546
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

Nucleic acid amplification-based strategy to detect foodborne pathogens in milk: a review

, ORCID Icon, , , , , , & show all

References

  • Abouelnaga, M., A. Lamas, J. M. Miranda, M. Osman, A. Cepeda, and C. M. Franco. 2016. Development of a real-time PCR assay for direct detection and quantification of Bacillus sporothermodurans in ultra-high temperature milk. Journal of Dairy Science 99 (10):7864–71. doi: 10.3168/jds.2016-10852.
  • Ahn, H., B. S. Batule, Y. Seok, and M. G. Kim. 2018. Single-step recombinase polymerase amplification assay based on a paper chip for simultaneous detection of multiple foodborne pathogens. Analytical Chemistry 90 (17):10211–6. doi: 10.1021/acs.analchem.8b01309.
  • An, L. X., W. Tang, T. A. Ranalli, H. J. Kim, J. Wytiaz, and H. M. Kong. 2005. Characterization of a thermostable UvrD helicase and its participation in helicase-dependent amplification. The Journal of Biological Chemistry 280 (32):28952–8. doi: 10.1074/jbc.M503096200.
  • Azizi, M., M. Zaferani, S. H. Cheong, and A. Abbaspourrad. 2019. Pathogenic bacteria detection using RNA-based loop-mediated isothermal-amplification-assisted nucleic acid amplification via droplet microfluidics. ACS Sensors 4 (4):841–8.
  • Bae, N., S. Lim, Y. Song, S. Jeong, S. Shin, Y. Kim, T. Lee, K. Lee, S. Lee, Y.-J. Oh, et al. 2018. A disposable and multi-chamber film-based PCR chip for detection of foodborne pathogen. Sensors 18 (9):3158. doi: 10.3390/s18093158.
  • Bai, H., S. Bu, C. Wang, C. Ma, Z. Li, Z. Hao, J. Wan, and Y. Han. 2020. Sandwich immunoassay based on antimicrobial peptide-mediated nanocomposite pair for determination of Escherichia coli O157: H7 using personal glucose meter as readout. Microchimica Acta 187 (4):1–9. doi: 10.1007/s00604-020-4200-4.
  • Bai, Y., Y. Cui, Y. Suo, C. Shi, D. Wang, and X. Shi. 2019. A rapid method for detection of salmonella in milk based on extraction of mRNA using magnetic capture probes and RT-qPCR. Frontiers in Microbiology 10:770. doi: 10.3389/fmicb.2019.00770.
  • Baptista, M., J. T. Cunha, and L. Domingues. 2021. DNA-based approaches for dairy products authentication: A review and perspectives. Trends in Food Science & Technology 109:386–97. doi: 10.1016/j.tifs.2021.01.043.
  • Bodulev, O. L., K. M. Burkin, E. E. Efremov, and I. Y. Sakharov. 2020. One-pot microplate-based chemiluminescent assay coupled with catalytic hairpin assembly amplification for DNA detection. Analytical and Bioanalytical Chemistry 412 (21):5105–11.
  • Busch, A., A. Becker, U. Schotte, M. Plötz, and A. Abdulmawjood. 2022. Mpl-gene-based loop-mediated isothermal amplification assay for specific and rapid detection of listeria monocytogenes in various food samples. Foodborne Pathogens and Disease 19 (7):463–72. doi: 10.1089/fpd.2021.0080.
  • Cai, R., F. Yin, H. Chen, Y. Tian, and N. Zhou. 2020. A fluorescent aptasensor for Staphylococcus aureus based on strand displacement amplification and self-assembled DNA hexagonal structure. Mikrochimica Acta 187 (5):304. doi: 10.1007/s00604-020-04293-9.
  • Chen, L. P., Y. Zhang, Q. Xia, F. Luo, L. H. Guo, B. Qiu, and Z. Y. Lin. 2020. Fluorescence biosensor for DNA methyltransferase activity and related inhibitor detection based on methylation-sensitive cleavage primer triggered hyperbranched rolling circle amplification. Analytica Chimica Acta 1122:1–8. doi: 10.1016/j.aca.2020.04.061.
  • Chen, M., J. Cheng, R. Pang, J. Zhang, Y. Chen, H. Zeng, T. Lei, Q. Ye, S. Wu, S. Zhang, et al. 2019. Rapid detection of Listeria monocytogenes sequence type 121 strains using a novel multiplex PCR assay. LWT 116:108474. doi: 10.1016/j.lwt.2019.108474.
  • Chen, M., Q. He, Y. Tong, and Z. Chen. 2021a. A universal fluorescent sensing system for pathogen determination based on loop-mediated isothermal amplification triggering dual-primer rolling circle extension. Sensors and Actuators B: Chemical 331:129436. doi: 10.1016/j.snb.2021.129436.
  • Chen, S., X. Zong, J. Zheng, J. Zhang, M. Zhou, Q. Chen, C. Man, and Y. Jiang. 2021b. A Colorimetric strategy based on aptamer-catalyzed hairpin assembly for the on-site detection of Salmonella typhimurium in milk. Foods 10 (11):2539. doi: 10.3390/foods10112539.
  • Cheng, H., W. Li, S. Duan, J. Peng, J. Liu, W. Ma, H. Wang, X. He, and K. Wang. 2019. Mesoporous silica containers and programmed catalytic hairpin assembly/hybridization chain reaction based electrochemical sensing platform for MicroRNA ultrasensitive detection with low background. Analytical Chemistry 91 (16):10672–8. doi: 10.1021/acs.analchem.9b01947.
  • Colafigli, G., E. Scalzulli, A. Di Prima, S. Pepe, M. G. Loglisci, D. Diverio, M. Martelli, R. Foà, and M. Breccia. 2021. Digital droplet PCR as a predictive tool for successful discontinuation outcome in chronic myeloid leukemia: Is it time to introduce it in the clinical practice? Critical Reviews in Oncology/Hematology 157:103163.
  • Cremonesi, P., C. Cortimiglia, C. Picozzi, G. Minozzi, M. Malvisi, M. Luini, and B. Castiglioni. 2016. Development of a droplet digital polymerase chain reaction for rapid and simultaneous identification of common foodborne pathogens in soft cheese. Frontiers in Microbiology 7:1725. doi: 10.3389/fmicb.2016.01725.
  • Cui, F. Y., and H. S. S. Zhou. 2020. Diagnostic methods and potential portable biosensors for coronavirus disease 2019. Biosensors and Bioelectronics 165:112349. doi: 10.1016/j.bios.2020.112349.
  • D'Incecco, P., E. Bancalari, M. Gatti, A. Ranghetti, and L. Pellegrino. 2020. Low-temperature centrifugation of milk for manufacture of raw milk cheeses: Impact on milk debacterization and cheese yield. LWT 118:108789. doi: 10.1016/j.lwt.2019.108789.
  • Daher, R. K., G. Stewart, M. Boissinot, D. K. Boudreau, and M. G. Bergeron. 2015. Influence of sequence mismatches on the specificity of recombinase polymerase amplification technology. Molecular and Cellular Probes 29 (2):116–21. doi: 10.1016/j.mcp.2014.11.005.
  • De Felice, M., M. De Falco, D. Zappi, A. Antonacci, and V. Scognamiglio. 2022. Isothermal amplification-assisted diagnostics for COVID-19. Biosensors and Bioelectronics 205:114101. doi: 10.1016/j.bios.2022.114101.
  • Dirks, R. M., and N. A. Pierce. 2004. Triggered amplification by hybridization chain reaction. Proceedings of the National Academy of Sciences 101 (43):15275–8. doi: 10.1073/pnas.0407024101.
  • Dong, L., H. M. Liu, L. Meng, M. R. Xing, J. Q. Wang, C. Wang, H. Chen, and N. Zheng. 2018. Quantitative PCR coupled with sodium dodecyl sulfate and propidium monoazide for detection of viable Staphylococcus aureus in milk. Journal of Dairy Science 101 (6):4936–43. doi: 10.3168/jds.2017-14087.
  • Du, M., J. Li, R. Zhao, Y. Yang, Y. Wang, K. Ma, X. Cheng, Y. Wan, and X. Wu. 2018a. Effective pre-treatment technique based on immune-magnetic separation for rapid detection of trace levels of Salmonella in milk. Food Control 91:92–9. doi: 10.1016/j.foodcont.2018.03.032.
  • Du, X., Y. Zang, H. Liu, P. Li, and S. Wang. 2018b. Recombinase polymerase amplification combined with lateral flow strip for Listeria monocytogenes detection in food. Journal of Food Science 83 (4):1041–7.
  • Du, X. J., T. J. Zhou, P. Li, and S. Wang. 2017. A rapid Salmonella detection method involving thermophilic helicase-dependent amplification and a lateral flow assay. Molecular and Cellular Probes 34:37–44. doi: 10.1016/j.mcp.2017.05.004.
  • Dursun, A. D., B. A. Borsa, G. Bayramoglu, M. Y. Arica, and V. C. Ozalp. 2022. Surface plasmon resonance aptasensor for Brucella detection in milk. Talanta 239:123074.
  • Engel, S., M. Elhauge, and T. Tholstrup. 2018. Effect of whole milk compared with skimmed milk on fasting blood lipids in healthy adults: A 3-week randomized crossover study. European Journal of Clinical Nutrition 72 (2):249–54.
  • Franke, G. N., J. Maier, K. Wildenberger, M. Cross, F. J. Giles, M. C. Muller, A. Hochhaus, D. Niederwieser, and T. Lange. 2020. Comparison of real-time quantitative PCR and digital droplet PCR for BCR-ABL1 monitoring in patients with chronic myeloid leukemia. The Journal of Molecular Diagnostics: JMD 22 (1):81–9. doi: 10.1016/j.jmoldx.2019.08.007.
  • Gao, H., K. Zhang, X. Teng, and J. Li. 2019. Rolling circle amplification for single cell analysis and in situ sequencing. TrAC Trends in Analytical Chemistry 121:115700. doi: 10.1016/j.trac.2019.115700.
  • Gao, Y.-p., K.-J. Huang, F.-T. Wang, Y.-Y. Hou, J. Xu, and G. Li. 2022. Recent advances in biological detection with rolling circle amplification: Design strategy, biosensing mechanism, and practical applications. The Analyst 147 (15):3396–414. doi: 10.1039/D2AN00556E.
  • Geng, Y., G. Liu, L. Liu, Q. Deng, L. Zhao, X. X. Sun, J. Wang, B. Zhao, and J. Wang. 2019. Real-time recombinase polymerase amplification assay for the rapid and sensitive detection of Campylobacter jejuni in food samples. Journal of Microbiological Methods 157:31–6. doi: 10.1016/j.mimet.2018.12.017.
  • Gerrard, Z. E., B. M. C. Swift, G. Botsaris, R. S. Davidson, M. R. Hutchings, J. N. Huxley, and C. E. D. Rees. 2018. Survival of Mycobacterium avium subspecies paratuberculosis in retail pasteurised milk. Food Microbiology 74:57–63. doi: 10.1016/j.fm.2018.03.004.
  • Golabi, M., M. Flodrops, B. Grasland, A. C. Vinayaka, T. L. Quyen, T. Nguyen, D. D. Bang, and A. Wolff. 2021. Development of reverse transcription loop-mediated isothermal amplification assay for rapid and on-site detection of avian influenza virus. Frontiers in Cellular and Infection Microbiology 11:652048. doi: 10.3389/fcimb.2021.652048.
  • Guo, Y., Y. Wang, S. Liu, J. Yu, Q. Pei, X. Leng, and J. Huang. 2016. A functional oligonucleotide probe from an encapsulated silver nanocluster assembled by rolling circle amplification and its application in label-free sensors. RSC Advances 6 (92):88967–73. doi: 10.1039/C6RA18257G.
  • He, L., D. J. Simpson, and M. G. Gänzle. 2020. Detection of enterohaemorrhagic Escherichia coli in food by droplet digital PCR to detect simultaneous virulence factors in a single genome. Food Microbiology 90:103466. doi: 10.1016/j.fm.2020.103466.
  • Highmore, C. J., S. D. Rothwell, and C. W. Keevil. 2017. Improved sample preparation for direct quantitative detection of Escherichia coli O157 in soil using qPCR without pre-enrichment. Microbial Biotechnology 10 (4):969–76.
  • Hu, J., Y. Wang, H. Ding, C. Jiang, Y. Geng, X. Sun, J. Jing, H. Gao, Z. Wang, and C. Dong. 2020a. Recombinase polymerase amplification with polymer flocculation sedimentation for rapid detection of Staphylococcus aureus in food samples. International Journal of Food Microbiology 331:108691.
  • Hu, J., Y. Wang, H. Su, H. Ding, X. Sun, H. Gao, Y. Geng, and Z. Wang. 2020b. Rapid analysis of Escherichia coli O157: H7 using isothermal recombinase polymerase amplification combined with triple-labeled nucleotide probes. Molecular and Cellular Probes 50:101501. doi: 10.1016/j.mcp.2019.101501.
  • Huang, K.-J., H.-L. Shuai, and J.-Z. Zhang. 2016. Ultrasensitive sensing platform for platelet-derived growth factor BB detection based on layered molybdenum selenide-graphene composites and Exonuclease III assisted signal amplification. Biosensors & Bioelectronics 77:69–75. doi: 10.1016/j.bios.2015.09.026.
  • Huang, T. T., S. C. Liu, C. H. Huang, C. J. Lin, and S. T. Huang. 2018. An integrated real-time electrochemical LAMP device for pathogenic bacteria detection in food. Electroanalysis 30 (10):2397–404. doi: 10.1002/elan.201800382.
  • Jaroenram, W., P. Cecere, and P. P. Pompa. 2019. Xylenol orange-based loop-mediated DNA isothermal amplification for sensitive naked-eye detection of Escherichia coli. Journal of Microbiological Methods 156:9–14. doi: 10.1016/j.mimet.2018.11.020.
  • Jiang, J., H. Wu, Y. Su, Y. Liang, B. Shu, and C. Zhang. 2020. Electrochemical cloth-based DNA sensors (ECDSs): A new class of electrochemical gene sensors. Analytical Chemistry 92 (11):7708–16.
  • Jourdan-da Silva, N., L. Fabre, E. Robinson, N. Fournet, A. Nisavanh, M. Bruyand, A. Mailles, E. Serre, M. Ravel, V. Guibert, et al. 2018. Ongoing nationwide outbreak of Salmonella Agona associated with internationally distributed infant milk products, France, December 2017. Eurosurveillance 23 (2):4–8. doi: 10.2807/1560-7917.ES.2018.23.2.17-00852.
  • Kaewarsa, P., T. Vilaivan, and W. Laiwattanapaisal. 2021. An origami paper-based peptide nucleic acid device coupled with label-free DNAzyme probe hybridization chain reaction for prostate cancer molecular screening test. Analytica Chimica Acta 1186:339130.
  • Kokkinos, P., P. Ziros, M. Bellou, and A. Vantarakis. 2014. Loop-mediated isothermal amplification (LAMP) for the detection of Salmonella in food. Food Analytical Methods 7 (2):512–26. doi: 10.1007/s12161-013-9748-8.
  • Kumar, Y., S. Bansal, and P. Jaiswal. 2017. Loop-mediated isothermal amplification (LAMP): A rapid and sensitive tool for quality assessment of meat products. Comprehensive Reviews in Food Science and Food Safety 16 (6):1359–78. doi: 10.1111/1541-4337.12309.
  • Lee, R. A., H. De Puig, P. Q. Nguyen, N. M. Angenent-Mari, N. M. Donghia, J. P. McGee, J. D. Dvorin, C. M. Klapperich, N. R. Pollock, and J. J. Collins. 2020. Ultrasensitive CRISPR-based diagnostic for field-applicable detection of Plasmodium species in symptomatic and asymptomatic malaria. Proceedings of the National Academy of Sciences of the United States of America 117 (41):25722–31. doi: 10.1073/pnas.2010196117.
  • Lei, R., X. Y. Wang, D. Zhang, Y. Z. Liu, Q. J. Chen, and N. Jiang. 2020. Rapid isothermal duplex real-time recombinase polymerase amplification (RPA) assay for the diagnosis of equine piroplasmosis. Scientific Reports 10 (1):4096. doi: 10.1038/s41598-020-60997-1.
  • Leng, X., Y. Wang, R. Li, S. Liu, J. Yao, Q. Pei, X. Cui, Y. Tu, D. Tang, and J. Huang. 2018. Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria. Mikrochimica Acta 185 (3):168. doi: 10.1007/s00604-018-2698-5.
  • Li, F. Y., G. Li, S. J. Cao, B. S. Liu, X. L. Ren, N. Kang, and F. Qiu. 2021a. Target-triggered entropy-driven amplification system-templated silver nanoclusters for multiplexed microRNA analysis. Biosensors & Bioelectronics 172:112757. doi: 10.1016/j.bios.2020.112757.
  • Li, J., J. Macdonald, and F. von Stetten. 2020. Correction: Review: A comprehensive summary of a decade development of the recombinase polymerase amplification. The Analyst 145 (5):1950–60.
  • Li, Q., G. Xie, Y. Wang, Z. P. Aguilar, and H. Xu. 2021b. Vancomycin-modified poly-l-lysine magnetic separation combined with multiplex polymerase chain reaction assay for efficient detection of Bacillus cereus in milk. Journal of Dairy Science 104 (2):1465–73.
  • Li, T.-T., J.-L. Wang, N.-Z. Zhang, W.-H. Li, H.-B. Yan, L. Li, W.-Z. Jia, and B.-Q. Fu. 2019. Rapid and visual detection of Trichinella spp. using a lateral flow strip-based recombinase polymerase amplification (LF-RPA) assay. Frontiers in Cellular and Infection Microbiology 9:1.
  • Li, T., G. Ou, X. Chen, Z. Li, R. Hu, Y. Li, Y. Yang, and M. Liu. 2020. Naked-eye based point-of-care detection of E. coli O157: H7 by a signal-amplified microfluidic aptasensor. Analytica Chimica Acta 1130:20–8.
  • Li, X., T. Zheng, Y.-N. Xie, F. Li, X. Jiang, X. Hou, and P. Wu. 2021c. Recombinase polymerase amplification coupled with a photosensitization colorimetric assay for fast Salmonella spp. Analytical Chemistry 93 (16):6559–66.
  • Liu, J., G. Y. Xie, Q. Xiong, T. B. Liang, and H. Y. Xu. 2021a. Sensitive dual readout assays based on rolling circle amplification for fluorescent and colorimetric detection of Cronobacter spp. in powdered infant formula. Food Control 124:107840. doi: 10.1016/j.foodcont.2020.107840.
  • Liu, X., S. Bu, H. Wei, Z. Wang, S. Yu, Z. Li, Z. Hao, X. He, and J. Wan. 2021b. Visual assay of Escherichia coli O157: H7 based on an isothermal strand displacement and hybrid chain reaction amplification strategy. Analytical Methods 13 (30):3379–85. doi: 10.1039/D1AY00644D.
  • Lu, X., C. Yao, L. Sun, and Z. Li. 2022. Plasmon-enhanced biosensors for microRNA analysis and cancer diagnosis. Biosensors and Bioelectronics 203:114041. doi: 10.1016/j.bios.2022.114041.
  • Luo, F., Z. Li, G. Dai, Y. Lu, P. He, and Q. Wang. 2020. Ultrasensitive biosensing pathogenic bacteria by combining aptamer-induced catalysed hairpin assembly circle amplification with microchip electrophoresis. Sensors and Actuators B: Chemical 306:127577. doi: 10.1016/j.snb.2019.127577.
  • Luo, G.-C., T.-T. Yi, B. Jiang, X.-l. Guo, and G.-Y. Zhang. 2019. Betaine-assisted recombinase polymerase assay with enhanced specificity. Analytical Biochemistry 575:36–9. doi: 10.1016/j.ab.2019.03.018.
  • Lv, X., Y. M. Huang, D. F. Liu, C. W. Liu, S. Shan, G. Q. Li, M. L. Duan, and W. H. Lai. 2019. Multicolor and ultrasensitive enzyme-linked immunosorbent assay based on the fluorescence hybrid chain reaction for simultaneous detection of pathogens. Journal of Agricultural and Food Chemistry 67 (33):9390–8. doi: 10.1021/acs.jafc.9b03414.
  • Lv, X., L. Wang, J. Zhang, X. He, L. Shi, and L. Zhao. 2021. Quantitative detection of trace VBNC Cronobacter sakazakii by immunomagnetic separation in combination with PMAxx-ddPCR in dairy products. Food Microbiology 99:103831.
  • Martynenko, I. V., D. Kusić, F. Weigert, S. Stafford, F. C. Donnelly, R. Evstigneev, Y. Gromova, A. V. Baranov, B. Rühle, H.-J. Kunte, et al. 2019. Magneto-fluorescent microbeads for bacteria detection constructed from superparamagnetic Fe3O4 nanoparticles and AIS/ZnS quantum dots. Analytical Chemistry 91 (20):12661–9.
  • Mei, X., X. Zhai, C. Lei, X. Ye, Z. Kang, X. Wu, R. Xiang, Y. Wang, and H. Wang. 2019. Development and application of a visual loop-mediated isothermal amplification combined with lateral flow dipstick (LAMP-LFD) method for rapid detection of Salmonella strains in food samples. Food Control 104:9–19. doi: 10.1016/j.foodcont.2019.04.014.
  • Mo, T., X. Liu, Y. Luo, L. Zhong, Z. Zhang, T. Li, L. Gan, X. Liu, L. Li, H. Wang, et al. 2022. Aptamer‐based biosensors and application in tumor theranostics. Cancer Science 113 (1):7–16.
  • Mu, D., D. Zhou, G. Xie, J. Liu, Z. Wang, Q. Xiong, and H. Xu. 2022. Real-time recombinase-aided amplification with improved propidium monoazide for the rapid detection of viable Escherichia coli O157: H7 in milk. Journal of Dairy Science 105 (2):1028–38.
  • Mukama, O., J. Wu, Z. Li, Q. Liang, Z. Yi, X. Lu, Y. Liu, Y. Liu, M. Hussain, G. G. Makafe, et al. 2020. An ultrasensitive and specific point-of-care CRISPR/Cas12 based lateral flow biosensor for the rapid detection of nucleic acids. Biosensors & Bioelectronics 159:112143.
  • Niessen, L., J. Luo, C. Denschlag, and R. F. Vogel. 2013. The application of loop-mediated isothermal amplification (LAMP) in food testing for bacterial pathogens and fungal contaminants. Food Microbiology 36 (2):191–206. doi: 10.1016/j.fm.2013.04.017.
  • Obande, G. A., and K. K. B. Singh. 2020. Current and future perspectives on isothermal nucleic acid amplification technologies for diagnosing infections. Infection and Drug Resistance 13:455–83. doi: 10.2147/idr.S217571.
  • Oberacker, P., P. Stepper, D. M. Bond, S. Höhn, J. Focken, V. Meyer, L. Schelle, V. J. Sugrue, G.-J. Jeunen, T. Moser, et al. 2019. Bio-On-Magnetic-Beads (BOMB): Open platform for high-throughput nucleic acid extraction and manipulation. PLOS Biology 17 (1):e3000107. doi: 10.1371/journal.pbio.3000107.
  • Paniel, N., and T. Noguer. 2019. Detection of Salmonella in food matrices, from conventional methods to recent aptamer-sensing technologies. Foods 8 (9):371. doi: 10.3390/foods8090371.
  • Pei, Q., Y. Wang, S. Liu, Y. Qin, X. Leng, X. Cui, and J. HuAng. 2017. Exonuclease III-aided autonomous cascade signal amplification: A facile and universal DNA biosensing platform for ultrasensitive electrochemical detection of S. typhimurium. New Journal of Chemistry 41 (15):7613–20. doi: 10.1039/C7NJ01626C.
  • Ponzoni, E., F. Mastromauro, S. Gianì, and D. Breviario. 2009. Traceability of plant diet contents in raw cow milk samples. Nutrients 1 (2):251–62.
  • Rani, A., V. B. Ravindran, A. Surapaneni, E. Shahsavari, N. Haleyur, N. Mantri, and A. S. Ball. 2021. Evaluation and comparison of recombinase polymerase amplification coupled with lateral-flow bioassay for Escherichia coli O157:H7 detection using different genes. Scientific Reports 11 (1):1881. doi: 10.1038/s41598-021-81312-6.
  • Ray, M., A. Ray, S. Dash, A. Mishra, K. G. Achary, S. Nayak, and S. Singh. 2017. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors. Biosensors & Bioelectronics 87:708–23. doi: 10.1016/j.bios.2016.09.032.
  • Ren, Y., P. Gao, Y. Song, X. Yang, T. Yang, S. Chen, S. Fu, X. Qin, M. Shao, C. Man, et al. 2021. An aptamer-exonuclease III (Exo III)–assisted amplification-based lateral flow assay for sensitive detection of Escherichia coli O157: H7 in milk. Journal of Dairy Science 104 (8):8517–29.
  • Rezazadeh, M., S. Seidi, M. Lid, S. Pedersen-Bjergaard, and Y. Yamini. 2019. The modern role of smartphones in analytical chemistry. TrAC Trends in Analytical Chemistry 118:548–55. doi: 10.1016/j.trac.2019.06.019.
  • Santiago-Felipe, S., L. A. Tortajada-Genaro, S. Morais, R. Puchades, and Á. Maquieira. 2015. Isothermal DNA amplification strategies for duplex microorganism detection. Food Chemistry 174:509–15.
  • Saravanan, A., P. S. Kumar, R. Hemavathy, S. Jeevanantham, R. Kamalesh, S. Sneha, and P. Yaashikaa. 2021. Methods of detection of food-borne pathogens: A review. Environmental Chemistry Letters 19 (1):189–207. doi: 10.1007/s10311-020-01072-z.
  • Shan, S., Y. Huang, Z. Huang, Z. Long, C. Liu, X. Zhao, K. Xing, X. Xiao, J. Liu, Y. Huang, et al. 2021. Detection of stx1 and stx2 and subtyping of Shiga toxin-producing Escherichia coli using asymmetric PCR combined with lateral flow immunoassay. Food Control 126:108051. doi: 10.1016/j.foodcont.2021.108051.
  • Shi, H., J. Cui, H. Sulemana, W. Wang, and L. Gao. 2021. Protein detection based on rolling circle amplification sensors. Luminescence: The Journal of Biological and Chemical Luminescence 36 (4):842–8.
  • Silva, N. F., J. M. Magalhães, C. Freire, and C. Delerue-Matos. 2018. Electrochemical biosensors for Salmonella: State of the art and challenges in food safety assessment. Biosensors & Bioelectronics 99:667–82.
  • Silva, N. F., M. M. Neves, J. M. Magalhães, C. Freire, and C. Delerue-Matos. 2020. Emerging electrochemical biosensing approaches for detection of Listeria monocytogenes in food samples: An overview. Trends in Food Science & Technology 99:621–33. doi: 10.1016/j.tifs.2020.03.031.
  • Song, Y., L. Wang, J. Zhao, H. Li, X. Yang, S. Fu, X. Qin, Q. Chen, Y. Jiang, and C. Man. 2022. A novel colorimetric sensor using aptamers to enhance peroxidase-like property of gold nanoclusters for detection of Escherichia coli O157:H7 in milk. International Dairy Journal 128:105318. doi: 10.1016/j.idairyj.2022.105318.
  • Su, W., D. Liang, and M. Tan. 2021. Nucleic acid-based detection for foodborne virus utilizing microfluidic systems. Trends in Food Science & Technology 113:97–109. doi: 10.1016/j.tifs.2021.04.053.
  • Su, Y., T. Xue, L. Wu, Y. Hu, J. Wang, Q. Xu, Y. Chen, and Z. Lin. 2020. Label-free detection of biomarker alpha fetoprotein in serum by ssDNA aptamer functionalized magnetic nanoparticles. Nanotechnology 31 (9):095104.
  • Sun, Y., Y. Chang, Q. Zhang, and M. Liu. 2019. An origami paper-based device printed with DNAzyme-containing DNA superstructures for Escherichia coli detection. Micromachines 10 (8):531. doi: 10.3390/mi10080531.
  • Tang, R., H. Yang, Y. Gong, M. You, Z. Liu, J. R. Choi, T. Wen, Z. Qu, Q. Mei, and F. Xu. 2017. A fully disposable and integrated paper-based device for nucleic acid extraction, amplification and detection. Lab on a Chip 17 (7):1270–9.
  • Tao, Y., J. Yun, J. Wang, P. Xu, C. Li, H. Liu, Y. Lan, J. Pan, and W. Du. 2020. High-performance detection of Mycobacterium bovis in milk using digital LAMP. Food Chemistry 327:126945. doi: 10.1016/j.foodchem.2020.126945.
  • Taylor, S. C., K. Nadeau, M. Abbasi, C. Lachance, M. Nguyen, and J. Fenrich. 2019. The ultimate qPCR experiment: Producing publication quality, reproducible data the first time. Trends in Biotechnology 37 (7):761–74. doi: 10.1016/j.tibtech.2018.12.002.
  • Teng, J., F. Yuan, Y. Ye, L. Zheng, L. Yao, F. Xue, W. Chen, and B. Li. 2016. Aptamer-based technologies in foodborne pathogen detection. Frontiers in Microbiology 7:1426.
  • Tian, J., K. Huang, Y. Luo, L. Zhu, Y. Xu, and W. Xu. 2018. Visual single cell detection of dual-pathogens based on multiplex super PCR (MS-PCR) and asymmetric tailing HCR (AT-HCR). Sensors and Actuators B: Chemical 260:870–6. doi: 10.1016/j.snb.2018.01.017.
  • Trinh, T. N. D., D. A. Thai, and N. Y. Lee. 2021. Pop-up paper-based and fully integrated microdevice for point-of-care testing of vancomycin-resistant Enterococcus. Sensors and Actuators B: Chemical 345:130362. doi: 10.1016/j.snb.2021.130362.
  • Van Nguyen, H., V. D. Nguyen, E. Y. Lee, and T. S. Seo. 2019. Point-of-care genetic analysis for multiplex pathogenic bacteria on a fully integrated centrifugal microdevice with a large-volume sample. Biosensors & Bioelectronics 136:132–9. doi: 10.1016/j.bios.2019.04.035.
  • Walker, G. T., M. C. Little, J. G. Nadeau, and d. D. D. Shank. 1992. Isothermal in vitro amplification of DNA by a restriction enzyme/DNA polymerase system. Proceedings of the National Academy of Sciences of the United States of America 89 (1):392–6. doi: 10.1073/pnas.89.1.392.
  • Wang, L., P. P. Zhao, X. X. Si, J. Li, X. F. Dai, K. X. Zhang, S. Gao, and J. Q. Dong. 2020a. Rapid and specific detection of listeria monocytogenes with an isothermal amplification and lateral flow strip combined method that eliminates false-positive signals from primer-dimers. Frontiers in Microbiology 10:2959. doi: 10.3389/fmicb.2019.02959.
  • Wang, M., J. J. Yang, Z. T. Gai, S. N. Huo, J. H. Zhu, J. Li, R. R. Wang, S. Xing, G. S. Shi, F. Shi, et al. 2018. Comparison between digital PCR and real-time PCR in detection of Salmonella typhimurium in milk. International Journal of Food Microbiology 266:251–6. doi: 10.1016/j.ijfoodmicro.2017.12.011.
  • Wang, S., N. Liu, L. Zheng, G. Cai, and J. Lin. 2020b. A lab-on-chip device for the sample-in-result-out detection of viable Salmonella using loop-mediated isothermal amplification and real-time turbidity monitoring. Lab on a Chip 20 (13):2296–305. doi: 10.1039/d0lc00290a.
  • Wong, Y.-P., S. Othman, Y.-L. Lau, S. Radu, and H.-Y. Chee. 2018. Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms. Journal of Applied Microbiology 124 (3):626–43. doi: 10.1111/jam.13647.
  • Wu, X., Y. Liu, L. Gao, Z. Yan, Q. Zhao, F. Chen, Q. Xie, and X. Zhang. 2022. Development and application of a reverse-transcription recombinase-aided amplification assay for porcine epidemic diarrhea virus. Viruses 14 (3):591. doi: 10.3390/v14030591.
  • Xie, M., T. Chen, X. Xin, Z. Cai, C. Dong, and B. Lei. 2022. Multiplex detection of foodborne pathogens by real-time loop-mediated isothermal amplification on a digital microfluidic chip. Food Control 136:108824. doi: 10.1016/j.foodcont.2022.108824.
  • Xin, L., L. W. Zhang, Z. X. Meng, K. Lin, S. Zhang, X. Han, H. X. Yi, and Y. H. Cui. 2017. Development of a novel loop-mediated isothermal amplification assay for the detection of lipolytic Pseudomonas fluorescens in raw cow milk from north China. Journal of Dairy Science 100 (10):7802–11. doi: 10.3168/jds.2017-12740.
  • Xing, C., Z. Chen, C. Zhang, J. Wang, and C. Lu. 2020. Target-directed enzyme-free dual-amplification DNA circuit for rapid signal amplification. Journal of Materials Chemistry. B 8 (47):10770–5.
  • Xu, D., X. Ming, M. Gan, X. Wu, Y. Dong, D. Wang, H. Wei, and F. Xu. 2018. Rapid detection of Cronobacter spp. in powdered infant formula by thermophilic helicase-dependent isothermal amplification combined with silica-coated magnetic particles separation. Journal of Immunological Methods 462:54–8. doi: 10.1016/j.jim.2018.08.008.
  • Xu, L., J. Duan, J. Chen, S. Ding, and W. Cheng. 2021a. Recent advances in rolling circle amplification-based biosensing strategies-A review. Analytica Chimica Acta 1148:238187.
  • Xu, X., Y. Su, Y. Zhang, X. Wang, H. Tian, X. Ma, H. Chu, and W. Xu. 2021b. Novel rolling circle amplification biosensors for food-borne microorganism detection. TrAC Trends in Analytical Chemistry 141:116293. doi: 10.1016/j.trac.2021.116293.
  • Yang, B.-H., B.-S. Liu, and Z.-L. Chen. 2020. The efficiency of DNA extraction with the TRIzol reagent was significantly improved by using a silica column. Analytical Sciences:20P361.
  • Yang, H., M. Xiao, W. Lai, Y. Wan, L. Li, and H. Pei. 2020. Stochastic DNA dual-walkers for ultrafast colorimetric bacteria detection. Analytical Chemistry 92 (7):4990–4995.
  • Yang, Q., Y. Z. Zhang, S. Li, X. Lu, Y. W. Yuan, and W. Zhang. 2019. Saltatory rolling circle amplification for sensitive visual detection of Staphylococcus aureus in milk. Journal of Dairy Science 102 (11):9702–10. doi: 10.3168/jds.2019-16724.
  • Yang, X., L. Wang, L. Pang, S. Fu, X. Qin, Q. Chen, C. Man, and Y. Jiang. 2021. A novel fluorescent platform of DNA-stabilized silver nanoclusters based on exonuclease III amplification-assisted detection of Salmonella Typhimurium. Analytica Chimica Acta 1181:338903.
  • Ye, J., M. Xu, X. Tian, S. Cai, and S. Zeng. 2019. Research advances in the detection of miRNA. Journal of Pharmaceutical Analysis 9 (4):217–26. doi: 10.1016/j.jpha.2019.05.004.
  • Yin, J., Y. Suo, Z. Zou, J. Sun, S. Zhang, B. Wang, Y. Xu, D. Darland, J. X. Zhao, and Y. Mu. 2019. Integrated microfluidic systems with sample preparation and nucleic acid amplification. Lab on a Chip 19 (17):2769–85. doi: 10.1039/C9LC00389D.
  • Yin, J., Z. Zou, Z. Hu, S. Zhang, F. Zhang, B. Wang, S. Lv, and Y. Mu. 2020. A “sample-in-multiplex-digital-answer-out” chip for fast detection of pathogens. Lab on a Chip 20 (5):979–86. doi: 10.1039/C9LC01143A.
  • Yu, S., L. Yan, X. Wu, F. Li, D. Wang, and H. Xu. 2017. Multiplex PCR coupled with propidium monoazide for the detection of viable Cronobacter sakazakii, Bacillus cereus, and Salmonella spp. in milk and milk products. Journal of Dairy Science 100 (10):7874–82. doi: 10.3168/jds.2017-13110.
  • Yue, S., Y. Li, Z. Qiao, W. Song, and S. Bi. 2021. Rolling circle replication for biosensing, bioimaging, and biomedicine. Trends in Biotechnology 39 (11):1160–72. doi: 10.1016/j.tibtech.2021.02.007.
  • Zhang, J., Y. Fan, J. Li, B. Huang, H. Wen, and J. Ren. 2022. Cascade signal enhancement by integrating DNA walking and RCA reaction-assisted “silver-link” crossing electrode for ultrasensitive electrochemical detection of Staphylococcus aureus. Biosensors & Bioelectronics 217:114716. doi: 10.1016/j.bios.2022.114716.
  • Zhang, K., Z. Q. Fan, H. Li, J. F. Zhao, and M. H. Xie. 2020. Determination of the concentration of transcription factor by using exonuclease III-aided amplification and gold nanoparticle mediated fluorescence intensity: A new method for gene transcription related enzyme detection. Analytica Chimica Acta 1104:132–9. doi: 10.1016/j.aca.2019.12.076.
  • Zhang, L., Q. Wei, Q. Han, Q. Chen, W. Tai, J. Zhang, Y. Song, and X. Xia. 2018. Detection of Shigella in milk and clinical samples by magnetic immunocaptured-loop-mediated isothermal amplification assay. Frontiers in Microbiology 9:94.
  • Zhang, Y. Z., Q. Yang, C. Li, Y. W. Yuan, and W. Zhang. 2019. Sensitive and visual detection of Cronobacter spp. in powdered infant formula by saltatory rolling circle amplification method. LWT 107:41–8. doi: 10.1016/j.lwt.2019.02.050.
  • Zhong, J., and X. Zhao. 2018. Isothermal amplification technologies for the detection of foodborne pathogens. Food Analytical Methods 11 (6):1543–60. doi: 10.1007/s12161-018-1177-2.
  • Zhou, H., J. Liu, J.-J. Xu, S.-S. Zhang, and H.-Y. Chen. 2018. Optical nano-biosensing interface via nucleic acid amplification strategy: Construction and application. Chemical Society Reviews 47 (6):1996–2019.
  • Zhou, Y., and R. P. Ramasamy. 2019. Isolation and separation of Listeria monocytogenes using bacteriophage P100-modified magnetic particles. Colloids and Surfaces. B, Biointerfaces 175:421–7.
  • Zhu, D., Y. Yan, P. Lei, B. Shen, W. Cheng, H. Ju, and S. Ding. 2014. A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe. Analytica Chimica Acta 846:44–50.
  • Zhu, L., Y. Zhang, P. He, Y. Zhang, and Q. Wang. 2018. A multiplex PCR amplification strategy coupled with microchip electrophoresis for simultaneous and sensitive detection of three foodborne bacteria. Journal of Chromatography B 1093:141–6.
  • Zhu, Z., and W. Guo. 2021. Recent developments on rapid detection of main constituents in milk: a review. Critical Reviews in Food Science and Nutrition 61 (2):312–24.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.