1,223
Views
6
CrossRef citations to date
0
Altmetric
Review Articles

Plant proteins as the functional building block of edible microcarriers for cell-based meat culture application

, &

References

  • Adhikari, H. S., and P. N. Yadav. 2018. Anticancer activity of chitosan, chitosan derivatives, and their mechanism of action. International Journal of Biomaterials 2018:2952085. 2018
  • Ahmed, T. A., E. V. Dare, and M. Hincke. 2008. Fibrin: A versatile scaffold for tissue engineering applications. Tissue Engineering. Part B, Reviews 14 (2):199–215.
  • Andreassen, R. C., S. B. Rønning, N. T. Solberg, K. G. Grønlien, K. A. Kristoffersen, V. Høst, S. O. Kolset, and M. E. Pedersen. 2022. Production of food-grade microcarriers based on by-products from the food industry to facilitate the expansion of bovine skeletal muscle satellite cells for cultured meat production. Biomaterials 286:121602. doi: 10.1016/j.biomaterials.2022.121602.
  • Arora, H., N. Shang, K. S. Bhullar, and J. Wu. 2020. Pea protein-derived tripeptide LRW shows osteoblastic activity on MC3T3-E1 cells via the activation of the Akt/Runx2 pathway. Food & Function 11 (8):7197–207. doi: 10.1039/d0fo00497a.
  • Ballez, J. S., J. Mols, C. Burteau, S. N. Agathos, and Y. J. Schneider. 2004. Plant protein hydrolysates support CHO-320 cells proliferation and recombinant IFN-γ production in suspension and inside microcarriers in protein-free media. Cytotechnology 44 (3):103–14. doi: 10.1007/s10616-004-1099-2.
  • Bello, A. B., D. Kim, D. Kim, H. Park, and S.-H. Lee. 2020. Engineering and functionalization of gelatin biomaterials: From cell culture to medical applications. Tissue Engineering. Part B, Reviews 26 (2):164–80.
  • Ben-Arye, T, and S. Levenberg. 2019. Tissue engineering for clean meat production. Frontiers in Sustainable Food Systems 3:1–10. doi: 10.3389/fsufs.2019.00046.
  • Ben-Arye, T., Y. Shandalov, S. Ben-Shaul, S. Landau, Y. Zagury, I. Ianovici, N. Lavon, and S. Levenberg. 2020. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nature Food 1 (4):210–20. doi: 10.1038/s43016-020-0046-5.
  • Benjaminson, M. A., J. A. Gilchriest, and M. Lorenz. 2002. In vitro edible muscle protein production system (MPPS): Stage 1, fish. Acta Astronautica 51 (12):879–89.
  • Bodiou, V., P. Moutsatsou, and M. J. Post. 2020. Microcarriers for upscaling cultured meat production. Frontiers in Nutrition 7:10.
  • Burgess, W. H., T. Mehlman, D. R. Marshak, B. A. Fraser, and T. Maciag. 1986. Structural evidence that endothelial cell growth factor beta is the precursor of both endothelial cell growth factor alpha and acidic fibroblast growth factor. Proceedings of the National Academy of Sciences, 83i:7216–20.
  • Burteau, C. C., F. R. Verhoeye, J. F. Mols, J.-S. Ballez, S. N. Agathos, and Y.-J. Schneider. 2003. Fortification of a protein-free cell culture medium with plant peptones improves cultivation and productivity of an interferon-I3-producing CHO cell line. In Vitro Cellular & Developmental Biology - Animal 39 (7):291. doi: 10.1290/1543-706X(2003)039<0291:FOAPCC>2.0.CO;2.
  • Capretto, L., S. Mazzitelli, G. Luca, and C. Nastruzzi. 2010. Preparation and characterization of polysaccharidic microbeads by a microfluidic technique: Application to the encapsulation of Sertoli cells. Acta Biomaterialia 6 (2):429–35. doi: 10.1016/j.actbio.2009.08.023.
  • Chabanon, G., L. A. da Costa, B. Farges, C. Harscoat, S. Chenu, J. Goergen, A. Marc, I. Marc, and I. Chevalot. 2008. Influence of the rapeseed protein hydrolysis process on CHO cell growth. Bioresource Technology 99 (15):7143–51. doi: 10.1016/j.biortech.2007.12.070.
  • Chaicharoenaudomrung, N., P. Kunhorm, and P. Noisa. 2019. Three-dimensional cell culture systems as an in vitro platform for cancer and stem cell modeling. World Journal of Stem Cells 11 (12):1065–83. doi: 10.4252/wjsc.v11.i12.1065.
  • Chen, A. K.-L., X. Chen, A. B. H. Choo, S. Reuveny, and S. K. W. Oh. 2011. Critical microcarrier properties affecting the expansion of undifferentiated human embryonic stem cells. Stem Cell Research 7 (2):97–111.
  • Chen, S, and O. Paredes-Lopez. 1997. Isolation and characterization of the 11S globulin from amaranth seeds. Journal of Food Biochemistry 21 (6):53–65. doi: 10.1111/j.1745-4514.1997.tb00224.x.
  • Chui, C.-Y., A. Odeleye, L. Nguyen, N. Kasoju, E. Soliman, and H. Ye. 2019. Electrosprayed genipin cross-linked alginate–chitosan microcarriers for ex vivo expansion of mesenchymal stem cells. Journal of Biomedical Materials Research. Part A 107 (1):122–33. doi: 10.1002/jbm.a.36539.
  • Chun, B.-H., J.-H. Kim, H.-J. Lee, and N. Chung. 2007. Usability of size-excluded fractions of soy protein hydrolysates for growth and viability of Chinese hamster ovary cells in protein-free suspension culture. Bioresource Technology 98 (5):1000–5. doi: 10.1016/j.biortech.2006.04.012.
  • Dia, V. P, and E. G. De Mejia. 2011. Lunasin induces apoptosis and modifies the expression of genes associated with extracellular matrix and cell adhesion in human metastatic colon cancer cells. Molecular Nutrition & Food Research 55 (4):623–34. doi: 10.1002/mnfr.201000419.
  • Ding, S.-L., X. Liu, X.-Y. Zhao, K.-T. Wang, W. Xiong, Z.-L. Gao, C.-Y. Sun, M.-X. Jia, C. Li, Q. Gu, et al. 2022. Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioactive Materials 17:81–108.
  • Dong, S., P. Guo, G-y Chen, N. Jin, and Y. Chen. 2020. Study on the atmospheric cold plasma (ACP) treatment of zein film: Surface properties and cytocompatibility. International Journal of Biological Macromolecules 153:1319–27. doi: 10.1016/j.ijbiomac.2019.10.268.
  • Farges-Haddani, B., B. Tessier, S. Chenu, I. Chevalot, C. Harscoat, I. Marc, J. L. Goergen, and A. Marc. 2006. Peptide fractions of rapeseed hydrolysates as an alternative to animal proteins in CHO cell culture media. Process Biochemistry 41 (11):2297–304. doi: 10.1016/j.procbio.2006.06.002.
  • Fernandes, A. M., O. d S. Teixeira, J. P. Revillion, and  R L d Souza. 2022. Panorama and ambiguities of cultured meat: An integrative approach. Critical Reviews in Food Science and Nutrition 62 (20):5413–23. doi: 10.1080/10408398.2021.1885006.
  • Franek, F., O. Hohenwarter, and H. Katinger. 2000. Plant protein hydrolysates: Preparation of defined peptide fractions promoting growth and production in animal cells cultures. Biotechnology Progress 16 (5):688–92. doi: 10.1021/bp0001011.
  • Gagliardi, A., D. Paolino, N. Costa, M. Fresta, and D. Cosco. 2021. Zein-vs PLGA-based nanoparticles containing rutin: A comparative investigation. Materials Science & Engineering. C, Materials for Biological Applications 118:111538.
  • Ghosh, P. 2013. World’s first lab-grown burger is eaten in London. BBC News. Accessed May 09, 2016. http://www.bbc.com/news/scienceenvironment-23576143
  • Girón-Calle, J., M. Alaiz, and J. Vioque. 2010. Effect of chickpea protein hydrolysates on cell proliferation and in vitro bioavailability. Food Research International 43 (5):1365–70. doi: 10.1016/j.foodres.2010.03.020.
  • Girón-Calle, J., J. Vioque, J. Pedroche, M. Alaiz, M. M. Yust, C. Megías, and F. Millán. 2008. Chickpea protein hydrolysate as a substitute for serum in cell culture. Cytotechnology 57 (3):263–72.
  • Hadidi, M., S. Jafarzadeh, M. Forough, F. Garavand, S. Alizadeh, A. Salehabadi, A. M. Khaneghah, and S. M. Jafari. 2022. Plant protein-based food packaging films; recent advances in fabrication, characterization, and applications. Trends in Food Science & Technology 120:154–73. doi: 10.1016/j.tifs.2022.01.013.
  • Hoesli, C. A., R. L. Kiang, K. Raghuram, R. G. Pedroza, K. E. Markwick, A. M. Colantuoni, and J. M. Piret. 2017. Mammalian cell encapsulation in alginate beads using a simple stirred vessel. Journal of Visualized Experiments 124:e55280.
  • Huang, J., K. Huang, X. You, G. Liu, G. Hollett, Y. Kang, Z. Gu, and J. Wu. 2018. Evaluation of tofu as a potential tissue engineering scaffold. Journal of Materials Chemistry. B 6 (9):1328–34.
  • Huettner, N., T. R. Dargaville, and A. Forget. 2018. Discovering cell-adhesion peptides in tissue engineering: Beyond RGD. Trends in Biotechnology 36 (4):372–83.
  • Ianovici, I., Y. Zagury, I. Redenski, N. Lavon, and S. Levenberg. 2022. 3D-printable plant protein-enriched scaffolds for cultivated meat development. Biomaterials 284:121487.
  • Jairath, G., G. Mal, D. Gopinath, and B. Singh. 2021. A holistic approach to access the viability of cultured meat: A review. Trends in Food Science & Technology 110:700–10. doi: 10.1016/j.tifs.2021.02.024.
  • Jin, Q., L. Yang, N. Poe, and H. Huang. 2018. Integrated processing of plant-derived waste to produce value-added products based on the biorefinery concept. Trends in Food Science & Technology 74:119–31. doi: 10.1016/j.tifs.2018.02.014.
  • Jing, L., J. Sun, H. Liu, X. Wang, and D. Huang. 2021. Using Plant Proteins to Develop Composite Scaffolds for Cell Culture Applications. International Journal of Bioprinting 7 (1):298–
  • K. Handral., H. Hua Tay, S. Wan Chan, W, and Choudhury, D. 2022. 3D Printing of cultured meat products. Critical Reviews in Food Science and Nutrition 62 (1):272–81. doi: 10.1080/10408398.2020.1815172.
  • Kapp, T. G., F. Rechenmacher, S. Neubauer, O. V. Maltsev, E. A. Cavalcanti-Adam, R. Zarka, U. Reuning, J. Notni, H.-J. Wester, C. Mas-Moruno, et al. 2017. A comprehensive evaluation of the activity and selectivity profile of ligands for RGD-binding integrins. Scientific Reports 7 (1):1–13. doi: 10.1038/srep39805.
  • Khazaei, H., M. Subedi, M. Nickerson, C. Martínez-Villaluenga, J. Frias, and A. Vandenberg. 2019. Seed protein of lentils: Current status, progress, and food applications. Foods 8 (9):391. doi: 10.3390/foods8090391.
  • Ko, J. H., H. Yin, J. An, D. J. Chung, J.-H. Kim, S. B. Lee, and D. G. Pyun. 2010. Characterization of cross-linked gelatin nanofibers through electrospinning. Macromolecular Research 18 (2):137–43. doi: 10.1007/s13233-009-0103-2.
  • Kong, Y., S. Ong, M. H. Liu, H. Yu, and D. Huang. 2022. Functional composite microbeads for cell-based meat culture: Effect of animal gelatin coating on cell proliferation and differentiation. Journal of Physics D: Applied Physics 55 (34):345401. doi: 10.1088/1361-6463/ac7011.
  • Kovtun, A., M. J. Goeckelmann, A. A. Niclas, E. B. Montufar, M.-P. Ginebra, J. A. Planell, M. Santin, and A. Ignatius. 2015. In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams. Acta Biomaterialia 12:242–9.
  • Lam, C. X., D. W. Hutmacher, J. T. Schantz, M. A. Woodruff, and S. H. Teoh. 2009. Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. Journal of Biomedical Materials Research. Part A 90 (3):906–19.
  • Laurance, W. F, and J. Engert. 2022. Sprawling cities are rapidly encroaching on Earth’s biodiversity. Proceedings of the National Academy of Sciences 119:e2202244119.
  • Lee, D. Y., S. Y. Lee, J. W. Jung, J. H. Kim, D. H. Oh, H. W. Kim, J. H. Kang, J. S. Choi, G.-D. Kim, and S.-T. Joo. 2022. Review of technology and materials for the development of cultured meat. Critical Reviews in Food Science & Nutrition 1–25. doi: 10.1080/10408398.2022.2063249.
  • Lee, Y. K., S. Y. Kim, K. H. Kim, B.-H. Chun, K.-H. Lee, D. J. Oh, and N. Chung. 2008. Use of soybean protein hydrolysates for promoting proliferation of human keratinocytes in serum-free medium. Biotechnology Letters 30 (11):1931–6.
  • Lerman, M. J., J. Lembong, S. Muramoto, G. Gillen, and J. P. Fisher. 2018. The evolution of polystyrene as a cell culture material. Tissue Engineering Part B: Reviews 24 (5):359–72. doi: 10.1089/ten.TEB.2018.0056.
  • Levi, S., F.-C. Yen, L. Baruch, and M. Machluf. 2022. Scaffolding technologies for the engineering of cultured meat: Towards a safe, sustainable, and scalable production. Trends in Food Science & Technology 126:13–25. doi: 10.1016/j.tifs.2022.05.011.
  • Li, B., X. Wang, Y. Wang, W. Gou, X. Yuan, J. Peng, Q. Guo, and S. Lu. 2015. Past, present, and future of microcarrier-based tissue engineering. Journal of Orthopaedic Translation 3 (2):51–7. doi: 10.1016/j.jot.2015.02.003.
  • Li, W., Y. Han, H. Yang, G. Wang, R. Lan, and J.-Y. Wang. 2016. Preparation of microcarriers based on zein and their application in cell culture. Materials Science & Engineering. C, Materials for Biological Applications 58:863–9.
  • Liu, J. Y., J. Hafner, G. Dragieva, and G. Burg. 2004. Bioreactor microcarrier cell culture system (Bio-MCCS) for large-scale production of autologous melanocytes. Cell Transplantation 13 (7–8):809–16.
  • Lu, G., L. Zhu, L. Kong, L. Zhang, Y. Gong, N. Zhao, and X. Zhang. 2006. Porous chitosan microcarriers for large scale cultivation of cells for tissue engineering: Fabrication and evaluation. Tsinghua Science & Technology 11 (4):427–32. doi: 10.1016/S1007-0214(06)70212-7.
  • Luetchford, K. A., J. B. Chaudhuri, and A. Paul. 2020. Silk fibroin/gelatin microcarriers as scaffolds for bone tissue engineering. Materials Science & Engineering. C, Materials for Biological Applications 106:110116.
  • Ma, M., W. He, X. Liu, Y. Zheng, J. Peng, Y. Xie, H. Meng, and Y. Wang. 2022. Soybean protein isolate/chitosan composite microcarriers for expansion and osteogenic differentiation of stem cells. Composites Part B: Engineering 230:109533. doi: 10.1016/j.compositesb.2021.109533.
  • MacQueen, L. A., C. G. Alver, C. O. Chantre, S. Ahn, L. Cera, G. M. Gonzalez, B. B. O’Connor, D. J. Drennan, M. M. Peters, S. E. Motta, et al. 2019. Muscle tissue engineering in fibrous gelatin: Implications for meat analogs. NPJ Science of Food 3 (1):20.
  • Moreno, F. J., L. A. Rubio, A. Olano, and A. Clemente. 2006. Uptake of 2S albumin allergens, Ber e 1 and Ses i 1, across human intestinal epithelial Caco-2 cell monolayers. Journal of Agricultural and Food Chemistry 54 (22):8631–9. doi: 10.1021/jf061760h.
  • Ng, E. T., S. Singh, W. S. Yap, S. H. Tay, and D. Choudhury. 2021. Cultured meat - a patentometric analysis. Critical Reviews in Food Science & Nutrition 1–11. doi: 10.1080/10408398.2021.1980760.
  • Ong, S., L. Loo, M. Pang, R. Tan, Y. Teng, X. Lou, S. K. Chin, M. Y. Naik, and H. Yu. 2021. Decompartmentalisation as a simple color manipulation of plant-based marbling meat alternatives. Biomaterials 277:121107.
  • Park, S, and K. M. Park. 2016. Engineered polymeric hydrogels for 3D tissue models. Polymers 8 (1):23. doi: 10.3390/polym8010023.
  • Post, M. J., S. Levenberg, D. L. Kaplan, N. Genovese, J. Fu, C. J. Bryant, N. Negowetti, K. Verzijden, and P. Moutsatsou. 2020. Scientific, sustainability and regulatory challenges of cultured meat. Nature Food 1 (7):403–15. doi: 10.1038/s43016-020-0112-z.
  • Preissmann, A., R. Wiesmann, R. Buchholz, R. G. Werner, and W. Noe. 1997. Investigations on oxygen limitations of adherent cells growing on macroporous microcarriers. Cytotechnology 24 (2):121–34.
  • Reddy, N., Q. Jiang, and Y. Yang. 2011. Novel wheat protein films as substrates for tissue engineering. Journal of Biomaterials Science, Polymer Edition 22 (15):2063–77. doi: 10.1163/092050610X532638.
  • Ross, R. 1971. The smooth muscle cell: II. Growth of smooth muscle in culture and formation of elastic fibers. The Journal of Cell Biology 50 (1):172–86.
  • Ruiz, R., R. Olías, A. Clemente, and L. A. Rubio. 2020. A pea (Pisum sativum L.) seed vicilins hydrolysate exhibits PPARγ ligand activity and modulates adipocyte differentiation in a 3T3-L1 cell culture model. Foods 9 (6):793. doi: 10.3390/foods9060793.
  • Rusnati, M., E. Tanghetti, P. Dell’Era, A. Gualandris, and M. Presta. 1997. αvβ3 Integrin mediates the cell-adhesive capacity and biological activity of basic fibroblast growth factor (FGF-2) in cultured endothelial cells. Molecular Biology of the Cell 8 (12):2449–61.
  • Sá, A. G. A., D. C. da Silva, M. T. B. Pacheco, Y. M. F. Moreno, and B. A. M. Carciofi. 2021. Oilseed by-products as plant-based protein sources: Amino acid profile and digestibility. Future Foods 3:100023. doi: 10.1016/j.fufo.2021.100023.
  • Santin, M., C. Morris, G. Standen, L. Nicolais, and L. Ambrosio. 2007. A new class of bioactive and biodegradable soybean-based bone fillers. Biomacromolecules 8 (9):2706–11.
  • Schreiber, A. B., J. Kenney, J. Kowalski, K. A. Thomas, G. Gimenez-Gallego, M. Rios-Candelore, J. Di Salvo, D. Barritault, J. Courty, Y. Courtois, et al. 1985. A unique family of endothelial cell polypeptide mitogens: The antigenic and receptor cross-reactivity of bovine endothelial cell growth factor, brain-derived acidic fibroblast growth factor, and eye-derived growth factor-II. The Journal of Cell Biology 101 (4):1623–6. doi: 10.1083/jcb.101.4.1623.
  • Sha, L, and Y. L. Xiong. 2020. Plant protein-based alternatives of reconstructed meat: Science, technology, and challenges. Trends in Food Science & Technology 102:51–61. doi: 10.1016/j.tifs.2020.05.022.
  • Shapira, A, and T. Dvir. 2021. 3D tissue and organ printing—Hope and reality. Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 8 (10):2003751.
  • Sirison, J., K. Matsumiya, M. Samoto, H. Hidaka, M. Kouno, and Y. Matsumura. 2017. Solubility of soy lipophilic proteins: Comparison with other soy protein fractions. Bioscience, Biotechnology, and Biochemistry 81 (4):790–802.
  • Su, L., L. Jing, X. Zeng, T. Chen, H. Liu, Y. Kong, X. Wang, X. Yang, C. Fu, J. Sun, et al. 2022. 3D‐Printed prolamin scaffolds for cell‐based meat culture. Advanced Materials 2207397. doi: 10.1002/adma.202207397.
  • Tavassoli, H., S. N. Alhosseini, A. Tay, P. P. Y. Chan, S. K. Weng Oh, and M. E. Warkiani. 2018. Large-scale production of stem cells utilizing microcarriers: A biomaterials engineering perspective from academic research to commercialized products. Biomaterials 181:333–46. doi: 10.1016/j.biomaterials.2018.07.016.
  • Teodorescu, M., M. Bercea, and S. Morariu. 2019. Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnology Advances 37 (1):109–31. doi: 10.1016/j.biotechadv.2018.11.008.
  • van der Weele, C., P. Feindt, A. Jan van der Goot, B. van Mierlo, and M. van Boekel. 2019. Meat alternatives: An integrative comparison. Trends in Food Science & Technology 88:505–12. doi: 10.1016/j.tifs.2019.04.018.
  • Wieser, H. 2007. Chemistry of gluten proteins. Food Microbiology 24 (2):115–9. doi: 10.1016/j.fm.2006.07.004.
  • Winkles, J. A, and C. G. Gay. 1991. Serum, phorbol ester, and polypeptide mitogens increase class 1 and 2 heparin-binding (acidic and basic fibroblast) growth factor gene expression in human vascular smooth muscle cells. Cell Growth & Differentiation: The Molecular Biology Journal of the American Association for Cancer Research 2 (11):531–40.
  • Wissemann, K. W, and B. S. Jacobson. 1985. Pure gelatin microcarriers: Synthesis and use in cell attachment and growth of fibroblast and endothelial cells. In Vitro Cellular & Developmental Biology: Journal of the Tissue Culture Association 21 (7):391–401.
  • Wollschlaeger, J. O., R. Maatz, F. B. Albrecht, A. Klatt, S. Heine, A. Blaeser, and P. J. Kluger. 2022. Scaffolds for cultured meat on the basis of polysaccharide hydrogels enriched with plant-based proteins. Gels 8 (2):94. doi: 10.3390/gels8020094.
  • Wong, R. W. K, and B. Rabie. 2008. Chinese red yeast rice (Monascus purpureus-fermented rice) promotes bone formation. Chinese Medicine 3:4.
  • Wu, M., P. Wu, L. Xiao, Y. Zhao, F. Yan, X. Liu, Y. Xie, C. Zhang, Y. Chen, and L. Cai. 2020. Biomimetic mineralization of novel hydroxyethyl cellulose/soy protein isolate scaffolds promote bone regeneration in vitro and in vivo. International Journal of Biological Macromolecules 162:1627–41.
  • Xu, H., S. Cai, A. Sellers, and Y. Yang. 2014. Electrospun ultrafine fibrous wheat glutenin scaffolds with three-dimensionally random organization and water stability for soft tissue engineering. Journal of Biotechnology 184:179–86. doi: 10.1016/j.jbiotec.2014.05.011.
  • Yang, F., Y. Miao, Y. Wang, L.-M. Zhang, and X. Lin. 2017. Electrospun zein/gelatin scaffold-enhanced cell attachment and growth of human periodontal ligament stem cells. Materials 10 (10):1168. doi: 10.3390/ma10101168.
  • Yi-Shen, Z., S. Shuai, and R. FitzGerald. 2018. Mung bean proteins and peptides: Nutritional, functional and bioactive properties. Food & Nutrition Research 62 (0):290. doi: 10.29219/fnr.v62.1290.
  • Yust, M. d M., MilláN‐Linares, M. d C. Alcaide‐Hidalgo, J. M. Millán, F, and Pedroche, J. 2012. Hypocholesterolaemic and antioxidant activities of chickpea (Cicer arietinum L.) protein hydrolysates. Journal of the Science of Food and Agriculture 92 (9):1994–2001. ‐ doi: 10.1002/jsfa.5573.
  • Zhang, G., X. Zhao, X. Li, G. Du, J. Zhou, and J. Chen. 2020. Challenges and possibilities for bio-manufacturing cultured meat. Trends in Food Science & Technology 97:443–50. doi: 10.1016/j.tifs.2020.01.026.
  • Zhang, H., Y. Liu, J. Wang, C. Shao, and Y. Zhao. 2019. Tofu-inspired microcarriers from droplet microfluidics for drug delivery. Science China Chemistry 62 (1):87–94. doi: 10.1007/s11426-018-9340-y.
  • Zhijiang, C., Z. Qin, S. Xianyou, and L. Yuanpei. 2017. Zein/Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) electrospun blend fiber scaffolds: Preparation, characterization and cytocompatibility. Materials Science and Engineering: C 71:797–806. doi: 10.1016/j.msec.2016.10.053.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.