1,935
Views
21
CrossRef citations to date
0
Altmetric
Review Articles

Food polyphenols and Maillard reaction: regulation effect and chemical mechanism

, , , , &

References

  • Abrantes, T., N. Moura-Nunes, and D. Perrone. 2022. Gallic acid mitigates 5-hydroxymethylfurfural formation while enhancing or preserving browning and antioxidant activity development in glucose/arginine and sucrose/arginine Maillard model systems. Molecules 27 (3):848. doi: 10.3390/molecules27030848.
  • Awasthi, S., and N. T. Saraswathi. 2016. Vanillin restrains non-enzymatic glycation and aggregation of albumin by chemical chaperone like function. International Journal of Biological Macromolecules 87:1–6. doi: 10.1016/j.ijbiomac.2016.02.041.
  • Babu, P. A. S., B. V. Aafrin, G. Archana, K. Sabina, K. Sudharsan, M. Sivarajan, and M. Sukumar. 2017. Effects of polyphenols from Caralluma fimbriata on acrylamide formation and lipid oxidation—An integrated approach of nutritional quality and degradation of fried food. International Journal of Food Properties 20 (6):1378–90. doi: 10.1080/10942912.2016.1210161.
  • Beksan, E., P. Schieberle, F. Robert, I. Blank, L. B. Fay, H. Schlichtherle-Cerny, and T. Hofmann. 2003. Synthesis and sensory characterization of novel umami-tasting glutamate glycoconjugates. Journal of Agricultural and Food Chemistry 51 (18):5428–36. doi: 10.1021/jf0344441.
  • Bi, K. H., L. Zhang, X. G. Qiao, and Z. X. Xu. 2017. Tea polyphenols as inhibitors of furan formed in the Maillard model system and canned coffee model. Journal of Food Science 82 (5):1271–7. doi: 10.1111/1750-3841.13691.
  • Cai, Y., Z. Zhang, S. Jiang, M. Yu, C. Huang, R. Qiu, Y. Zou, Q. Zhang, S. Ou, H. Zhou, et al. 2014. Chlorogenic acid increased acrylamide formation through promotion of HMF formation and 3-aminopropionamide deamination. Journal of Hazardous Materials 268:1–5. doi: 10.1016/j.jhazmat.2013.12.067.
  • Chen, T., D. Ji, Z. Zhang, B. Li, G. Qin, and S. Tian. 2021. Advances and strategies for controlling the quality and safety of postharvest fruit. Engineering 7 (8):1177–84. doi: 10.1016/j.eng.2020.07.029.
  • Cheng, K. W., X. Zeng, Y. S. Tang, J. J. Wu, Z. Liu, K. H. Sze, I. K. Chu, F. Chen, and M. Wang. 2009. Inhibitory mechanism of naringenin against carcinogenic acrylamide formation and nonenzymatic browning in Maillard model reactions. Chemical Research in Toxicology 22 (8):1483–9. doi: 10.1021/tx9001644.
  • Clifford, M. N., and S. Knight. 2004. The cinnamoyl–amino acid conjugates of green robusta coffee beans. Food Chemistry 87 (3):457–63. doi: 10.1016/j.foodchem.2003.12.020.
  • Cömert, E. D., and V. Gökmen. 2019. Kinetic evaluation of the reaction between methylglyoxal and certain scavenging compounds and determination of their in vitro dicarbonyl scavenging activity. Food Research International (Ottawa, ON) 121:257–68. doi: 10.1016/j.foodres.2019.03.046.
  • Cui, H., E. Duhoranimana, E. Karangwa, C. Jia, and X. Zhang. 2018. Sodium sulfite pH-buffering effect for improved xylose-phenylalanine conversion to N-(1-deoxy-d-xylulos-1-yl)-phenylalanine during an aqueous Maillard reaction. Food Chemistry 246:442–7. doi: 10.1016/j.foodchem.2017.12.020.
  • Cui, H., C. Jia, K. Hayat, J. Yu, S. Deng, E. Karangwa, E. Duhoranimana, S. Xia, and X. Zhang. 2017. Controlled formation of flavor compounds by preparation and application of Maillard reaction intermediate (MRI) derived from xylose and phenylalanine. RSC Advances 7 (72):45442–51. doi: 10.1039/C7RA09355A.
  • Cui, H., Z. Wang, M. Ma, K. Hayat, Q. Zhang, Y. Xu, X. Zhang, and C.-T. Ho. 2021. Maillard browning inhibition by ellagic acid via its adduct formation with the Amadori rearrangement product. Journal of Agricultural and Food Chemistry 69 (34):9924–33. doi: 10.1021/acs.jafc.1c03481.
  • Culetu, A., B. Fernandez-Gomez, M. Ullate, D. D. C. Maria, and W. Andlauer. 2016. Effect of theanine and polyphenols enriched fractions from decaffeinated tea dust on the formation of Maillard reaction products and sensory attributes of breads. Food Chemistry 197 (Pt A):14–23. doi: 10.1016/j.foodchem.2015.10.097.
  • Dai, W., N. Lou, D. Xie, Z. Hu, H. Song, M. Lu, D. Shang, W. Wu, J. Peng, P. Yin, et al. 2020. N-ethyl-2-pyrrolidinone-substituted flavan-3-ols with anti-inflammatory activity in lipopolysaccharide-stimulated macrophages are storage-related marker compounds for green tea. Journal of Agricultural and Food Chemistry 68 (43):12164–72. doi: 10.1021/acs.jafc.0c03952.
  • de Brito, E. S., and N. Narain. 2003. Effect of pH and distillate volume on monitoring aroma quality of bittersweet chocolate. Food Quality and Preference 14 (3):219–26. doi: 10.1016/S0950-3293(02)00070-8.
  • Del Turco, S., and G. Basta. 2016. Can dietary polyphenols prevent the formation of toxic compounds from Maillard reaction? Current Drug Metabolism 17 (6):598–607. doi: 10.2174/1389200217666160308130906.
  • Delgado, R. M., F. J. Hidalgo, and R. Zamora. 2016. Antagonism between lipid-derived reactive carbonyls and phenolic compounds in the Strecker degradation of amino acids. Food Chemistry 194:1143–8. doi: 10.1016/j.foodchem.2015.07.126.
  • Fan, P., D. J. Huber, Z. Su, M. Hu, Z. Gao, M. Li, X. Shi, and Z. Zhang. 2018. Effect of postharvest spray of apple polyphenols on the quality of fresh-cut red pitaya fruit during shelf life. Food Chemistry 243:19–25. doi: 10.1016/j.foodchem.2017.09.103.
  • Fu, Z., M. J. Y. Yoo, W. Zhou, L. Zhang, Y. Chen, and J. Lu. 2018. Effect of (−)-epigallocatechin gallate (EGCG) extracted from green tea in reducing the formation of acrylamide during the bread baking process. Food Chemistry 242:162–8. doi: 10.1016/j.foodchem.2017.09.050.
  • Fujiwara, Y., N. Kiyota, K. Tsurushima, M. Yoshitomi, K. Mera, N. Sakashita, M. Takeya, T. Ikeda, T. Araki, T. Nohara, et al. 2011. Natural compounds containing a catechol group enhance the formation of Nε-(carboxymethyl)lysine of the Maillard reaction. Free Radical Biology & Medicine 50 (7):883–91. doi: 10.1016/j.freeradbiomed.2010.12.033.
  • Germann, D., T. D. Stark, and T. Hofmann. 2019a. Formation and characterization of polyphenol-derived red chromophores. Enhancing the color of processed cocoa powders: Part 1. Journal of Agricultural and Food Chemistry 67 (16):4632–42. doi: 10.1021/acs.jafc.9b01049.
  • Germann, D., T. D. Stark, and T. Hofmann. 2019b. Formation and characterization of polyphenol-derived red chromophores. Enhancing the color of processed cocoa powders: Part 2. Journal of Agricultural and Food Chemistry 67 (16):4643–51. doi: 10.1021/acs.jafc.9b01050.
  • Hafsa, J., K. M. Hammi, M. R. B. Khedher, M. A. Smach, B. Charfeddine, K. Limem, and H. Majdoub. 2016. Inhibition of protein glycation, antioxidant and antiproliferative activities of Carpobrotus edulis extracts. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 84:1496–503. doi: 10.1016/j.biopha.2016.11.046.
  • Heydari Ashkezari, M., and M. Salehifar. 2019. Inhibitory effects of pomegranate flower extract and vitamin B3 on the formation of acrylamide during the donut making process. Journal of Food Measurement and Characterization 13 (1):735–44. doi: 10.1007/s11694-018-9986-y.
  • Hidalgo, F. J., I. Aguilar, and R. Zamora. 2017. Model studies on the effect of aldehyde structure on their selective trapping by phenolic compounds. Journal of Agricultural and Food Chemistry 65 (23):4736–43. doi: 10.1021/acs.jafc.7b01081.
  • Hidalgo, F. J., R. M. Delgado, and R. Zamora. 2017. Protective effect of phenolic compounds on carbonyl-amine reactions produced by lipid-derived reactive carbonyls. Food Chemistry 229:388–95. doi: 10.1016/j.foodchem.2017.02.097.
  • Hidalgo, F. J., E. Gallardo, and R. Zamora. 2005. Strecker type degradation of phenylalanine by 4-hydroxy-2-nonenal in model systems. Journal of Agricultural and Food Chemistry 53 (26):10254–9. doi: 10.1021/jf052240+.
  • Hidalgo, F. J., and R. Zamora. 2019. Characterization of carbonyl-phenol adducts produced by food phenolic trapping of 4-hydroxy-2-hexenal and 4-hydroxy-2-nonenal. Journal of Agricultural and Food Chemistry 67 (7):2043–51. doi: 10.1021/acs.jafc.8b07091.
  • Hodge, J. E. 1953. Dehydrated foods, chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry 1 (15):928–43. doi: 10.1021/jf60015a004.
  • Huang, M., Q. Wang, X. Chen, and Y. Zhang. 2017. Unravelling effects of flavanols and their derivatives on acrylamide formation via support vector machine modelling. Food Chemistry 221:178–86. doi: 10.1016/j.foodchem.2016.10.060.
  • Ito, H., P. Li, M. Koreishi, A. Nagatomo, N. Nishida, and T. Yoshida. 2014. Ellagitannin oligomers and a neolignan from pomegranate arils and their inhibitory effects on the formation of advanced glycation end products. Food Chemistry 152:323–30. doi: 10.1016/j.foodchem.2013.11.160.
  • Jansson, T., V. Rauh, B. P. Danielsen, M. M. Poojary, S. S. Waehrens, W. L. P. Bredie, J. Sørensen, M. A. Petersen, C. A. Ray, and M. N. Lund. 2017. Green tea polyphenols decrease Strecker aldehydes and bind to proteins in lactose-hydrolyzed UHT milk. Journal of Agricultural and Food Chemistry 65 (48):10550–61. doi: 10.1021/acs.jafc.7b04137.
  • Jiang, D., C. Chiaro, P. Maddali, K. S. Prabhu, and D. G. Peterson. 2009. Identification of hydroxycinnamic acid − Maillard reaction products in low-moisture baking model systems. Journal of Agricultural and Food Chemistry 57 (21):9932–43. doi: 10.1021/jf900932h.
  • Jiang, Z., Z. Han, C. Qin, G. Lai, M. Wen, C. T. Ho, L. Zhang, and X. Wan. 2021. Model studies on the reaction products formed at roasting temperatures from either catechin or tea powder in the presence of glucose. Journal of Agricultural and Food Chemistry 69 (38):11417–26. doi: 10.1021/acs.jafc.1c03771.
  • Jing, Y., X. Li, X. Hu, Z. Ma, L. Liu, and X. Ma. 2019. Effect of buckwheat extracts on acrylamide formation and the quality of bread. Journal of the Science of Food and Agriculture 99 (14):6482–9. doi: 10.1002/jsfa.9927.
  • Kaneko, S. 2012. Isolation and identification of the umami enhancing compounds in Japanese soy sauce. Journal of the Brewing Society of JAPAN 107 (12):892–9. doi: 10.6013/jbrewsocjapan.107.892.
  • Kokkinidou, S., and D. G. Peterson. 2014. Control of Maillard-type off-flavor development in ultrahigh-temperature-processed bovine milk by phenolic chemistry. Journal of Agricultural and Food Chemistry 62 (32):8023–33. doi: 10.1021/jf501919y.
  • Lee, M. K. 2007. Inhibitory effect of banana polyphenol oxidase during ripening of banana by onion extract and Maillard reaction products. Food Chemistry 102 (1):146–9. doi: 10.1016/j.foodchem.2006.05.012.
  • Lee, C.-H., Y.-T. Chen, H. J. Hsieh, K. T. Chen, Y. A. Chen, J. T. Wu, M. S. Tsai, J. A. Lin, and C. W. Hsieh. 2020. Exploring epigallocatechin gallate impregnation to inhibit 5-hydroxymethylfurfural formation and the effect on antioxidant ability of black garlic. LWT-Food Science and Technology 117:108628. doi: 10.1016/j.lwt.2019.108628.
  • Lee, M.-K., and I. Park. 2005. Inhibition of potato polyphenol oxidase by Maillard reaction product. Food Chemistry 91 (1):57–61. doi: 10.1016/j.foodchem.2004.05.046.
  • Lee, S. M., L. W. Zheng, Y. Jung, G.-S. Hwang, and Y.-S. Kim. 2020. Effects of hydroxycinnamic acids on the reduction of furan and α-dicarbonyl compounds. Food Chemistry 312:126085. doi: 10.1016/j.foodchem.2019.126085.
  • Li, X., K. Gao, J. Bi, X. Wu, X. Li, and C. Guo. 2020. Investigation of the effects of apple polyphenols on the chromatic values of weakly acidic lysine-fructose Maillard system solutions. LWT-Food Science and Technology 125:109237. doi: 10.1016/j.lwt.2020.109237.
  • Li, M., C.-T. Ho, J. Wang, Y. Hu, X. Zhai, L. Zhang, X. Wan, and X. Yang. 2022. Formation of volatile heterocyclic compounds and open-chain amides of theanine in model systems with glucose, tea leaves, and tea extract under tea-roasting conditions. Journal of Agricultural and Food Chemistry 70 (22):6737–46. doi: 10.1021/acs.jafc.2c02039.
  • Li, Y., S. Jongberg, M. L. Andersen, M. N. Lund, and M. J. Davies. 2015. 7 – Quinone adduction to proteins: Rate constants for adduct formation at thiol and amine groups and consequences for protein modification. Free Radical Biology and Medicine 87:S15. doi: 10.1016/j.freeradbiomed.2015.10.043.
  • Lo, C. Y., S. Li, D. Tan, M. H. Pan, S. Sang, and C.-T. Ho. 2006. Trapping reactions of reactive carbonyl species with tea polyphenols in simulated physiological conditions. Molecular Nutrition & Food Research 50 (12):1118–28. doi: 10.1002/mnfr.200600094.
  • Lu, S., H. Cui, H. Zhan, K. Hayat, C. Jia, S. Hussain, M. U. Tahir, X. Zhang, and C.-T. Ho. 2019. Timely addition of glutathione for its interaction with deoxypentosone to inhibit the aqueous Maillard reaction and browning of glycylglycine–arabinose system. Journal of Agricultural and Food Chemistry 67 (23):6585–93. doi: 10.1021/acs.jafc.9b02053.
  • Luo, Y., S. Li, and C.-T. Ho. 2021. Key aspects of Amadori rearrangement products as future food additives. Molecules 26 (14):4314. doi: 10.3390/molecules26144314.
  • Ma, Q., S. Cai, Y. Jia, X. Sun, J. Yi, and J. Du. 2020. Effects of hot-water extract from vine tea (Ampelopsis grossedentata) on acrylamide formation, quality and consumer acceptability of bread. Foods 9 (3):373. doi: 10.3390/foods9030373.
  • Ma, J., X. Peng, K. M. Ng, C. M. Che, and M. Wang. 2012. Impact of phloretin and phloridzin on the formation of Maillard reaction products in aqueous models composed of glucose and L-lysine or its derivatives. Food & Function 3 (2):178–86. doi: 10.1039/c1fo10124b.
  • Meng, Q., S. Li, J. Huang, C. C. Wei, X. Wan, S. Sang, and C. T. Ho. 2019. Importance of the nucleophilic property of tea polyphenols. Journal of Agricultural and Food Chemistry 67 (19):5379–83. doi: 10.1021/acs.jafc.8b05917.
  • Mildner-Szkudlarz, S., M. Różańska, P. Piechowska, A. Waśkiewicz, and R. Zawirska-Wojtasiak. 2019. Effects of polyphenols on volatile profile and acrylamide formation in a model wheat bread system. Food Chemistry 297:125008. doi: 10.1016/j.foodchem.2019.125008.
  • Miśkiewicz, K., E. Nebesny, J. Rosicka-Kaczmarek, D. Żyżelewicz, and G. Budryn. 2018. The effects of baking conditions on acrylamide content in shortcrust cookies with added freeze-dried aqueous rosemary extract. Journal of Food Science and Technology 55 (10):4184–96. doi: 10.1007/s13197-018-3349-x.
  • Morikawa, H., K. Okuda, Y. Kunihira, A. Inada, C. Miyagi, Y. Matsuo, Y. Saito, and T. Tanaka. 2019. Oligomerization mechanism of tea catechins during tea roasting. Food Chemistry 285:252–9. doi: 10.1016/j.foodchem.2019.01.163.
  • Mottram, D. S., and R. A. Edwards. 1983. The role of triglycerides and phospholipids in the aroma of cooked beef. Journal of the Science of Food and Agriculture 34 (5):517–22. doi: 10.1002/jsfa.2740340513.
  • Mottram, D. S., B. L. Wedzicha, and A. T. Dodson. 2002. Acrylamide is formed in the Maillard reaction. Nature 419 (6906):448–9. doi: 10.1038/419448a.
  • Murata, M., H. Okada, and S. Homma. 1995. Hydroxycinnamic acid derivatives and p-coumaroyl-(L)-trypropban, a novel hydroxycinnamic acid derivative, from coffee beans. Bioscience, Biotechnology, and Biochemistry 59 (10):1887–90. doi: 10.1271/bbb.59.1887.
  • Napolitano, A., F. Morales, R. Sacchi, and V. Fogliano. 2008. Relationship between virgin olive oil phenolic compounds and acrylamide formation in fried crisps. Journal of Agricultural and Food Chemistry 56 (6):2034–40. doi: 10.1021/jf0730082.
  • Nicoli, M. C., B. E. Elizalde, A. Pitotti, and C. R. Lerici. 1991. Effect of sugars and Maillard reaction products on polyphenol oxidase and peroxidase activity in food. Journal of Food Biochemistry 15 (3):169–84. doi: 10.1111/j.1745-4514.1991.tb00153.x.
  • Noor-Soffalina, S. S., S. Jinap, S. Nazamid, and S. A. H. Nazimah. 2009. Effect of polyphenol and pH on cocoa Maillard-related flavour precursors in a lipidic model system. International Journal of Food Science & Technology 44 (1):168–80. doi: 10.1111/j.1365-2621.2008.01711.x.
  • Oral, R. A., M. Dogan, and K. Sarioglu. 2014. Effects of certain polyphenols and extracts on furans and acrylamide formation in model system, and total furans during storage. Food Chemistry 142:423–9. doi: 10.1016/j.foodchem.2013.07.077.
  • Ou, J. 2021. Incorporation of polyphenols in baked products. Chapter 6. In Advances in food and nutrition research, ed. D. Granato, vol. 98, 207–52. Cambridge, MA: Academic Press.
  • Pantalone, S., L. Tonucci, A. Cichelli, L. Cerretani, A. M. Gómez-Caravaca, and N. d’Alessandro. 2021. Acrylamide mitigation in processed potato derivatives by addition of natural phenols from olive chain by-products. Journal of Food Composition and Analysis 95:103682. doi: 10.1016/j.jfca.2020.103682.
  • Pasqualone, A., A. M. Bianco, V. M. Paradiso, C. Summo, G. Gambacorta, and F. Caponio. 2014. Physico-chemical, sensory and volatile profiles of biscuits enriched with grape marc extract. Food Research International 65:385–93. doi: 10.1016/j.foodres.2014.07.014.
  • Pedreschi, F., I. Saavedra, A. Bunger, R. N. Zuñiga, R. Pedreschi, R. Chirinos, D. Campos, and M. S. Mariotti-Celis. 2018. Tara pod (Caesalpinia spinosa) extract mitigates neo-contaminant formation in Chilean bread preserving their sensory attributes. LWT-Food Science and Technology 95:116–22. doi: 10.1016/j.indcrop.2013.03.009.
  • Perusko, M., A. Al-Hanish, J. Mihailovic, S. Minic, S. Trifunovic, I. Prodic, and T. C. Velickovic. 2017. Antioxidative capacity and binding affinity of the complex of green tea catechin and beta-lactoglobulin glycated by the Maillard reaction. Food Chemistry 232:744–52. doi: 10.1016/j.foodchem.2017.04.074.
  • Petit, E., R. Jacquet, L. Pouységu, D. Deffieux, and S. Quideau. 2019. Reactivity of wine polyphenols under oxidation conditions: Hemisynthesis of adducts between grape catechins or oak ellagitannins and odoriferous thiols. Tetrahedron 75 (5):551–60. doi: 10.1016/j.tet.2018.11.071.
  • Pierpoint, W. S. 1969. o-Quinones formed in plant extracts. Their reactions with amino acids and peptides. The Biochemical Journal 112 (5):609–16. doi: 10.1042/bj1120609.
  • Qi, Y., H. Zhang, G. Wu, H. Zhang, L. Gu, L. Wang, H. Qian, and X. Qi. 2018a. Mitigation effects of proanthocyanidins with different structures on acrylamide formation in chemical and fried potato crisp models. Food Chemistry 250:98–104. doi: 10.1016/j.foodchem.2018.01.012.
  • Qi, Y., H. Zhang, G. Wu, H. Zhang, L. Gu, L. Wang, H. Qian, and X. Qi. 2018b. Reduction of 5-hydroxymethylfurfural formation by flavan-3-ols in Maillard reaction models and fried potato chips. Journal of the Science of Food and Agriculture 98 (14):5294–301. doi: 10.1002/jsfa.9068.
  • Qi, Y., H. Zhang, G. Wu, H. Zhang, L. Gu, L. Wang, H. Qian, and X. Qi. 2018c. Epicatechin adducting with 5-hydroxymethylfurfural as an inhibitory mechanism against acrylamide formation in Maillard reactions. Journal of Agricultural and Food Chemistry 66 (47):12536–43. doi: 10.1021/acs.jafc.8b03952.
  • Rizzi, G. P. 2006. Formation of Strecker aldehydes from polyphenol-derived quinones and α-amino acids in a nonenzymic model system. Journal of Agricultural and Food Chemistry 54 (5):1893–7. doi: 10.1021/jf052781z.
  • Saka, M., S. Ilas, and P. Jovanov. 2018. The influence of polyphenols on the formation of free radicals detected in Maillard reaction model systems. Food and Feed Research 45 (7):187–92. doi: 10.5937/FFR1802187S.
  • Sasaki, K., S. Chiba, and F. Yoshizaki. 2014. Effect of natural flavonoids, stilbenes and caffeic acid oligomers on protein glycation. Biomedical Reports 2 (5):628–32. doi: 10.3892/br.2014.304.
  • Schieberle, P., R. Fischer, T. F. Hofmann, J. L. L. Quéré, and P. Etiévant. 2003. The carbohydrate module labelling technique - A useful tool to clarify formation pathways of aroma compounds formed in Maillard-type reactions. In Proceedings of the 10th Weurman Flavour Research Symposium, 447–52. CABI.
  • Shao, X., N. Bai, K. He, C. T. Ho, C. S. Yang, and S. Sang. 2008. Apple polyphenols, phloretin and phloridzin: New trapping agents of reactive dicarbonyl species. Chemical Research in Toxicology 21 (10):2042–50. doi: 10.1021/tx800227v.
  • Shen, Y., Z. Xu, and Z. Sheng. 2017. Ability of resveratrol to inhibit advanced glycation end product formation and carbohydrate-hydrolyzing enzyme activity, and to conjugate methylglyoxal. Food Chemistry 216:153–60. doi: 10.1016/j.foodchem.2016.08.034.
  • Silván, J. M., S. H. Assar, C. Srey, M. Dolores del Castillo, and J. M. Ames. 2011. Control of the Maillard reaction by ferulic acid. Food Chemistry 128 (1):208–13. doi: 10.1016/j.foodchem.2011.03.047.
  • Stark, T., and T. Hofmann. 2005. Isolation, structure determination, synthesis, and sensory activity of N-phenylpropenoyl-L-amino acids from cocoa (Theobroma cacao). Journal of Agricultural and Food Chemistry 53 (13):5419–28. doi: 10.1021/jf050458q.
  • Stark, T., and T. Hofmann. 2006. Application of a molecular sensory science approach to alkalized cocoa (Theobroma cacao): Structure determination and sensory activity of nonenzymatically C-glycosylated flavan-3-ols. Journal of Agricultural and Food Chemistry 54 (25):9510–21. doi: 10.1021/jf062403+.
  • Stark, T., H. Justus, and T. Hofmann. 2006. Quantitative analysis of N-phenylpropenoyl-L-amino acids in roasted coffee and cocoa powder by means of a stable isotope dilution assay. Journal of Agricultural and Food Chemistry 54 (8):2859–67. doi: 10.1021/jf053207q.
  • Stark, T., D. Keller, K. Wenker, H. Hillmann, and T. Hofmann. 2007. Nonenzymatic C-glycosylation of flavan-3-ols by oligo- and polysaccharides. Journal of Agricultural and Food Chemistry 55 (23):9685–97. doi: 10.1021/jf0719508.
  • Suantawee, T., H. Cheng, and S. Adisakwattana. 2016. Protective effect of cyanidin against glucose- and methylglyoxal-induced protein glycation and oxidative DNA damage. International Journal of Biological Macromolecules 93:814–21. doi: 10.1016/j.ijbiomac.2016.09.059.
  • Tan, J., W. J. C. de Bruijn, A. van Zadelhoff, Z. Lin, and J.-P. Vincken. 2020. Browning of epicatechin (EC) and epigallocatechin (EGC) by auto-oxidation. Journal of Agricultural and Food Chemistry 68 (47):13879–87. doi: 10.1021/acs.jafc.0c05716.
  • Tang, W., H. Cui, F. Sun, X. Yu, K. Hayat, S. Hussain, M. U. Tahir, X. Zhang, and C.-T. Ho. 2019. N-(1-Deoxy-d-xylulos-1-yl)-glutathione: A Maillard reaction intermediate predominating in aqueous glutathione-xylose systems by simultaneous dehydration-reaction. Journal of Agricultural and Food Chemistry 67 (32):8994–9001. doi: 10.1021/acs.jafc.9b04694.
  • Torres, J. D., V. Dueik, D. Carré, and P. Bouchon. 2019. Effect of the addition of soluble dietary fiber and green tea polyphenols on acrylamide formation and in vitro starch digestibility in baked starchy matrices. Molecules 24 (20):3674. doi: 10.3390/molecules24203674.
  • Totlani, V. M., and D. G. Peterson. 2005. Reactivity of epicatechin in aqueous glycine and glucose maillard reaction models: Quenching of C2, C3, and C4 sugar fragments. Journal of Agricultural and Food Chemistry 53 (10):4130–5. doi: 10.1021/jf050044x.
  • Totlani, V. M., and D. G. Peterson. 2006. Epicatechin carbonyl-trapping reactions in aqueous Maillard systems: Identification and structural elucidation. Journal of Agricultural and Food Chemistry 54 (19):7311–8. doi: 10.1021/jf061244r.
  • Totlani, V. M., and D. G. Peterson. 2007. Influence of epicatechin reactions on the mechanisms of Maillard product formation in low moisture model systems. Journal of Agricultural and Food Chemistry 55 (2):414–20. doi: 10.1021/jf0617521.
  • Troise, A. D., A. Fiore, A. Colantuono, S. Kokkinidou, D. G. Peterson, and F. V. Ogliano. 2014. Effect of olive mill wastewater phenol compounds on reactive carbonyl species and Maillard reaction end-products in ultrahigh-temperature-treated milk. Journal of Agricultural and Food Chemistry 62 (41):10092–100. doi: 10.1021/jf503329d.
  • Tu, A. T., J. A. Lin, C. H. Lee, Y. A. Chen, J. T. Wu, M. S. Tsai, K. C. Cheng, and C.-W. Hsieh. 2021. Reduction of 3-deoxyglucosone by epigallocatechin gallate results partially from an addition reaction: The possible mechanism of decreased 5-hydroxymethylfurfural in epigallocatechin gallate-treated black garlic. Molecules 26 (16):4746. doi: 10.3390/molecules26164746.
  • Vámos-Vigyázó, L. 1981. Polyphenol oxidase and peroxidase in fruits and vegetables. Critical Reviews in Food Science and Nutrition 15 (1):49–127. doi: 10.1080/10408398109527312.
  • Wang, Y., H. Cui, Q. Zhang, K. Hayat, J. Yu, S. Hussain, M. U. Tahir, X. Zhang, and C.-T. Ho. 2021. Proline-glucose Amadori compounds: Aqueous preparation, characterization and saltiness enhancement. Food Research International (Ottawa, ON) 144:110319. doi: 10.1016/j.foodres.2021.110319.
  • Whitfield, F. B., and D. S. Mottram. 1992. Volatiles from interactions of Maillard reactions and lipids. Critical Reviews in Food Science and Nutrition 31 (1–2):1–58. doi: 10.1080/1040839920952756.
  • Wu, Q., Y. Ouyang, Y. Kong, Y. Min, J. Xiao, S. Li, M. Zhou, N. Feng, and L. Zhang. 2021. Catechin inhibits the release of advanced glycation end products during glycated bovine serum albumin digestion and corresponding mechanisms in vitro. Journal of Agricultural and Food Chemistry 69 (31):8807–18. doi: 10.1021/acs.jafc.1c03348.
  • Wu, Q., S. Tang, L. Zhang, J. Xiao, Q. Luo, Y. Chen, M. Zhou, N. Feng, and C. Wang. 2020. The inhibitory effect of the catechin structure on advanced glycation end product formation in alcoholic media. Food & Function 11 (6):5396–408. doi: 10.1039/C9FO02887K.
  • Wu, Q., and J. Zhou. 2021. The application of polyphenols in food preservation. Chapter 2. In Advances in food and nutrition research, ed. D. Granato, vol. 98, 35–99. Cambridge, MA: Academic Press.
  • Xu, X., and X. An. 2016. Study on acrylamide inhibitory mechanism in Maillard model reaction: Effect of p-coumaric acid. Food Research International 84:9–17. doi: 10.1016/j.foodres.2016.03.020.
  • Xu, M., H. Cui, F. Sun, C. Jia, S.-L. Zhang, S. Hussain, M. U. Tahir, X. Zhang, and K. Hayat. 2019. Preparation of N-(1-deoxy-α-D-xylulos-1-yl)-glutamic acid via aqueous Maillard reaction coupled with vacuum dehydration and its flavor formation through thermal treatment of baking process. Journal of Food Science 84 (8):2171–80. doi: 10.1111/1750-3841.14733.
  • Xu, C., Y. Yagiz, S. Marshall, Z. Li, A. Simonne, J. Lu, and M. R. Marshall. 2015. Application of muscadine grape (Vitis rotundifolia Michx.) pomace extract to reduce carcinogenic acrylamide. Food Chemistry 182:200–8. doi: 10.1016/j.foodchem.2015.02.133.
  • Yang, B.-H., E.-H. Choi, and S.-M. Shim. 2017. Inhibitory activities of kaempferol against methylglyoxal formation, intermediate of advanced glycation end products. Applied Biological Chemistry 60 (1):57–62. doi: 10.1007/s13765-016-0251-y.
  • Yang, Y., H. Shen, T. Liu, Y. Wen, F. Wang, and Y. Guo. 2021. Mitigation effects of phlorizin immersion on acrylamide formation in fried potato strips. Journal of the Science of Food and Agriculture 101 (3):937–46. doi: 10.1002/jsfa.10701.
  • Yin, J., R. V. Hedegaard, L. H. Skibsted, and M. L. Andersen. 2014. Epicatechin and epigallocatechin gallate inhibit formation of intermediary radicals during heating of lysine and glucose. Food Chemistry 146:48–55. doi: 10.1016/j.foodchem.2013.09.032.
  • Yoon, S.-R., and S.-M. Shim. 2015. Inhibitory effect of polyphenols in Houttuynia cordata on advanced glycation end-products (AGEs) by trapping methylglyoxal. LWT 61 (1):158–63. doi: 10.1016/j.lwt.2014.11.014.
  • Yu, X., H. Cui, K. Hayat, S. Hussain, C. Jia, S. L. Zhang, M. U. Tahir, X. Zhang, and C. T. Ho. 2019. Effective mechanism of (-)-epigallocatechin gallate indicating the critical formation conditions of Amadori compound during an aqueous Maillard reaction. Journal of Agricultural and Food Chemistry 67 (12):3412–22. doi: 10.1021/acs.jafc.9b00034.
  • Yu, J., H. Cui, Q. Zhang, K. Hayat, H. Zhan, J. Yu, C. Jia, X. Zhang, and C.-T. Ho. 2020. Adducts derived from (−)-epigallocatechin gallate-Amadori rearrangement products in aqueous reaction systems: Characterization, formation, and thermolysis. Journal of Agricultural and Food Chemistry 68 (39):10902–11. doi: 10.1021/acs.jafc.0c05098.
  • Zamora, R., and F. J. Hidalgo. 2005. Coordinate contribution of lipid oxidation and Maillard reaction to the nonenzymatic food browning. Critical Reviews in Food Science and Nutrition 45 (1):49–59. doi: 10.1080/10408690590900117.
  • Zamora, R., and F. J. Hidalgo. 2016. The triple defensive barrier of phenolic compounds against the lipid oxidation-induced damage in food products. Trends in Food Science and Technology 54:165–74. doi: 10.1016/j.tifs.2016.06.006.
  • Zamora, R., and F. J. Hidalgo. 2018. Carbonyl-phenol Adducts: An alternative sink for reactive and potentially toxic lipid oxidation products. Journal of Agricultural and Food Chemistry 66 (6):1320–4. doi: 10.1021/acs.jafc.7b05360.
  • Zhai, Y., H. Cui, K. Hayat, S. Hussain, M. U. Tahir, J. Yu, C. Jia, X. Zhang, and C.-T. Ho. 2019. Interaction of added L-cysteine with 2-threityl-thiazolidine-4-carboxylic acid derived from the xylose–cysteine system affecting its Maillard browning. Journal of Agricultural and Food Chemistry 67 (31):8632–40. doi: 10.1021/acs.jafc.9b04374.
  • Zhang, Y., and X. An. 2017. Inhibitory mechanism of quercetin against the formation of 5-(hydroxymethyl)-2-furaldehyde in buckwheat flour bread by ultra-performance liquid chromatography coupled with high-resolution tandem mass spectrometry. Food Research International (Ottawa, ON) 95:68–81. doi: 10.1016/j.foodres.2017.03.007.
  • Zhang, X., F. Chen, and M. Wang. 2013. Impacts of selected dietary polyphenols on caramelization in model systems. Food Chemistry 141 (4):3451–8. doi: 10.1016/j.foodchem.2013.06.053.
  • Zhang, Y., M. Huang, Q. Wang, and J. Cheng. 2016. Structure-guided unravelling: Phenolic hydroxyls contribute to reduction of acrylamide using multiplex quantitative structure–activity relationship modelling. Food Chemistry 199 (5):492–501. doi: 10.1016/j.foodchem.2015.12.038.
  • Zhang, L., Y. Xia, and D. G. Peterson. 2014. Identification of bitter modulating Maillard-catechin reaction products. Journal of Agricultural and Food Chemistry 62 (33):8470–7. doi: 10.1021/jf502040e.
  • Zhang, Z., Y. Zou, T. Wu, C. Huang, K. Pei, G. Zhang, X. Lin, W. Bai, and S. Ou. 2016. Chlorogenic acid increased 5-hydroxymethylfurfural formation when heating fructose alone or with aspartic acid at two pH levels. Food Chemistry 190:832–5. doi: 10.1016/j.foodchem.2015.06.041.
  • Zhao, L., F. Yan, Q. Lu, C. Tang, X. Wang, and R. Liu. 2022. UPLC-Q-TOF-MS and NMR identification of structurally different A-type procyanidins from peanut skin and their inhibitory effect on acrylamide. Journal of the Science of Food and Agriculture 102 (15):7062–71. doi: 10.1002/jsfa.12067.
  • Zhao, L., T. Zhou, F. Yan, X. Zhu, Q. Lu, and R. Liu. 2019. Synergistic inhibitory effects of procyanidin B2 and catechin on acrylamide in food matrix. Food Chemistry 296:94–9. doi: 10.1016/j.foodchem.2019.05.102.
  • Zhou, Q., K.-W. Cheng, J. Gong, E. T. S. Li, and M. Wang. 2019. Apigenin and its methylglyoxal-adduct inhibit advanced glycation end products-induced oxidative stress and inflammation in endothelial cells. Biochemical Pharmacology 166:231–41. doi: 10.1016/j.bcp.2019.05.027.
  • Zhou, J., Y. Wu, P. Long, C.-T. Ho, Y. Wang, Z. Kan, L. Cao, L. Zhang, and X. Wan. 2019. LC-MS-based metabolomics reveals the chemical changes of polyphenols during high-temperature roasting of large-leaf yellow tea. Journal of Agricultural and Food Chemistry 67 (19):5405–12. doi: 10.1021/acs.jafc.8b05062.
  • Zhu, H., M. M. Poojary, M. L. Andersen, and M. N. Lund. 2019. Effect of pH on the reaction between naringenin and methylglyoxal: A kinetic study. Food Chemistry 298:125086. doi: 10.1016/j.foodchem.2019.125086.
  • Zhu, H., M. M. Poojary, M. L. Andersen, and M. N. Lund. 2020. Trapping of carbonyl compounds by epicatechin: Reaction kinetics and identification of epicatechin adducts in stored UHT milk. Journal of Agricultural and Food Chemistry 68 (29):7718–26. doi: 10.1021/acs.jafc.0c01761.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.