. BioPharm International 2011 (4):s21–6.
  • Wieser, H. 2007. Chemistry of gluten proteins. Food Microbiology 24 (2):115–9. doi: 10.1016/j.fm.2006.07.004.
  • Woods, T., and P. F. Gratzer. 2005. Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials 26 (35):7339–49. doi: 10.1016/j.biomaterials.2005.05.066.
  • Wung, N., S. M. Acott, D. Tosh, and M. J. Ellis. 2014. Hollow fibre membrane bioreactors for tissue engineering applications. Biotechnology Letters 36 (12):2357–66. doi: 10.1007/s10529-014-1619-x.
  • Xiang, N., J. S. YuenJr., A. J. Stout, N. R. Rubio, Y. Chen, and D. L. Kaplan. 2022. 3D porous scaffolds from wheat glutenin for cultured meat applications. Biomaterials 285:121543. doi: 10.1016/j.biomaterials.2022.121543.
  • Xiang, N., Y. Yao, J. S. YuenJr., A. J. Stout, C. Fennelly, R. Sylvia, A. Schnitzler, S. Wong, and D. L. Kaplan. 2022. Edible films for cultivated meat production. Biomaterials 287:121659. doi: 10.1016/j.biomaterials.2022.121659.
  • Xie, Y., X.-R. Lan, R.-Y. Bao, Y. Lei, Z.-Q. Cao, M.-B. Yang, W. Yang, and Y.-B. Wang. 2018. High-performance porous polylactide stereocomplex crystallite scaffolds prepared by solution blending and salt leaching. Materials Science & Engineering C, Materials for Biological Applications 90:602–9. doi: 10.1016/j.msec.2018.05.023.
  • Xue, X., Y. Hu, S. Wang, X. Chen, Y. Jiang, and J. Su. 2022. Fabrication of physical and chemical crosslinked hydrogels for bone tissue engineering. Bioactive Materials 12:327–39. doi: 10.1016/j.bioactmat.2021.10.029.
  • Yan, X., M.-J. Zhu, M. V. Dodson, and M. Du. 2013. Developmental programming of fetal skeletal muscle and adipose tissue development. Journal of Genomics 1:29–38. doi: 10.7150/jgen.3930.
  • Yanagawa, F., S. Sugiura, and Kanamori, T. 2016. Hydrogel microfabrication technology toward three dimensional tissue engineering. Regenerative Therapy 3:45–57. doi: 10.1016/j.reth.2016.02.007.
  • Yi, H.-G., H. Lee, and D.-W. Cho. 2017. 3D printing of organs-on-chips. Bioengineering 4 (4):10. doi: 10.3390/bioengineering4010010.
  • Yin, H., F. Price, and M. A. Rudnicki. 2013. Satellite cells and the muscle stem cell niche. Physiological Reviews 93 (1):23–67. doi: 10.1152/physrev.00043.2011.
  • Yu, J., M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J. Nie, G. A. Jonsdottir, V. Ruotti, R. Stewart, et al. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science (New York, N.Y.) 318 (5858):1917–20. doi: 10.1126/science.1151526.
  • Yüksel, S., M. D. Aşık, H. M. Aydın, E. Tönük, E. Y. Aydın, and M. Bozkurt. 2022. Fabrication of a multi-layered decellularized amniotic membranes as tissue engineering constructs. Tissue and Cell 74:101693. doi: 10.1016/j.tice.2021.101693.
  • Zernov, A., L. Baruch, and M. Machluf. 2022. Chitosan-collagen hydrogel microparticles as edible cell microcarriers for cultured meat. Food Hydrocolloids 129:107632. doi: 10.1016/j.foodhyd.2022.107632.
  • Zhang, C., X. Guan, S. Yu, J. Zhou, and J. Chen. 2022. Production of meat alternatives using live cells, cultures and plant proteins. Current Opinion in Food Science 43:43–52. doi: 10.1016/j.cofs.2021.11.002.
  • Zhang, G., X. Zhao, X. Li, G. Du, J. ZhoU, and J. Chen. 2020. Challenges and possibilities for bio-manufacturing cultured meat. Trends in Food Science & Technology 97:443–50. doi: 10.1016/j.tifs.2020.01.026.
  • Zheng, Y. Y., Y. Chen, H. Z. Zhu, C. B. Li, W. J. Song, S. J. Ding, and G. H. Zhou. 2022. Production of cultured meat by culturing porcine smooth muscle cells in vitro with food grade peanut wire-drawing protein scaffold. Food Research International 159:111561. doi: 10.1016/j.foodres.2022.111561.
  • Zhang, L., Y. Hu, I. H. Badar, X. Xia, B. Kong, and Q. Chen. 2021. Prospects of artificial meat: Opportunities and challenges around consumer acceptance. Trends in Food Science & Technology 116:434–44. doi: 10.1016/j.tifs.2021.07.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.