358
Views
8
CrossRef citations to date
0
Altmetric
Reviews

The fate of flaxseed-lignans after oral administration: A comprehensive review on its bioavailability, pharmacokinetics, and food design strategies for optimal application

, , , , &

References

  • Adolphe, J. L., S. J. Whiting, B. H. Juurlink, L. U. Thorpe, and J. Alcorn. 2010. Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. The British Journal of Nutrition 103 (7):929–38. doi: 10.1017/S0007114509992753.
  • Ahmad, W., A. Zahir, M. Nadeem, L. Garros, S. Drouet, S. Renouard, J. Doussot, N. Giglioli-Guivarc’h, C. Hano, and B. H. Abbasi. 2019. Enhanced production of lignans and neolignans in chitosan-treated flax (Linum usitatissimum L.) cell cultures. Process Biochemistry 79:155–65. doi: 10.1016/j.procbio.2018.12.025.
  • Ahn-Jarvis, J. H., A. Parihar, and A. I. Doseff. 2019. Dietary flavonoids for immunoregulation and cancer: Food design for targeting disease. Antioxidants 8 (7):202. doi: 10.3390/antiox8070202.
  • Axelson, M, and K. Setchell. 1981. The excretion of lignans in rats—Evidence for an intestinal bacterial source for this new group of compounds. FEBS Letters 123 (2):337–42. doi: 10.1016/0014-5793(81)80322-5.
  • Bach Knudsen, K. E., A. Serena, A. K. B. Kjaer, I. Tetens, S.-M. Heinonen, T. Nurmi, and H. Adlercreutz. 2003. Rye bread in the diet of pigs enhances the formation of enterolactone and increases its levels in plasma, urine and feces. The Journal of Nutrition 133 (5):1368–75. doi: 10.1093/jn/133.5.1368.
  • Bartkiene, E., V. Bartkevics, V. Krungleviciute, G. Juodeikiene, D. Zadeike, V. Baliukoniene, B. Bakutis, R. Zelvyte, A. Santini, and D. Cizeikiene. 2018. Application of hydrolases and probiotic Pediococcus acidilactici BaltBio01 strain for cereal by-products conversion to bioproduct for food/feed. International Journal of Food Sciences and Nutrition 69 (2):165–75. doi: 10.1080/09637486.2017.1344828.
  • Bartkiene, E., E. Mozuriene, V. Lele, E. Zokaityte, R. Gruzauskas, I. Jakobsone, G. Juodeikiene, R. Ruibys, and V. Bartkevics. 2020. Changes of bioactive compounds in barley industry by‐products during submerged and solid state fermentation with antimicrobial Pediococcus acidilactici strain LUHS29. Food Science & Nutrition 8 (1):340–50. doi: 10.1002/fsn3.1311.
  • Beaud, D., P. Tailliez, and J. Anba-Mondoloni. 2005. Genetic characterization of the β-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Microbiology (Reading, England) 151 (Pt 7):2323–30. doi: 10.1099/mic.0.27712-0.
  • Billinsky, J., K. Maloney, E. Krol, and J. Alcorn. 2012. A comparison between lignans from creosote bush and flaxseed and their potential to inhibit cytochrome P450 enzyme activity. In Drug discovery research in pharmacognosy. IntechOpen.
  • Billinsky, J. L. 2009. Oxidative metabolism and cytochrome P450 enzyme inhibition potential of creosote bush and flaxseed lignans. Doctoral diss. Canada: University of Saskatchewan.
  • Boerjan, W., J. Ralph, and M. Baucher. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54 (1):519–46. doi: 10.1146/annurev.arplant.54.031902.134938.
  • Chen, Y., H. Lin, M. Lin, P. Lin, and J. Chen. 2019. Effects of thermal preparation and in vitro digestion on lignan profiles and antioxidant activity in defatted-sesame meal. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 128:89–96. doi: 10.1016/j.fct.2019.03.054.
  • Cheng, C., X. Yu, F. Huang, D. Peng, H. Chen, Y. Chen, Q. Huang, and Q. Deng. 2021. Effect of different structural flaxseed lignans on the stability of flaxseed oil-in-water emulsion: An interfacial perspective. Food Chemistry 357:129522. doi: 10.1016/j.foodchem.2021.129522.
  • Chhillar, H., P. Chopra, and M. A. Ashfaq. 2020. Lignans from linseed (Linum usitatissimum L.) and its allied species: Retrospect, introspect and prospect. Critical Reviews in Food Science and Nutrition 61:1–23. doi: 10.1080/10408398.2020.1784840.
  • Clavel, T., D. Borrmann, A. Braune, J. Doré, and M. Blaut. 2006. Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaerobe 12 (3):140–7. doi: 10.1016/j.anaerobe.2005.11.002.
  • Clavel, T., J. Doré, and M. Blaut. 2006. Bioavailability of lignans in human subjects. Nutrition Research Reviews 19 (2):187–96. doi: 10.1017/S0954422407249704.
  • Clavel, T., G. Henderson, C.-A. Alpert, C. Philippe, L. Rigottier-Gois, J. Doré, and M. Blaut. 2005. Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Applied and Environmental Microbiology 71 (10):6077–85. doi: 10.1128/AEM.71.10.6077-6085.2005.
  • Clavel, T., G. Henderson, W. Engst, J. Doré, and M. Blaut. 2006. Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiology Ecology 55 (3):471–8. doi: 10.1111/j.1574-6941.2005.00057.x.
  • Davin, L. B., H.-B. Wang, A. L. Crowell, D. L. Bedgar, D. M. Martin, S. Sarkanen, and N. G. Lewis. 1997. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science (New York, N.Y.) 275 (5298):362–6. doi: 10.1126/science.275.5298.362.
  • de la Bastida, A. R., Á. Peirotén, S. Langa, I. Álvarez, J. L. Arqués, and J. M. Landete. 2021. Metabolism of flavonoids and lignans by lactobacilli and bifidobacteria strains improves the nutritional properties of flaxseed-enriched beverages. Food Research International (Ottawa, Ont.) 147 (110488):110488. doi: 10.1016/j.foodres.2021.110488.
  • De Silva, S. F, and J. Alcorn. 2019. Flaxseed lignans as important dietary polyphenols for cancer prevention and treatment: Chemistry, pharmacokinetics, and molecular targets. Pharmaceuticals 12 (2):68. doi: 10.3390/ph12020068.
  • Dean, B., S. Chang, G. A. Doss, C. King, and P. E. Thomas. 2004. Glucuronidation, oxidative metabolism, and bioactivation of enterolactone in rhesus monkeys. Archives of Biochemistry and Biophysics 429 (2):244–51. doi: 10.1016/j.abb.2004.06.023.
  • Di, Y. 2017. Flaxseed lignan supplementation as possible adjuvant therapy for prostate and breast cancer. University of Saskatchewan.
  • Di, Y., J. Jones, K. Mansell, S. Whiting, S. Fowler, L. Thorpe, J. Billinsky, N. Viveky, P. C. Cheng, A. Almousa, et al. 2017. Influence of flaxseed lignan supplementation to older adults on biochemical and functional outcome measures of inflammation. Journal of the American College of Nutrition 36 (8):646–53. doi: 10.1080/07315724.2017.1342213.
  • Durazzo, A., E. Azzini, V. Turfani, A. Polito, G. Maiani, and M. Carcea. 2013. Effect of cooking on lignans content in whole‐grain pasta made with different cereals and other seeds. Cereal Chemistry Journal 90 (2):169–71. doi: 10.1094/CCHEM-05-12-0065-N.
  • During, A., C. Debouche, T. Raas, and Y. Larondelle. 2012. Among plant lignans, pinoresinol has the strongest antiinflammatory properties in human intestinal Caco-2 cells. The Journal of Nutrition 142 (10):1798–805. doi: 10.3945/jn.112.162453.
  • Eeckhaut, E., K. Struijs, S. Possemiers, J.-P. Vincken, D. D. Keukeleire, and W. Verstraete. 2008. Metabolism of the lignan macromolecule into enterolignans in the gastrointestinal lumen as determined in the simulator of the human intestinal microbial ecosystem. Journal of Agricultural and Food Chemistry 56 (12):4806–12. doi: 10.1021/jf800101s.
  • García-Mateos, D., R. García-Villalba, J. A. Otero, J. A. Marañón, J. C. Espín, A. I. Álvarez, and G. Merino. 2018. An altered tissue distribution of flaxseed lignans and their metabolites in Abcg2 knockout mice. Food & Function 9 (1):636–42. doi: 10.1039/C7FO01549F.
  • Gerstenmeyer, E., S. Reimer, E. Berghofer, H. Schwartz, and G. Sontag. 2013. Effect of thermal heating on some lignans in flax seeds, sesame seeds and rye. Food Chemistry 138 (2-3):1847–55. doi: 10.1016/j.foodchem.2012.11.117.
  • Grosso, G., A. Micek, J. Godos, A. Pajak, S. Sciacca, F. Galvano, and E. L. Giovannucci. 2017. Dietary flavonoid and lignan intake and mortality in prospective cohort studies: Systematic review and dose-response meta-analysis. American Journal of Epidemiology 185 (12):1304–16. doi: 10.1093/aje/kww207.
  • Hano, C., I. Martin, O. Fliniaux, B. Legrand, L. Gutierrez, R. Arroo, F. Mesnard, F. Lamblin, and E. Lainé. 2006. Pinoresinol–lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224 (6):1291–301. doi: 10.1007/s00425-006-0308-y.
  • Hawsawi, A. A. 2018. Flaxseed lignan metabolites modulate hepatocellular cholesterol trafficking in HepaRG. Canada: University of Saskatchewan.
  • Hosseinian, F. 2007. Antioxidant properties of flaxseed lignans using in vitro model systems. ProQuest. Ottawa:Library and Archives Canada.
  • Huang, S., H. Zhang, X. Qin, C. Nie, X. Yu, and Q. Deng. 2021. The quality and antioxidant elucidation of germinated flaxseed treated with acidic electrolyzed water. Food Science & Nutrition 9 (11):6031–46. doi: 10.1002/fsn3.2538.
  • Hyvärinen, H. K., J.-M. Pihlava, J. A. Hiidenhovi, V. Hietaniemi, H. J. Korhonen, and E.-L. Ryhänen. 2006. Effect of processing and storage on the stability of flaxseed lignan added to dairy products. Journal of Agricultural and Food Chemistry 54 (23):8788–92. doi: 10.1021/jf061285n.
  • Jacobs, M. N., G. T. Nolan, and S. R. Hood. 2005. Lignans, bacteriocides and organochlorine compounds activate the human pregnane X receptor (PXR). Toxicology and Applied Pharmacology 209 (2):123–33. doi: 10.1016/j.taap.2005.03.015.
  • Johnson, S. L., R. D. Kirk, N. A. DaSilva, H. Ma, N. P. Seeram, and M. J. Bertin. 2019. Polyphenol microbial metabolites exhibit gut and blood–brain barrier permeability and protect murine microglia against LPS-induced inflammation. Metabolites 9 (4):78. doi: 10.3390/metabo9040078.
  • Jung, E., K.-Y. Choi, D-h Jung, H. Yun, and B.-G. Kim. 2015. Ortho-hydroxylation of mammalian lignan enterodiol by cytochrome P450s from Actinomycetes sp. Korean Journal of Chemical Engineering 32 (3):471–7. doi: 10.1007/s11814-014-0211-3.
  • Kajla, P., A. Sharma, and D. R. Sood. 2015. Flaxseed—A potential functional food source. Journal of Food Science and Technology 52 (4):1857–71. doi: 10.1007/s13197-014-1293-y.
  • Kamal-Eldin, A., N. Peerlkamp, P. Johnsson, R. Andersson, R. E. Andersson, L. N. Lundgren, and P. Åman. 2001. An oligomer from flaxseed composed of secoisolariciresinoldiglucoside and 3-hydroxy-3-methyl glutaric acid residues. Phytochemistry 58 (4):587–90. doi: 10.1016/S0031-9422(01)00279-5.
  • Kemperman, R. A., S. Bolca, L. C. Roger, and E. E. Vaughan. 2010. Novel approaches for analysing gut microbes and dietary polyphenols: Challenges and opportunities. Microbiology (Reading, England) 156 (Pt 11):3224–31. doi: 10.1099/mic.0.042127-0.
  • Kezimana, P., A. A. Dmitriev, A. V. Kudryavtseva, E. V. Romanova, and N. V. Melnikova. 2018. Secoisolariciresinol diglucoside of flaxseed and its metabolites: Biosynthesis and potential for nutraceuticals. Frontiers in Genetics 9 (641):641. doi: 10.3389/fgene.2018.00641.
  • Khare, B., V. Sangwan, and V. Rani. 2021. Influence of sprouting on proximate composition, dietary fiber, nutrient availability, antinutrient, and antioxidant activity of flaxseed varieties. Journal of Food Processing and Preservation 45 (4):e15344. doi: 10.1111/jfpp.15344.
  • Knust, U., W. Hull, B. Spiegelhalder, H. Bartsch, T. Strowitzki, and R. Owen. 2006. Analysis of enterolignan glucuronides in serum and urine by HPLC-ESI-MS. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 44 (7):1038–49. doi: 10.1016/j.fct.2005.12.008.
  • Kuijsten, A., I. C. Arts, P. Van’t Veer, and P. C. Hollman. 2005. The relative bioavailability of enterolignans in humans is enhanced by milling and crushing of flaxseed. The Journal of Nutrition 135 (12):2812–6. doi: 10.1093/jn/135.12.2812.
  • Kuijsten, A., I. C. Arts, T. B. Vree, and P. C. Hollman. 2005. Pharmacokinetics of enterolignans in healthy men and women consuming a single dose of secoisolariciresinol diglucoside. The Journal of Nutrition 135 (4):795–801. doi: 10.1093/jn/135.4.795.
  • Lan, P., M. Du, Y. Teng, M. G. Banwell, H. Nie, M. J. Reaney, and Y. Wang. 2019. Structural modifications of a flaxseed lignan in pursuit of higher liposolubility: Evaluation of the antioxidant and permeability properties of the resulting derivatives. Journal of Agricultural and Food Chemistry 67 (51):14152–9. doi: 10.1021/acs.jafc.9b06264.
  • Li, M. X., H. Y. Zhu, D. H. Yang, X. Q. Ma, C. Z. Wang, S. Q. Cai, G. R. Liu, B. S. Ku, and S. L. Liu. 2012. Production of secoisolariciresinol from defatted flaxseed by bacterial biotransformation. Journal of Applied Microbiology 113 (6):1352–61. doi: 10.1111/j.1365-2672.2012.05436.x.
  • Liu, Z., Y.-J. Fei, X.-H. Cao, D. Xu, W.-J. Tang, K. Yang, W.-X. Xu, and J.-H. Tang. 2021. Lignans intake and enterolactone concentration and prognosis of breast cancer: A systematic review and meta-analysis. Journal of Cancer 12 (9):2787–96. doi: 10.7150/jca.55477.
  • Lowcock, E. C., M. Cotterchio, and B. A. Boucher. 2013. Consumption of flaxseed, a rich source of lignans, is associated with reduced breast cancer risk. Cancer Causes & Control : CCC 24 (4):813–6. doi: 10.1007/s10552-013-0155-7.
  • Mali, A. V., S. B. Padhye, S. Anant, M. V. Hegde, and S. S. Kadam. 2019. Anticancer and antimetastatic potential of enterolactone: Clinical, preclinical and mechanistic perspectives. European Journal of Pharmacology 852:107–24. doi: 10.1016/j.ejphar.2019.02.022.
  • Manach, C., A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez. 2004. Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition 79 (5):727–47. doi: 10.1093/ajcn/79.5.727.
  • Marín, L., E. M. Miguélez, C. J. Villar, and F. Lombó. 2015. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Research International 2015:905215. doi: 10.1155/2015/905215.
  • Mazur, W., Uehara, M. Wähälä, K., and A. H. 2000. Phyto-oestrogen content of berries, and plasma concentrationsand urinary excretion of enterolactone after asingle strawberry-meal in human subjects. British Journal of Nutrition 83 (4):381–7.
  • Meyer, K. A, and B. J. Bennett. 2016. Diet and gut microbial function in metabolic and cardiovascular disease risk. Current Diabetes Reports 16 (10):1–8. doi: 10.1007/s11892-016-0791-x.
  • Milder, I. E., I. C. Arts, B. van de Putte, D. P. Venema, and P. C. Hollman. 2005. Lignan contents of Dutch plant foods: A database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. The British Journal of Nutrition 93 (3):393–402. doi: 10.1079/BJN20051371.
  • Milder, I. E., I. C. Arts, D. P. Venema, J. J. Lasaroms, K. Wähälä, and P. C. Hollman. 2004. Optimization of a liquid chromatography − tandem mass spectrometry method for quantification of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in foods. Journal of Agricultural and Food Chemistry 52 (15):4643–51. doi: 10.1021/jf0497556.
  • Morsy, M. A., A. A. El-Sheikh, A. R. Ibrahim, K. N. Venugopala, and M. Kandeel. 2020. In silico and in vitro identification of secoisolariciresinol as a re-sensitizer of P-glycoprotein-dependent doxorubicin-resistance NCI/ADR-RES cancer cells. PeerJ. 8:e9163. doi: 10.7717/peerj.9163.
  • Mukker, J. 2013. Pharmacokinetic and pharmacodynamic studies on flaxseed lignans. Saskatchewan: University of Saskatchewan.
  • Mukker, J. K., D. Michel, A. D. Muir, E. S. Krol, and J. Alcorn. 2014. Permeability and conjugative metabolism of flaxseed lignans by Caco-2 human intestinal cells. Journal of Natural Products 77 (1):29–34. doi: 10.1021/np4004905.
  • Mukker, J. K., R. S. P. Singh, A. D. Muir, E. S. Krol, and J. Alcorn. 2015. Comparative pharmacokinetics of purified flaxseed and associated mammalian lignans in male Wistar rats. The British Journal of Nutrition 113 (5):749–57. doi: 10.1017/S0007114514004371.
  • Murray, T., J. Kang, L. Astheimer, and W. E. Price. 2007. Tissue distribution of lignans in rats in response to diet, dose − response, and competition with isoflavones. Journal of Agricultural and Food Chemistry 55 (12):4907–12. doi: 10.1021/jf070266q.
  • Nadeem, M., B. H. Abbasi, L. Garros, S. Drouet, A. Zahir, W. Ahmad, N. Giglioli-Guivarc’h, and C. Hano. 2018. Yeast-extract improved biosynthesis of lignans and neolignans in cell suspension cultures of Linum usitatissimum L. Plant Cell, Tissue and Organ Culture (PCTOC) 135 (2):347–55. doi: 10.1007/s11240-018-1468-8.
  • Nesbitt, P. D, and L. U. Thompson. 1997. Lignans in homemade and commercial products containing flaxseed. doi: 10.1080/01635589709514628.
  • Nose, M., T. Fujimoto, T. Takeda, S. Nishibe, and Y. Ogihara. 1992. Structural transformation of lignan compounds in rat gastrointestinal tract. Planta Medica 58 (6):520–3. doi: 10.1055/s-2006-961540.
  • Olsen, A., J. Christensen, K. E. B. Knudsen, N. F. Johnsen, K. Overvad, and A. Tjønneland. 2011. Prediagnostic plasma enterolactone levels and mortality among women with breast cancer. Breast Cancer Research and Treatment 128 (3):883–9. doi: 10.1007/s10549-011-1397-2.
  • Padayachee, A., L. Day, K. Howell, and M. Gidley. 2017. Complexity and health functionality of plant cell wall fibers from fruits and vegetables. Critical Reviews in Food Science and Nutrition 57 (1):59–81. 10.1080/10408398.2013.850652.
  • Pan, A., J. Sun, Y. Chen, X. Ye, H. Li, Z. Yu, Y. Wang, W. Gu, X. Zhang, X. Chen, et al. 2007. Effects of a flaxseed-derived lignan supplement in type 2 diabetic patients: A randomized, double-blind, cross-over trial. PLoS One 2 (11):e1148. doi: 10.1371/journal.pone.0001148.
  • Paniagua, C., A. Bilkova, P. Jackson, S. Dabravolski, W. Riber, V. Didi, J. Houser, N. Gigli-Bisceglia, M. Wimmerova, E. Budínská, et al. 2017. Dirigent proteins in plants: Modulating cell wall metabolism during abiotic and biotic stress exposure. Journal of Experimental Botany 68 (13):3287–301. doi: 10.1093/jxb/erx141.
  • Parikh, M., T. Netticadan, and G. N. Pierce. 2018. Flaxseed: Its bioactive components and their cardiovascular benefits. American Journal of Physiology. Heart and Circulatory Physiology 314 (2):H146–H159. doi: 10.1152/ajpheart.00400.2017.
  • Park, S., S. Baek, and S. Shim. 2012. Effect of light-emitting diode (LeD) on contents of lignans and anthocyanins in Schizandra chinensis. Planta Medica 78 (11):PI320. doi: 10.1055/s-0032-1321007.
  • Patterson, E., R. M. O’ Doherty, E. F. Murphy, R. Wall, O. O’ Sullivan, K. Nilaweera, G. F. Fitzgerald, P. D. Cotter, R. P. Ross, and C. Stanton. 2014. Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. The British Journal of Nutrition 111 (11):1905–17. doi: 10.1017/S0007114514000117.
  • Peirotén, Á., I. Álvarez, and J. M. Landete. 2020. Production of flavonoid and lignan aglycones from flaxseed and soy extracts by Bifidobacterium strains. International Journal of Food Science & Technology 55 (5):2122–31. doi: 10.1111/ijfs.14459.
  • Peñalvo, J. L., T. Nurmi, K. Haajanen, N. Al-Maharik, N. Botting, and H. Adlercreutz. 2004. Determination of lignans in human plasma by liquid chromatography with coulometric electrode array detection. Analytical Biochemistry 332 (2):384–93. doi: 10.1016/j.ab.2004.05.046.
  • Peterson, J., J. Dwyer, H. Adlercreutz, A. Scalbert, P. Jacques, and M. L. McCullough. 2010. Dietary lignans: Physiology and potential for cardiovascular disease risk reduction. Nutrition Reviews 68 (10):571–603. doi: 10.1111/j.1753-4887.2010.00319.x.
  • Pietinen, P., Stumpf, K. Männistö, S. Kataja, V. Uusitupa, M., and A. H. 2001. Serum enterolactone and risk of breast cancer: A case-control study in eastern Finland. Cancer Epidemiology and Prevention Biomarkers 10 (4):339–44.
  • Power, K. A., D. Lepp, L. Zarepoor, J. M. Monk, W. Wu, R. Tsao, and R. Liu. 2016. Dietary flaxseed modulates the colonic microenvironment in healthy C57Bl/6 male mice which may alter susceptibility to gut-associated diseases. The Journal of Nutritional Biochemistry 28:61–9. doi: 10.1016/j.jnutbio.2015.09.028.
  • Pulkrabek, M., Y. Rhee, P. Gibbs, and C. Hall. 2017. Flaxseed-and buckwheat-supplemented diets altered Enterobacteriaceae diversity and prevalence in the cecum and feces of obese mice. Journal of Dietary Supplements 14 (6):667–78. doi: 10.1080/19390211.2017.1305477.
  • Quartieri, A., García, Villalba, R. Amaretti, A. Raimondi, S. Leonardi, A. Rossi, M. Tomàs, and Barberàn, F. ‐‐ 2016. Detection of novel metabolites of flaxseed lignans in vitro and in vivo. Molecular Nutrition & Food Research 60 (7):1590–601. doi: 10.1002/mnfr.201500773.
  • Raffaelli, B., A. Hoikkala, E. Leppälä, and K. Wähälä. 2002. Enterolignans. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 777 (1-2):29–43. doi: 10.1016/S1570-0232(02)00092-2.
  • Rickard, S. E, and L. U. Thompson. 2000. Urinary composition and postprandial blood changes in 3H-secoisolariciresinol diglycoside (SDG) metabolites in rats do not differ between acute and chronic SDG treatments. The Journal of Nutrition 130 (9):2299–305. doi: 10.1093/jn/130.9.2299.
  • Rowland, I., M. Faughnan, L. Hoey, K. Wähälä, G. Williamson, and A. Cassidy. 2003. Bioavailability of phyto-oestrogens. British Journal of Nutrition 89 (S1):S45–S58. doi: 10.1079/BJN2002796.
  • Rowland, I. R., H. Wiseman, T. A. Sanders, H. Adlercreutz, and E. A. Bowey. 2000. Interindividual variation in metabolism of soy isoflavones and lignans: Influence of habitual diet on equol production by the gut microflora. Nutrition and Cancer 36 (1):27–32. doi: 10.1207/S15327914NC3601_5.
  • Saarinen, N. M, and L. U. Thompson. 2010. Prolonged administration of secoisolariciresinol diglycoside increases lignan excretion and alters lignan tissue distribution in adult male and female rats. The British Journal of Nutrition 104 (6):833–41. doi: 10.1017/S0007114510001194.
  • Saarinen, N. M., A. Wärri, R. P. Dings, M. Airio, A. I. Smeds, and S. Mäkelä. 2008. Dietary lariciresinol attenuates mammary tumor growth and reduces blood vessel density in human MCF‐7 breast cancer xenografts and carcinogen‐induced mammary tumors in rats. International Journal of Cancer 123 (5):1196–204. doi: 10.1002/ijc.23614.
  • Scheepens, A., K. Tan, and J. W. Paxton. 2010. Improving the oral bioavailability of beneficial polyphenols through designed synergies. Genes & Nutrition 5 (1):75–87. 10.1007/s12263-009-0148-z.
  • Schogor, A. L., S. A. Huws, G. T. Santos, N. D. Scollan, B. D. Hauck, A. L. Winters, E. J. Kim, and H. V. Petit. 2014. Ruminal Prevotella spp. may play an important role in the conversion of plant lignans into human health beneficial antioxidants. PloS One 9 (4):e87949. doi: 10.1371/journal.pone.0087949.
  • Senizza, A., G. Rocchetti, J. I. Mosele, V. Patrone, M. L. Callegari, L. Morelli, and L. Lucini. 2020. Lignans and gut microbiota: An interplay revealing potential health implications. Molecules 25 (23):5709. doi: 10.3390/molecules25235709.
  • Setchell, K. D., N. M. Brown, L. Zimmer-Nechemias, B. Wolfe, P. Jha, and J. E. Heubi. 2014. Metabolism of secoisolariciresinol-diglycoside the dietary precursor to the intestinally derived lignan enterolactone in humans. Food & Function 5 (3):491–501. doi: 10.1039/C3FO60402K.
  • Soleymani, S., S. Habtemariam, R. Rahimi, and S. M. Nabavi. 2020. The what and who of dietary lignans in human health: Special focus on prooxidant and antioxidant effects. Trends in Food Science & Technology 106:382–90. doi: 10.1016/j.tifs.2020.10.015.
  • Struijs, K. 2008. The lignan macromolecule from flaxseed: structure and bioconversion of lignans. ProQuest diss. Wageningen University and Research.
  • Sun, Q., N. M. Wedick, A. Pan, M. K. Townsend, A. Cassidy, A. A. Franke, E. B. Rimm, F. B. Hu, and R. M. van Dam. 2014. Gut microbiota metabolites of dietary lignans and risk of type 2 diabetes: A prospective investigation in two cohorts of US women. Diabetes Care 37 (5):1287–95. doi: 10.2337/dc13-2513.
  • Tomimori, N., Y. Tanaka, Y. Kitagawa, W. Fujii, Y. Sakakibara, and H. Shibata. 2013. Pharmacokinetics and safety of the sesame lignans, sesamin and episesamin, in healthy subjects. Biopharmaceutics & Drug Disposition 34 (8):462–73. 10.1002/bdd.1862.
  • Touré, A, and X. Xueming. 2010. Flaxseed lignans: Source, biosynthesis, metabolism, antioxidant activity, bio‐active components, and health benefits. Comprehensive Reviews in Food Science and Food Safety 9 (3):261–9. doi: 10.1111/j.1541-4337.2009.00105.x.
  • Walle, T., A. M. Browning, L. L. Steed, S. G. Reed, and U. K. Walle. 2005. Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. The Journal of Nutrition 135 (1):48–52. doi: 10.1093/jn/135.1.48.
  • Wang, C.-Z., X.-Q. Ma, D.-H. Yang, Z.-R. Guo, G.-R. Liu, G.-X. Zhao, J. Tang, Y.-N. Zhang, M. Ma, S.-Q. Cai, et al. 2010. Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria. BMC Microbiology 10 (1):115–9. doi: 10.1186/1471-2180-10-115.
  • Willför, S., A. Smeds, and B. Holmbom. 2006. Chromatographic analysis of lignans. Journal of Chromatography. A 1112 (1-2):64–77. doi: 10.1016/j.chroma.2005.11.054.
  • Witkowska, A. M., A. Waśkiewicz, M. E. Zujko, D. Szcześniewska, U. Stepaniak, A. Pająk, and W. Drygas. 2018. Are total and individual dietary lignans related to cardiovascular disease and its risk factors in postmenopausal women? A nationwide study. Nutrients 10 (7):865. doi: 10.3390/nu10070865.
  • Yang, X., Y. Guo, T. J. Tse, S. K. Purdy, R. Mustafa, J. Shen, J. Alcorn, and M. J. Reaney. 2021. Oral pharmacokinetics of enriched secoisolariciresinol diglucoside and its polymer in rats. Journal of Natural Products 84 (6):1816–22. doi: 10.1021/acs.jnatprod.1c00335.
  • Yuan, J.-P., X. Li, S.-P. Xu, J.-H. Wang, and X. Liu. 2008. Hydrolysis kinetics of secoisolariciresinol diglucoside oligomers from flaxseed. Journal of Agricultural and Food Chemistry 56 (21):10041–7. doi: 10.1021/jf8020656.
  • Zarei, I, and E. P. Ryan. 2019. Lignans. Whole grains their bioactives: Composition health 407–26. doi: 10.1002/9781119129486.ch16.
  • Zhang, F., S. Cui, Z. Li, Y. Yuan, C. Li, and R. Li. 2020. A combination of metabolite profiling and network pharmacology to explore the potential pharmacological changes of secoisolariciresinol-diglycoside. RSC Advances 10 (57):34847–58. doi: 10.1039/D0RA06382G.
  • Zhou, W., G. Wang, Z. Han, W. Yao, and W. Zhu. 2009. Metabolism of flaxseed lignans in the rumen and its impact on ruminal metabolism and flora. Animal Feed Science and Technology 150 (1-2):18–26. doi: 10.1016/j.anifeedsci.2008.07.006.
  • Zuo, Z., L. Zhang, L. Zhou, Q. Chang, and M. Chow. 2006. Intestinal absorption of hawthorn flavonoids–in vitro, in situ and in vivo correlations. Life Sciences 79 (26):2455–62. doi: 10.1016/j.lfs.2006.08.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.