815
Views
11
CrossRef citations to date
0
Altmetric
Review Articles

CRISPR-Cas based molecular diagnostics for foodborne pathogens

ORCID Icon, , , ORCID Icon &

References

  • Abudayyeh, O. O., J. S. Gootenberg, S. Konermann, J. Joung, I. M. Slaymaker, D. B. T. Cox, S. Shmakov, K. S. Makarova, E. Semenova, L. Minakhin, et al. 2016. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science (New York, N.Y.) 353 (6299):aaf5573. doi: 10.1126/science.aaf5573.
  • Ackerman, C. M., C. Myhrvold, S. G. Thakku, C. A. Freije, H. C. Metsky, D. K. Yang, S. H. Ye, C. K. Boehm, T.-S F. Kosoko-Thoroddsen, J. Kehe, et al. 2020. Massively multiplexed nucleic acid detection with Cas13. Nature 582 (7811):277–82. doi: 10.1038/s41586-020-2279-8.2
  • Akkilic, N., S. Geschwindner, and F. Hook. 2020. Single-molecule biosensors: Recent advances and applications. Biosensors and Bioelectronics 151:111944. doi: 10.1016/j.bios.2019.111944.
  • Aldewachi, H., T. Chalati, M. N. Woodroofe, N. Bricklebank, B. Sharrack, and P. Gardiner, 2017. Gold nanoparticle-based colorimetric biosensors. Nanoscale 10 (1):18–33. doi: 10.1039/c7nr06367a.
  • Arizti-Sanz, J., C. A. Freije, A. C. Stanton, B. A. Petros, C. K. Boehm, S. Siddiqui, B. M. Shaw, G. Adams, T. S. F. Kosoko-Thoroddsen, M. E. Kemball, et al. 2020. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nature Communications 11 (1):5921. doi: 10.1038/s41467-020-19097-x.
  • Azhar, M., R. Phutela, M. Kumar, A. H. Ansari, R. Rauthan, S. Gulati, N. Sharma, D. Sinha, S. Sharma, S. Singh, Indian CoV2 Genomics & Genetic Epidemiology (IndiCovGEN) Consortium, et al. 2021. Rapid and accurate nucleobase detection using FnCas9 and its application in COVID-19 diagnosis. Biosensors and Bioelectronics 183:113207. doi: 10.1016/j.bios.2021.113207.
  • Bao, Y., Y. Jiang, E. Xiong, T. Tian, Z. Zhang, J. Lv, Y. Li, and X. Zhou. 2020. CUT-LAMP: Contamination-free loop-mediated isothermal amplification based on the CRISPR/Cas9 cleavage. ACS Sensors 5 (4):1082–91. doi: 10.1021/acssensors.0c00034.
  • Bonini, A., N. Poma, F. Vivaldi, D. Biagini, D. Bottai, A. Tavanti, and F. Di Francesco. 2021. A label-free impedance biosensing assay based on CRISPR/Cas12a collateral activity for bacterial DNA detection. Journal of Pharmaceutical and Biomedical Analysis 204:114268. doi: 10.1016/j.jpba.2021.114268.
  • Brandt, K., and R. Barrangou. 2019. Applications of CRISPR technologies across the food supply chain. Annual Review of Food Science and Technology 10:133–50. doi: 10.1146/annurev-food-032818-121204.
  • Broughton, J. P., X. Deng, G. Yu, C. L. Fasching, V. Servellita, J. Singh, X. Miao, J. A. Streithorst, A. Granados, A. Sotomayor-Gonzalez, et al. 2020. CRISPR-Cas12-based detection of SARS-CoV-2. Nature Biotechnology 38 (7):870–74. doi: 10.1038/s41587-020-0513-4.
  • Bruch, R., J. Baaske, C. Chatelle, M. Meirich, S. Madlener, W. Weber, C. Dincer, and G. A. Urban. 2019. CRISPR/Cas13a-powered electrochemical microfluidic biosensor for nucleic acid amplification-free miRNA diagnostics. Advanced Materials (Deerfield Beach, Fla.) 31 (51):e1905311. doi: 10.1002/adma.201905311.
  • Bruch, R., M. Johnston, A. Kling, T. Mattmuller, J. Baaske, S. Partel, S. Madlener, W. Weber, G. A. Urban, and C. Dincer. 2021. CRISPR-powered electrochemical microfluidic multiplexed biosensor for target amplification-free miRNA diagnostics. Biosensors and Bioelectronics 177:112887. doi: 10.1016/j.bios.2020.112887.
  • Bu, S. J., X. Liu, Z. Wang, H. G. Wei, S. L. Yu, Z. Y. Li, Z. Hao, W. S. Liu, and J. Y. Wan. 2021. Ultrasensitive detection of pathogenic bacteria by CRISPR/Cas12a coupling with a primer exchange reaction. Sensors and Actuators B: Chemical 347:130630. doi: 10.1016/j.snb.2021.130630.
  • Chang, W., W. Liu, Y. Liu, F. Zhan, H. Chen, H. Lei, and Y. Liu. 2019. Colorimetric detection of nucleic acid sequences in plant pathogens based on CRISPR/Cas9 triggered signal amplification. Mikrochimica Acta 186 (4):243. doi: 10.1007/s00604-019-3348-2.
  • Chen, F. E., P. W. Lee, A. Y. Trick, J. S. Park, L. Chen, K. Shah, H. Mostafa, K. C. Carroll, K. Hsieh, and T. H. Wang. 2021. Point-of-care CRISPR-Cas-assisted SARS-CoV-2 detection in an automated and portable droplet magnetofluidic device. Biosensors and Bioelectronics 190:113390. doi: 10.1016/j.bios.2021.113390.
  • Chen, J., F. Jiang, C. W. Huang, and L. Lin. 2020. Rapid genotypic antibiotic susceptibility test using CRISPR-Cas12a for urinary tract infection. The Analyst 145 (15):5226–31. doi: 10.1039/d0an00947d.
  • Chen, J. S., and J. A. Doudna. 2017. The chemistry of Cas9 and its CRISPR colleagues. Nature Reviews Chemistry 1 (10):0078. doi: 10.1038/s41570-017-0078.
  • Chen, J. S., E. B. Ma, L. B. Harrington, M. D. Costa, X. R. Tian, J. M. Palefsky, and J. A. Doudna. 2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science (New York, N.Y.) 360 (6387):436–9. doi: 10.1126/science.aar6245.
  • Chen, M. Y., Z. Q. Ning, K. Y. Chen, Y. J. Zhang, and Y. F. Shen. 2020. Recent advances of electrochemiluminescent system in bioassay. Journal of Analysis and Testing 4 (2):57–75. doi: 10.1007/s41664-020-00136-x.
  • Chen, X., L. Wang, F. He, G. Chen, L. Bai, K. He, F. Zhang, and X. Xu. 2021. Label-Free Colorimetric method for detection of Vibrio parahaemolyticus by trimming the G-quadruplex DNAzyme with CRISPR/Cas12a. Analytical Chemistry 93 (42):14300–6. doi: 10.1021/acs.analchem.1c03468.
  • Chen, Y., Y. Mei, X. Zhao, and X. Jiang. 2020. Reagents-loaded, automated assay that integrates recombinase-aided amplification and Cas12a nucleic acid detection for a point-of-care test. Analytical Chemistry 92 (21):14846–52. doi: 10.1021/acs.analchem.0c03883.
  • Chen, Z. B., L. Ma, S. J. Bu, W. G. Zhang, J. J. Chen, Z. Y. Li, Z. Hao, and J. Y. Wan. 2021. CRISPR/Cas12a and immuno-RCA based electrochemical biosensor for detecting pathogenic bacteria. Journal of Electroanalytical Chemistry 901:115755. doi: 10.1016/j.jelechem.2021.115755.
  • Choi, J. H., M. Shin, L. Yang, B. Conley, J. Yoon, S. N. Lee, K. B. Lee, and J. W. Choi 2021. Clustered regularly interspaced short palindromic repeats-mediated amplification-free detection of viral dnas using surface-enhanced raman spectroscopy-active nanoarray. ACS Nano 15 (8):13475–85. doi: 10.1021/acsnano.1c03975.
  • Chui, H., M. Chan, D. Hernandez, P. Chong, S. McCorrister, A. Robinson, M. Walker, L. A. M. Peterson, S. Ratnam, D. Haldane, et al. 2015. Rapid, sensitive, and specific Escherichia coli H antigen typing by matrix-assisted laser desorption ionization-time of flight-based peptide mass fingerprinting. Journal of Clinical Microbiology 53 (8):2480–5. doi: 10.1128/JCM.00593-15.
  • Collias, D., and C. L. Beisel. 2021. CRISPR technologies and the search for the PAM-free nuclease. Nature Communications 12 (1):555. doi: 10.1038/s41467-020-20633-y.
  • Dai, Y., R. A. Somoza, L. Wang, J. F. Welter, Y. Li, A. I. Caplan, and C. C. Liu. 2019. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor. Angewandte Chemie (International ed. in English) 58 (48):17399–405. doi: 10.1002/anie.201910772.
  • Ding, X., K. Yin, Z. Li, R. V. Lalla, E. Ballesteros, M. M. Sfeir, and C. Liu. 2020. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nature Communications 11 (1):4711. doi: 10.1038/s41467-020-18575-6.
  • Dixon, L. K., H. Sun, and H. Roberts. 2019. African swine fever. Antiviral Research 165:34–41. doi: 10.1016/j.antiviral.2019.02.018.
  • Dronina, J., U. S. Bubniene, and A. Ramanavicius. 2021. The application of DNA polymerases and Cas9 as representative of DNA-modifying enzymes group in DNA sensor design (review). Biosensors and Bioelectronics 175:112867. doi: 10.1016/j.bios.2020.112867.
  • East-Seletsky, A., M. R. O'Connell, S. C. Knight, D. Burstein, J. H. Cate, R. Tjian, and J. A. Doudna. 2016. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 538 (7624):270–3. doi: 10.1038/nature19802.
  • Elston, J. W., C. Cartwright, P. Ndumbi, and J. Wright. 2017. The health impact of the 2014-15 Ebola outbreak. Public Health 143:60–70. doi: 10.1016/j.puhe.2016.10.020.
  • English, M. A., L. R. Soenksen, R. V. Gayet, H. D. Puig, N. M. Angenent-Mari, A. S. Mao, P. Q. Nguyen, and J. J. Collins. 2019. Programmable CRISPR-responsive smart materials. Science (New York, N.Y.) 365 (6455):780–5. doi: 10.1126/science.aaw5122.
  • Eş, I., M. Gavahian, F. J. Marti-Quijal, J. M. Lorenzo, A. Mousavi Khaneghah, C. Tsatsanis, S. C. Kampranis, and F. J. Barba. 2019. The application of the CRISPR-Cas9 genome editing machinery in food and agricultural science: Current status, future perspectives, and associated challenges. Biotechnology Advances 37 (3):410–21. doi: 10.1016/j.biotechadv.2019.02.006.
  • Ferone, M., A. Gowen, S. Fanning, and A. G. M. Scannell. 2020. Microbial detection and identification methods: Bench top assays to omics approaches. Comprehensive Reviews in Food Science and Food Safety 19 (6):3106–29. doi: 10.1111/1541-4337.12618.
  • Fozouni, P., S. Son, M. Diaz de Leon Derby, G. J. Knott, C. N. Gray, M. V. D'Ambrosio, C. V. Zhao, N. A. Switz, G. R. Kumar, S. I. Stephens, et al. 2021. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 184 (2):323–33.e9. doi: 10.1016/j.cell.2020.12.001.
  • Freije, C. A., C. Myhrvold, C. K. Boehm, A. E. Lin, N. L. Welch, A. Carter, H. C. Metsky, C. Y. Luo, O. O. Abudayyeh, J. S. Gootenberg, et al. 2019. Programmable inhibition and detection of RNA viruses using Cas13. Molecular Cell 76 (5):826–37 e811. doi: 10.1016/j.molcel.2019.09.013.
  • Freije, C. A., and P. C. Sabeti. 2021. Detect and destroy: CRISPR-based technologies for the response against viruses. Cell Host & Microbe 29 (5):689–703. doi: 10.1016/j.chom.2021.04.003.
  • Fritea, L., M. Tertis, R. Sandulescu, and C. Cristea. 2018. Enzyme-graphene platforms for electrochemical biosensor design with biomedical applications. Methods in Enzymology 609:293–333. doi: 10.1016/bs.mie.2018.05.010.
  • Galanakis, C. M. 2020. The food systems in the era of the coronavirus (COVID-19) pandemic crisis. Foods 9 (4):523. doi: 10.3390/foods9040523.
  • Gao, S., J. Liu, Z. Li, Y. Ma, and J. Wang. 2021. Sensitive detection of foodborne pathogens based on CRISPR-Cas13a. Journal of Food Science 86 (6):2615–25. doi: 10.1111/1750-3841.15745.
  • Ge, X., T. Meng, X. Tan, Y. Wei, Z. Tao, Z. Yang, F. Song, P. Wang, and Y. Wan. 2021. Cas14a1-mediated nucleic acid detectifon platform for pathogens. Biosensors and Bioelectronics 189:113350. doi: 10.1016/j.bios.2021.113350.
  • Gleditzsch, D., P. Pausch, H. Muller-Esparza, A. Ozcan, X. Guo, G. Bange, and L. Randau. 2019. PAM identification by CRISPR-Cas effector complexes: Diversified mechanisms and structures. RNA Biology 16 (4):504–17. doi: 10.1080/15476286.2018.1504546.
  • Gootenberg, J. S., O. O. Abudayyeh, M. J. Kellner, J. Joung, J. J. Collins, and F. Zhang. 2018. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science (New York, N.Y.) 360 (6387):439–44. doi: 10.1126/science.aaq0179.
  • Gootenberg, J. S., O. O. Abudayyeh, J. W. Lee, P. Essletzbichler, A. J. Dy, J. Joung, V. Verdine, N. Donghia, N. M. Daringer, C. A. Freije, et al. 2017. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science (New York, N.Y.) 356 (6336):438–42. doi: 10.1126/science.aam9321.
  • Guk, K., J. O. Keem, S. G. Hwang, H. Kim, T. Kang, E. K. Lim, and J. Jung. 2017. A facile, rapid and sensitive detection of MRSA using a CRISPR-mediated DNA FISH method, antibody-like dCas9/sgRNA complex. Biosensors and Bioelectronics 95:67–71. doi: 10.1016/j.bios.2017.04.016.
  • Habimana, J. D., R. Huang, B. Muhoza, Y. N. Kalisa, X. Han, W. Deng, and Z. Li. 2022. Mechanistic insights of CRISPR/Cas nucleases for programmable targeting and early-stage diagnosis: A review. Biosensors and Bioelectronics 203:114033. doi: 10.1016/j.bios.2022.114033.
  • Han, C., W. J. Li, Q. Li, W. P. Xing, H. Luo, H. S. Ji, X. N. Fang, Z. F. Luo, and L. Zhang. 2022. CRISPR/Cas12a-Derived electrochemical aptasensor for ultrasensitive detection of COVID-19 nucleocapsid protein. Biosensors and Bioelectronics 200:113922. doi: 10.1016/j.bios.2021.113922.
  • Han, J., X. Zhang, S. He, and P. Jia. 2021. Can the coronavirus disease be transmitted from food? A review of evidence, risks, policies and knowledge gaps. Environmental Chemistry Letters 19 (1):5–16. doi: 10.1007/s10311-020-01101-x.
  • Harrington, L. B., D. Burstein, J. S. Chen, D. Paez-Espino, E. B. Ma, I. P. Witte, J. C. Cofsky, N. C. Kyrpides, J. F. Banfield, and J. A. Doudna. 2018. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science (New York, N.Y.) 362 (6416):839–42. doi: 10.1126/science.aav4294.
  • Hass, K. N., M. Bao, Q. He, L. Liu, J. He, M. Park, P. W. Qin, and K. Du. 2020. Integrated micropillar polydimethylsiloxane accurate CRISPR detection system for viral DNA sensing. ACS Omega 5 (42):27433–41. doi: 10.1021/acsomega.0c03917.
  • He, Q., D. M. Yu, M. D. Bao, G. Korensky, J. H. Chen, M. Y. Shin, J. W. Kim, M. Park, P. W. Qin, and K. Du. 2020. High-throughput and all-solution phase African swine fever virus (ASFV) detection using CRISPR-Cas12a and fluorescence based point-of-care system. Biosensors and Bioelectronics 154:112068. doi: 10.1016/j.bios.2020.112068.
  • He, Y., X. Hu, Z. Gong, S. Chen, and R. Yuan. 2020. A novel electrochemiluminescence biosensor based on the self-ECL emission of conjugated polymer dots for lead ion detection. Mikrochimica Acta 187 (4):237. doi: 10.1007/s00604-020-4212-0.
  • Heo, W., K. Lee, S. Park, K. A. Hyun, and H. I. Jung. 2022. Electrochemical biosensor for nucleic acid amplification-free and sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA via CRISPR/Cas13a trans-cleavage reaction. Biosensors and Bioelectronics 201:113960. doi: 10.1016/j.bios.2021.113960.
  • Hu, F., Y. Liu, S. Zhao, Z. Zhang, X. Li, N. Peng, and Z. Jiang. 2022. A one-pot CRISPR/Cas13a-based contamination-free biosensor for low-cost and rapid nucleic acid diagnostics. Biosensors and Bioelectronics 202:113994. doi: 10.1016/j.bios.2022.113994.
  • Hu, J. H., S. M. Miller, M. H. Geurts, W. Tang, L. Chen, N. Sun, C. M. Zeina, X. Gao, H. A. Rees, Z. Lin, et al. 2018. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556 (7699):57–63. doi: 10.1038/nature26155.
  • Hu, T., X. Ke, Y. Ou, and Y. Lin. 2022. CRISPR/Cas12a-triggered chemiluminescence enhancement biosensor for sensitive detection of nucleic acids by introducing a tyramide signal amplification strategy. Analytical Chemistry 94 (23):8506–13. doi: 10.1021/acs.analchem.2c01507.
  • Huang, J., and K. Pu. 2020. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angewandte Chemie (International ed. in English) 59 (29):11717–31. doi: 10.1002/anie.202001783.
  • Huang, M., X. Zhou, H. Wang, and D. Xing. 2018. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection. Analytical Chemistry 90 (3):2193–200. doi: 10.1021/acs.analchem.7b04542.
  • Huang, Q. L., Z. Q. Xi, and W. X. Wei. 2020. Controlling synthesis of Au@AgPd core–shell nanocubes and in situ monitoring SERS of their enhanced catalysis. Journal of Alloys and Compounds 843:155971. doi: 10.1016/j.jallcom.2020.155971.
  • Huang, Y., D. Gu, H. Xue, J. Y. Yu, Y. Y. Tang, J. L. Huang, Y. Z. Zhang, and X. A. Jiao. 2021. Rapid and accurate Campylobacter jejuni detection with CRISPR-Cas12b based on newly identified Campylobacter jejuni-Specific and -conserved genomic signatures. Frontiers in Microbiology 12:649010. doi: 10.3389/fmicb.2021.649010.
  • Jaffee, S., S. Henson, L. Unnevehr, D. Grace, and E. Cassou. 2019. The safe food imperative: Accelerating progress in low- and middle-income countries: The World Bank. https://openknowledge.worldbank.org/handle/10986/30568
  • Jiang, Y. Z., M. L. Hu, A. A. Liu, Y. Lin, L. L. Liu, B. Yu, X. M. Zhou, and D. W. Pang. 2021. Detection of SARS-CoV-2 by CRISPR/Cas12a-enhanced colorimetry. ACS Sensors 6 (3):1086–93. doi: 10.1021/acssensors.0c02365.
  • Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, N.Y.) 337 (6096):816–21. doi: 10.1126/science.1225829.
  • Joung, J., A. Ladha, M. Saito, M. Segel, R. Bruneau, M. W. Huang, N. G. Kim, X. Yu, J. Li, B. D. Walker, et al. 2020. Point-of-care testing for COVID-19 using SHERLOCK diagnostics. medRxiv doi: 10.1101/2020.05.04.20091231.
  • Ju, H. X., G. S. Lai, and F. Yan. 2017. Immunosensing for detection of protein biomarkers: 6 - Electrochemiluminescent immunosensing (171–206). Amsterdam: Elsevier.
  • Kaminski, M. M., O. O. Abudayyeh, J. S. Gootenberg, F. Zhang, and J. J. Collins. 2021. CRISPR-based diagnostics. Nature Biomedical Engineering 5 (7):643–56. doi: 10.1038/s41551-021-00760-7.
  • Karvelis, T., G. Bigelyte, J. K. Young, Z. Hou, R. Zedaveinyte, K. Budre, S. Paulraj, V. Djukanovic, S. Gasior, A. Silanskas, et al. 2020. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Research 48 (9):5016–23. doi: 10.1093/nar/gkaa208.
  • Kaur, B., S. Kumar, and B. K. Kaushik. 2022. Recent advancements in optical biosensors for cancer detection. Biosensors and Bioelectronics 197:113805. doi: 10.1016/j.bios.2021.113805.
  • Keithlin, J., J. Sargeant, M. K. Thomas, and A. Fazil. 2014. Systematic review and meta-analysis of the proportion of Campylobacter cases that develop chronic sequelae. BMC Public Health 14:1203. doi: 10.1186/1471-2458-14-1203.
  • Kim, H., S. Lee, H. W. Seo, B. Kang, J. Moon, K. G. Lee, D. Yong, H. Kang, J. Jung, E.-K. Lim, et al. 2020. Clustered regularly interspaced short palindromic repeats-mediated surface-enhanced raman scattering assay for multidrug-resistant bacteria. ACS Nano 14 (12):17241–53. doi: 10.1021/acsnano.0c07264.
  • Knott, G. J., and J. A. Doudna. 2018. CRISPR-Cas guides the future of genetic engineering. Science (New York, N.Y.) 361 (6405):866–9. doi: 10.1126/science.aat5011.
  • Koonin, E. V., K. S. Makarova, and F. Zhang. 2017. Diversity, classification and evolution of CRISPR-Cas systems. Current Opinion in Microbiology 37:67–78. doi: 10.1016/j.mib.2017.05.008.
  • Li, F., Q. Ye, M. Chen, X. Xiang, J. Zhang, R. Pang, L. Xue, J. Wang, Q. Gu, T. Lei, et al. 2021. Cas12aFDet: A CRISPR/Cas12a-based fluorescence platform for sensitive and specific detection of Listeria monocytogenes serotype 4c. Analytica Chimica Acta 1151:338248. doi: 10.1016/j.aca.2021.338248.
  • Li, F., Q. Ye, M. Chen, B. Zhou, J. Zhang, R. Pang, L. Xue, J. Wang, H. Zeng, S. Wu, et al. 2021. An ultrasensitive CRISPR/Cas12a based electrochemical biosensor for Listeria monocytogenes detection. Biosensors and Bioelectronics 179:113073. doi: 10.1016/j.bios.2021.113073.
  • Li, J., Q. Tang, Y. Li, Y. Y. Fan, F. H. Li, J. H. Wu, D. Min, W. W. Li, P. K. S. Lam, and H. Q. Yu. 2020. Rediverting electron flux with an engineered CRISPR-ddAsCpf1 system to enhance the pollutant degradation capacity of Shewanella oneidensis. Environmental Science and Technology 54 (6):3599–608. doi: 10.1021/acs.est.9b06378.
  • Li, L., S. Li, N. Wu, J. Wu, G. Wang, G. Zhao, and J. Wang. 2019. HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synthetic Biology 8 (10):2228–37. doi: 10.1021/acssynbio.9b00209.
  • Li, Q., X. H. Guan, P. Wu, X. Y. Wang, L. Zhou, Y. Q. Tong, R. Ren, K. S. M. Leung, E. H. Y. Lau, J. Y. Wong, et al. 2020. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. The New England Journal of Medicine 382 (13):1199–207. doi: 10.1056/NEJMoa2001316.
  • Li, Y., S. Li, J. Wang, and G. Liu. 2019. CRISPR/Cas systems towards next-generation biosensing. Trends in Biotechnology 37 (7):730–43. doi: 10.1016/j.tibtech.2018.12.005.
  • Li, Y. R., S. L. Man, S. Y. Ye, G. Z. Liu, and L. Ma. 2022. CRISPR-Cas-based detection for food safety problems: Current status, challenges, and opportunities. Comprehensive Reviews in Food Science and Food Safety 21 (4):3770–98. doi: 10.1111/1541-4337.13000.
  • Li, Z., X. Ding, K. Yin, Z. Xu, K. Cooper, and C. Liu. 2021. Electric field-enhanced electrochemical CRISPR biosensor for DNA detection. Biosensors and Bioelectronics 192:113498. doi: 10.1016/j.bios.2021.113498.
  • Liang, J., P. Teng, W. Xiao, G. He, Q. Song, Y. Zhang, B. Peng, G. Li, L. S. Hu, D. L. Cao, et al. 2021. Application of the amplification-free SERS-based CRISPR/Cas12a platform in the identification of SARS-CoV-2 from clinical samples. Journal of Nanobiotechnology 19 (1):273. doi: 10.1186/s12951-021-01021-0.
  • Liu, H., J. B. Wang, H. J. Zeng, X. F. Liu, W. Jiang, Y. Wang, W. B. Ouyang, and X. M. Tang. 2021. RPA-Cas12a-FS: A frontline nucleic acid rapid detection system for food safety based on CRISPR-Cas12a combined with recombinase polymerase amplification. Food Chemistry 334:127608. doi: 10.1016/j.foodchem.2020.127608.
  • Liu, J. H., J. H. Chen, D. Wu, M. Q. Huang, J. Chen, R. Y. Pan, Y. N. Wu, and G. L. Li. 2021. CRISPR-/Cas12a-mediated liposome-amplified strategy for the surface-enhanced Raman scattering and naked-eye detection of nucleic acid and application to food authenticity screening. Analytical Chemistry 93 (29):10167–74. doi: 10.1021/acs.analchem.1c01163.
  • Liu, P. F., K. R. Zhao, Z. J. Liu, L. Wang, S. Y. Ye, and G. X. Liang. 2021. Cas12a-based electrochemiluminescence biosensor for target amplification-free DNA detection. Biosensors and Bioelectronics 176:112954. doi: 10.1016/j.bios.2020.112954.
  • Liu, S. S., C. Y. Wang, Z. M. Wang, K. K. Xiang, Y. Zhang, G. C. Fan, L. Zhao, H. Y. Han, and W. J. Wang. 2022. Binding induced isothermal amplification reaction to activate CRISPR/Cas12a for amplified electrochemiluminescence detection of rabies viral RNA via DNA nanotweezer structure switching. Biosensors and Bioelectronics 204:114078. doi: 10.1016/j.bios.2022.114078.
  • Liu, W. B., L. Liu, G. M. Kou, Y. Q. Zheng, Y. J. Ding, W. X. Ni, Q. S. Wang, L. Tan, W. L. Wu, S. Tang, et al. 2020. Evaluation of nucleocapsid and spike protein-based enzyme-linked immunosorbent assays for detecting antibodies against SARS-CoV-2. Journal of Clinical Microbiology 58 (6):e00461-20. doi: 10.1128/JCM.
  • Liu, X., S. Bu, J. Feng, H. Wei, Z. Wang, X. Li, H. Zhou, X. He, and J. Wan. 2022. Electrochemical biosensor for detecting pathogenic bacteria based on a hybridization chain reaction and CRISPR-Cas12a. Analytical and Bioanalytical Chemistry 414 (2):1073–80. doi: 10.1007/s00216-021-03733-6.
  • Liu, Y., L. Zhan, Z. Qin, J. Sackrison, and J. C. Bischof. 2021. Ultrasensitive and highly specific lateral flow assays for point-of-care diagnosis. ACS Nano 15 (3):3593–611. doi: 10.1021/acsnano.0c10035.
  • Lopez-Valls, M., C. Escalona-Noguero, C. Rodriguez-Diaz, D. Pardo, M. Castellanos, P. Milan-Rois, C. Martinez-Garay, R. Coloma, M. Abreu, R. Canton, et al. 2022. CASCADE: Naked eye-detection of SARS-CoV-2 using Cas13a and gold nanoparticles. Analytica Chimica Acta 1205:339749. doi: 10.1016/j.aca.2022.339749.
  • Ma, L., L. Peng, L. Yin, G. Liu, and S. Man. 2021. CRISPR-Cas12a-powered dual-mode biosensor for ultrasensitive and cross-validating detection of pathogenic bacteria. ACS Sensors 6 (8):2920–27. doi: 10.1021/acssensors.1c00686.
  • Mao, Z., R. Chen, X. Wang, Z. Zhou, Y. Peng, S. Li, D. P. Han, S. Li, Y. Wang, T. Han, et al. 2022. CRISPR/Cas12a-based technology: A powerful tool for biosensing in food safety. Trends in Food Science & Technology 122:211–22. doi: 10.1016/j.tifs.2022.02.030.
  • Marx, V. 2020. Guide RNAs: It’s good to be choosy. Nature Methods 17 (12):1179–82. doi: 10.1038/s41592-020-01003-4.
  • Ming, M., Q. Ren, C. Pan, Y. He, Y. Zhang, S. Liu, Z. Zhong, J. Wang, A. Malzahn, J. Wu, et al. 2020. CRISPR-Cas12b enables efficient plant genome engineering. Nature Plants 6 (3):202–8. doi: 10.1038/s41477-020-0614-6.
  • Mukama, O., J. Wu, Z. Li, Q. Liang, Z. Yi, X. Lu, Y. Liu, Y. Liu, M. Hussain, G. Makafe, et al. 2020. An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids. Biosensors and Bioelectronics 159:112143. doi: 10.1016/j.bios.2020.112143.
  • Myhrvold, C., C. A. Freije, J. S. Gootenberg, O. O. Abudayyeh, H. C. Metsky, A. F. Durbin, M. J. Kellner, A. L. Tan, L. M. Paul, L. A. Parham, et al. 2018. Field-deployable viral diagnostics using CRISPR-Cas13. Science (New York, N.Y.) 360 (6387):444–8. doi: 10.1126/science.aas8836.
  • Nguyen, L. T., B. M. Smith, and P. K. Jain. 2020. Enhancement of trans-cleavage activity of Cas12a with engineered crRNA enables amplified nucleic acid detection. Nature Communications 11 (1):4906. doi: 10.1038/s41467-020-18615-1.
  • Nie, Y., X. Yuan, P. Zhang, Y. Q. Chai, and R. Yuan. 2019. Versatile and ultrasensitive electrochemiluminescence biosensor for biomarker detection based on nonenzymatic amplification and aptamer-triggered emitter release. Analytical Chemistry 91 (5):3452–8. doi: 10.1021/acs.analchem.8b05001.
  • Ning, B., T. Yu, S. W. Zhang, Z. Huang, D. Tian, Z. Lin, A. Niu, N. Golden, K. Hensley, B. Threeton, et al. 2021. A smartphone-read ultrasensitive and quantitative saliva test for COVID-19. Science Advances 7 (2):eabe3703. doi: 10.1126/sciadv.abe3703.
  • Nussenzweig, P. M., and L. A. Marraffini. 2020. Molecular mechanisms of CRISPR-Cas immunity in bacteria. Annual Review of Genetics 54 (1):93–120. doi: 10.1146/annurev-genet-022120-112523.
  • Ong, S. W. X., Y. K. Tan, P. Y. Chia, T. H. Lee, O. T. Ng, M. S. Y. Wong, and K. Marimuthu. 2020. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA 323 (16):1610–2. doi: 10.1001/jama.2020.3227.
  • Pan, R., J. Liu, P. Wang, D. Wu, J. Chen, Y. Wu, and G. Li. 2022. Ultrasensitive CRISPR/Cas12a-driven SERS biosensor for on-site nucleic acid detection and its application to milk authenticity testing. Journal of Agricultural and Food Chemistry 70 (14):4484–91. doi: 10.1021/acs.jafc.1c08262.
  • Pang, Y. F., Q. Li, C. W. Wang, S. Zhen, Z. W. Sun, and R. Xiao. 2022. CRISPR-cas12a mediated SERS lateral flow assay for amplification-free detection of double-stranded DNA and single-base mutation. Chemical Engineering Journal 429:132109. doi: 10.1016/j.cej.2021.132109.
  • Pardee, K., A. A. Green, M. K. Takahashi, D. Braff, G. Lambert, J. W. Lee, T. Ferrante, D. Ma, N. Donghia, M. Fan, et al. 2016. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell 165 (5):1255–66. doi: 10.1016/j.cell.2016.04.059.
  • Park, H. M., H. Liu, J. Wu, A. Chong, V. Mackley, C. Fellmann, A. Rao, F. G. Jiang, H. H. Chu, N. Murthy, et al. 2018. Extension of the crRNA enhances Cpf1 gene editing in vitro and in vivo. Nature Communications 9 (1):3313. doi: 10.1038/s41467-018-05641-3.
  • Patchsung, M., K. Jantarug, A. Pattama, K. Aphicho, S. Suraritdechachai, P. Meesawat, K. Sappakhaw, N. Leelahakorn, T. Ruenkam, T. Wongsatit, et al. 2020. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nature Biomedical Engineering 4 (12):1140–9. doi: 10.1038/s41551-020-00603-x.
  • Peng, L., J. Zhou, L. Yin, S. Man, and L. Ma. 2020. Integration of logic gates to CRISPR/Cas12a system for rapid and sensitive detection of pathogenic bacterial genes. Analytica Chimica Acta 1125:162–8. doi: 10.1016/j.aca.2020.05.017.
  • Phan, Q. A., L. B. Truong, D. Medina-Cruz, C. Dincer, and E. Mostafavi. 2022. CRISPR/Cas-powered nanobiosensors for diagnostics. Biosensors and Bioelectronics 197:113732. doi: 10.1016/j.bios.2021.113732.
  • Phaneuf, C. R., K. J. Seamon, T. P. Eckles, A. Sinha, J. S. Schoeniger, B. Harmon, R. J. Meagher, V. V. Abhyankar, and C. Y. Koh. 2019. Ultrasensitive multi-species detection of CRISPR-Cas9 by a portable centrifugal microfluidic platform. Analytical Methods: Advancing Methods and Applications 11 (5):559–65. doi: 10.1039/C8AY02726A.
  • Pickar-Oliver, A., and C. A. Gersbach. 2019. The next generation of CRISPR-Cas technologies and applications. Nature Reviews. Molecular Cell Biology 20 (8):490–507. doi: 10.1038/s41580-019-0131-5.
  • Pung, R., C. J. Chiew, B. E. Young, S. Chin, M. I. C. Chen, H. E. Clapham, A. R. Cook, S. Maurer-Stroh, M. P. H. S. Toh, C. Poh, et al. 2020. Investigation of three clusters of COVID-19 in Singapore: Implications for surveillance and response measures. The Lancet 395 (10229):1039–46. doi: 10.1016/s0140-6736(20)30528-6.
  • Qi, H. L., and C. X. Zhang. 2020. Electrogenerated chemiluminescence biosensing. Analytical Chemistry 92 (1):524–34. doi: 10.1021/acs.analchem.9b03425.
  • Qi, L. S., M. H. Larson, L. A. Gilbert, J. A. Doudna, J. S. Weissman, A. P. Arkin, and W. A. Lim. 2021. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 184 (3):844. doi: 10.1016/j.cell.2021.01.019.
  • Qian, C., R. Wang, H. Wu, F. Zhang, J. Wu, and L. Wang. 2019. Uracil-mediated new photospacer-adjacent motif of Cas12a to realize visualized DNA detection at the single-copy level free from contamination. Analytical Chemistry 91 (17):11362–6. doi: 10.1021/acs.analchem.9b02554.
  • Qian, C., H. Wu, Y. Shi, J. Wu, and H. Chen. 2020. Dehydrated CRISPR-mediated DNA analysis for visualized animal-borne virus sensing in the unprocessed blood sample. Sensors and Actuators B: Chemical 305:127440. doi: 10.1016/j.snb.2019.127440.
  • Qian, J. J., D. Huang, D. S. Ni, J. R. Zhao, Z. W. Shi, M. J. Fang, and Z. N. Xu. 2022. A portable CRISPR Cas12a based lateral flow platform for sensitive detection of Staphylococcus aureus with double insurance. Food Control. 132:108485. doi: 10.1016/j.foodcont.2021.108485.
  • Qin, P., M. Park, K. J. Alfson, M. Tamhankar, R. Carrion, J. L. Patterson, A. Griffith, Q. He, A. Yildiz, R. Mathies, et al. 2019. Rapid and fully microfluidic Ebola virus detection with CRISPR-Cas13a. ACS Sensors 4 (4):1048–54. doi: 10.1021/acssensors.9b00239.
  • Ramachandran, A., D. A. Huyke, E. Sharma, M. K. Sahoo, C. Huang, N. Banaei, B. A. Pinsky, and J. G. Santiago. 2020. Electric field-driven microfluidics for rapid CRISPR-based diagnostics and its application to detection of SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America 117 (47):29518–25. doi: 10.1073/pnas.2010254117.
  • Rauch, J. N., E. Valois, S. Solley, C. Braig, F. Lach, R. S. Audouard, M. Ponce-Rojas, J. C. Costello, M. S. Baxter, N. J. Kosik, et al. 2021. A scalable, easy-to-deploy, protocol for Cas13-based detection of SARS-CoV-2 genetic material. Journal of Clinical Microbiology 59 (4):e02402-20. doi: 10.1101/2020.04.20.052159.
  • Rocafort, M., S. Arshed, D. Hudson, J. S. Sidhu, J. K. Bowen, K. M. Plummer, B. E. Bradshaw, R. D. Johnson, L. J. Johnson, C. H. Mearich, et al. 2022. CRISPR-Cas9 gene editing and rapid detection of gene-edited mutants using high-resolution melting in the apple scab fungus, Venturia inaequalis. Fungal Biology 126 (1):35–46. doi: 10.1016/j.funbio.2021.10.001.
  • Shan, Y., X. Zhou, R. Huang, and D. Xing. 2019. High-fidelity and rapid quantification of mirna combining crRNA programmability and CRISPR/Cas13a trans-cleavage activity. Analytical Chemistry 91 (8):5278–85. doi: 10.1021/acs.analchem.9b00073.
  • Shen, C. L., Q. Lou, K. K. Liu, L. Dong, and C. X. Shan. 2020. Chemiluminescent carbon dots: Synthesis, properties, and applications. Nano Today. 35:100954. doi: 10.1016/j.nantod.2020.100954.
  • Shen, J., X. Zhou, Y. Shan, H. Yue, R. Huang, J. Hu, and D. Xing. 2020. Sensitive detection of a bacterial pathogen using allosteric probe-initiated catalysis and CRISPR-Cas13a amplification reaction. Nature Communications 11 (1):267. doi: 10.1038/s41467-019-14135-9.
  • Shi, K., S. Y. Xie, R. Y. Tian, S. Wang, Q. Lu, D. H. Gao, C. Y. Lei, H. Z. Zhu, and Z. Nie. 2021. A CRISPR-Cas autocatalysis-driven feedback amplification network for supersensitive DNA diagnostics. Science Advances 7 (5):eabc7802. doi: 10.1126/sciadv.abc7802.
  • Shin, J., M. Miller, and Y. C. Wang. 2022. Recent advances in CRISPR-based systems for the detection of foodborne pathogens. Comprehensive Reviews in Food Science and Food Safety 21 (3):3010–29. doi: 10.1111/1541-4337.12956.
  • Shinoda, H., Y. Taguchi, R. Nakagawa, A. Makino, S. Okazaki, M. Nakano, Y. Muramoto, C. Takahashi, I. Takahashi, J. Ando, et al. 2021. Amplification-free RNA detection with CRISPR-Cas13. Communications Biology 4 (1):476. doi: 10.1038/s42003-021-02001-8.
  • Shmakov, S., A. Smargon, D. Scott, D. Cox, N. Pyzocha, W. Yan, O. O. Abudayyeh, J. S. Gootenberg, K. S. Makarova, Y. I. Wolf, et al. 2017. Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews. Microbiology 15 (3):169–82. doi: 10.1038/nrmicro.2016.184.
  • Song, F., Y. Wei, P. Wang, X. Ge, C. Li, A. Wang, Z. Yang, Y. Wan, and J. Li. 2021. Combining tag-specific primer extension and magneto-DNA system for Cas14a-based universal bacterial diagnostic platform. Biosensors and Bioelectronics 185:113262. doi: 10.1016/j.bios.2021.113262.
  • Sun, X., Y. Wang, L. Zhang, S. Liu, M. Zhang, J. Wang, B. Ning, Y. Peng, J. He, Y. Hu, et al. 2020. CRISPR-Cas9 triggered two-step isothermal amplification method for E. coli O157:H7 detection based on a metal-organic framework platform. Analytical Chemistry 92 (4):3032–41. doi: 10.1021/acs.analchem.9b04162.
  • Sun, Y., J. Li, L. Zhu, and L. Jiang. 2022. Cooperation and competition between CRISPR- and omics-based technologies in foodborne pathogens detection: A state of the art review. Current Opinion in Food Science 44:100813. doi: 10.1016/j.cofs.2022.100813.
  • Sun, Y., H. Liu, Y. Shen, X. Huang, F. Song, X. Ge, A. Wang, K. Zhang, Y. Li, C. Li, et al. 2020. Cas12a-activated universal field-deployable detectors for bacterial diagnostics. ACS Omega 5 (24):14814–21. doi: 10.1021/acsomega.0c01911.
  • Teng, F., L. Guo, T. Cui, X. G. Wang, K. Xu, Q. Gao, Q. Zhou, and W. Li. 2019. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biology 20 (1):132. doi: 10.1186/s13059-019-1742-z.
  • Wang, D., F. Zhang, and G. Gao. 2020. CRISPR-based therapeutic genome editing: Strategies and in vivo delivery by aav vectors. Cell 181 (1):136–50. doi: 10.1016/j.cell.2020.03.023.
  • Wang, H. X., M. Li, C. M. Lee, S. Chakraborty, H. W. Kim, G. Bao, and K. W. Leong. 2017. CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chemical Reviews 117 (15):9874–906. doi: 10.1021/acs.chemrev.6b00799.
  • Wang, J., Q. Xia, J. Wu, Y. Lin, and H. Ju. 2021. A sensitive electrochemical method for rapid detection of dengue virus by CRISPR/Cas13a-assisted catalytic hairpin assembly. Analytica Chimica Acta 1187:339131. doi: 10.1016/j.aca.2021.339131.
  • Wang, L., X. Shen, T. Wang, P. Chen, N. Qi, B. C. Yin, and B. C. Ye. 2020. A lateral flow strip combined with Cas9 nickase-triggered amplification reaction for dual food-borne pathogen detection. Biosensors and Bioelectronics 165:112364. doi: 10.1016/j.bios.2020.112364.
  • Wang, M., R. Zhang, and J. Li. 2020. CRISPR/cas systems redefine nucleic acid detection: Principles and methods. Biosensors and Bioelectronics 165:112430. doi: 10.1016/j.bios.2020.112430.
  • Wang, R., C. Qian, Y. Pang, M. Li, Y. Yang, H. Ma, M. Zhao, F. Qian, H. Yu, Z. Liu, et al. 2021. opvCRISPR: One-pot visual RT-LAMP-CRISPR platform for SARS-CoV-2 detection. Biosensors and Bioelectronics 172:112766. doi: 10.1016/j.bios.2020.112766.
  • Wang, R., X. Zhao, X. Chen, X. Qiu, G. Qing, H. Zhang, L. Zhang, X. Hu, Z. He, D. Zhong, et al. 2020. Rolling circular amplification (RCA)-assisted CRISPR/Cas9 cleavage (RACE) for highly specific detection of multiple extracellular vesicle microRNAs. Analytical Chemistry 92 (2):2176–85. doi: 10.1021/acs.analchem.9b04814.
  • Wang, X., E. Xiong, T. Tian, M. Cheng, W. Lin, H. Wang, G. Zhang, J. Sun, and X. Zhou. 2020. Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay. ACS Nano 14 (2):2497–508. doi: 10.1021/acsnano.0c00022.
  • Wang, X., M. Zhong, Y. Liu, P. Ma, L. Dang, Q. Meng, W. Wan, X. Ma, J. Liu, G. Yang, et al. 2020. Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout, CRISPR/Cas12a-NER. Science Bulletin 65 (17):1436–9. doi: 10.1016/j.scib.2020.04.041.
  • Wang, Y., Y. Ke, W. Liu, Y. Sun, and X. Ding. 2020. A one-pot toolbox based on Cas12a/crRNA enables rapid foodborne pathogen detection at attomolar level. ACS Sensors 5 (5):1427–35. doi: 10.1021/acssensors.0c00320.
  • Wang, Y., Y. Zhang, J. Chen, M. Wang, T. Zhang, W. Luo, Y. Wu, B. Zeng, K. Zhang, R. Deng, et al. 2021. Detection of SARS-CoV-2 and its mutated variants via CRISPR-Cas13-based transcription amplification. Analytical Chemistry 93 (7):3393–402. doi: 10.1021/acs.analchem.0c04303.
  • Watson, B. N. J., J. A. Steens, R. H. J. Staals, E. R. Westra, and S. van Houte. 2021. Coevolution between bacterial CRISPR-Cas systems and their bacteriophages. Cell Host & Microbe 29 (5):715–25. doi: 10.1016/j.chom.2021.03.018.
  • World Health Organization. 2015. WHO estimates of the global burden of foodborne diseases: Foodborne disease burden epidemiology reference group 2007-2015. Geneva: World Health Organization.
  • Wu, H., Y. Chen, Y. Shi, L. Wang, M. Zhang, J. Wu, and H. Chen. 2021. Carrying out pseudo dual nucleic acid detection from sample to visual result in a polypropylene bag with CRISPR/Cas12a. Biosensors and Bioelectronics 178:113001. doi: 10.1016/j.bios.2021.113001.
  • Wu, X., J. K. Tay, C. K. Goh, C. Chan, Y. H. Lee, S. L. Springs, D. Y. Wang, K. S. Loh, T. K. Lu, and H. Yu. 2021. Digital CRISPR-based method for the rapid detection and absolute quantification of nucleic acids. Biomaterials 274:120876. doi: 10.1016/j.biomaterials.2021.120876.
  • Xia, X., B. Ma, T. Zhang, Y. Lu, M. R. Khan, Y. Hu, C. Lei, S. Deng, Q. He, G. He, et al. 2021. G-quadruplex-probing CRISPR-Cas12 assay for label-free analysis of foodborne pathogens and their colonization in vivo. ACS Sensors 6 (9):3295–302. doi: 10.1021/acssensors.1c01061.
  • Xiao, M., W. Lai, T. Man, B. Chang, L. Li, A. R. Chandrasekaran, and H. Pei. 2019. Rationally engineered nucleic acid architectures for biosensing applications. Chemical Reviews 119 (22):11631–717. doi: 10.1021/acs.chemrev.9b00121.
  • Xu, J., J. Ma, Y. Li, L. Kang, B. Yuan, S. Li, J. Chao, L. Wang, J. Wang, S. Su, et al. 2022. A general RPA-CRISPR/Cas12a sensing platform for Brucella spp. detection in blood and milk samples. Sensors and Actuators B: Chemical 364:131864. doi: 10.1016/j.snb.2022.131864.
  • Xu, W., T. Jin, Y. Dai, and C. C. Liu. 2020. Surpassing the detection limit and accuracy of the electrochemical DNA sensor through the application of CRISPR Cas systems. Biosensors and Bioelectronics 155:112100. doi: 10.1016/j.bios.2020.112100.
  • Yamano, T., H. Nishimasu, B. Zetsche, H. Hirano, I. M. Slaymaker, Y. Li, I. Fedorova, T. Nakane, K. Makarova, E. Koonin, et al. 2016. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165 (4):949–62. doi: 10.1016/j.cell.2016.04.003.
  • Yan, W. X., P. Hunnewell, L. E. Alfonse, J. M. Carte, E. K. Smith, S. Sothiselvam, A. J. Garrity, S. R. Chong, K. S. Makarova, E. V. Koonin, et al. 2019. Functionally diverse type V CRISPR-Cas systems. Science (New York, N.Y.) 363 (6422):88–91. doi: 10.1126/science.aav7271.
  • Yang, Y., J. Liu, and X. Zhou. 2021. A CRISPR-based and post-amplification coupled SARS-CoV-2 detection with a portable evanescent wave biosensor. Biosensors and Bioelectronics 190:113418. doi: 10.1016/j.bios.2021.113418.
  • Yin, H., K. J. Kauffman, and D. G. Anderson. 2017. Delivery technologies for genome editing. Nature Reviews. Drug Discovery 16 (6):387–99. doi: 10.1038/nrd.2016.280.
  • Yu, T., and Y. Xianyu. 2021. Array-based biosensors for bacteria detection: From the perspective of recognition. Small (Weinheim an Der Bergstrasse, Germany) 17 (21):e2006230. doi: 10.1002/smll.202006230.
  • Yuan, C., T. Tian, J. Sun, M. Hu, X. Wang, E. Xiong, M. Cheng, Y. Bao, W. Lin, J. Jiang, et al. 2020. Universal and naked-eye gene detection platform based on the clustered regularly interspaced short palindromic repeats/Cas12a/13a system. Analytical Chemistry 92 (5):4029–37. doi: 10.1021/acs.analchem.9b05597.
  • Zhang, K., Z. Fan, Y. Ding, S. Zhu, M. Xie, and N. Hao. 2022. Exploring the entropy-driven amplification reaction and trans-cleavage activity of CRISPR-Cas12a for the development of an electrochemiluminescence biosensor for the detection of the SARS-CoV-2 RdRp gene in real samples and environmental surveillance. Environmental Science: Nano 9 (1):162–72. doi: 10.1039/d1en00645b.
  • Zhang, M., C. Liu, Y. Shi, J. Wu, J. Wu, and H. Chen. 2020. Selective endpoint visualized detection of Vibrio parahaemolyticus with CRISPR/Cas12a assisted PCR using thermal cycler for on-site application. Talanta 214:120818. doi: 10.1016/j.talanta.2020.120818.
  • Zhang, T., H. T. Li, X. H. Xia, J. Liu, Y. H. Lu, M. R. Khan, S. Deng, R. Busquets, G. P. He, Q. He, et al. 2021. Direct detection of foodborne pathogens via a proximal DNA probe-based CRISPR-Cas12 assay. Journal of Agricultural and Food Chemistry 69 (43):12828–36. doi: 10.1021/acs.jafc.1c04663.
  • Zhang, T., W. H. Zhou, X. Y. Lin, M. R. Khan, S. Deng, M. Zhou, G. P. He, C. Y. Wu, R. J. Deng, and Q. He. 2021. Light-up RNA aptamer signaling-CRISPR-Cas13a-based mix-and-read assays for profiling viable pathogenic bacteria. Biosensors & Bioelectronics 176:112906. doi: 10.1016/j.bios.2020.112906.
  • Zhang, W. S., J. B. Pan, F. Li, M. Zhu, M. T. Xu, H. Y. Zhu, Y. Y. Yu, and G. Su. 2021. Reverse transcription recombinase polymerase amplification coupled with CRISPR-Cas12a for facile and highly sensitive colorimetric SARS-CoV-2 detection. Analytical Chemistry 93 (8):4126–33. doi: 10.1021/acs.analchem.1c00013.
  • Zhou, J., L. Yin, Y. Dong, L. Peng, G. Liu, S. Man, and L. Ma. 2020. CRISPR-Cas13a based bacterial detection platform: Sensing pathogen Staphylococcus aureus in food samples. Analytica Chimica Acta 1127:225–33. doi: 10.1016/j.aca.2020.06.041.
  • Zhuang, J., Z. Zhao, K. Lian, L. Yin, J. Wang, S. Man, G. Liu, and L. Ma. 2022. SERS-based CRISPR/Cas assay on microfluidic paper analytical devices for supersensitive detection of pathogenic bacteria in foods. Biosensors and Bioelectronics 207:114167. doi: 10.1016/j.bios.2022.114167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.