293
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Research advances of in vivo biological fate of food bioactives delivered by colloidal systems

, , , , , , ORCID Icon & ORCID Icon show all

References

  • Actis-Goretta, L., A. Lévèques, M. Rein, A. Teml, C. Schäfer, U. Hofmann, H. Li, M. Schwab, M. Eichelbaum, and G. Williamson. 2013. Intestinal absorption, metabolism, and excretion of (–)-epicatechin in healthy humans assessed by using an intestinal perfusion technique. The American Journal of Clinical Nutrition 98 (4):924–33. doi: 10.3945/ajcn.113.065789.
  • Adams, S. H., J. C. Anthony, R. Carvajal, L. Chae, C. S. H. Khoo, M. E. Latulippe, N. V. Matusheski, H. L. McClung, M. Rozga, C. H. Schmid, et al. 2020. Perspective: Guiding principles for the implementation of personalized nutrition approaches that benefit health and function. Advances in Nutrition (Bethesda, Md.) 11 (1):25–34. doi: 10.1093/advances/nmz086.
  • Akhavan, S., E. Assadpour, I. Katouzian, and S. M. Jafari. 2018. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends in Food Science & Technology 74:132–46. doi: 10.1016/j.tifs.2018.02.001.
  • Alander, M., I. De Smet, L. Nollet, W. Verstraete, A. von Wright, and T. Mattila-Sandholm. 1999. The effect of probiotic strains on the microbiota of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). International Journal of Food Microbiology 46 (1):71–9. doi: 10.1016/S0168-1605(98)00182-2.
  • Álvarez, S. A., N. E. Rocha-Guzmán, R. F. González-Laredo, J. A. Gallegos-Infante, M. R. Moreno-Jiménez, and M. Bravo-Muñoz. 2022. Ancestral food sources rich in polyphenols, their metabolism, and the potential influence of gut microbiota in the management of depression and anxiety. Journal of Agricultural and Food Chemistry 70 (4):944–56. doi: 10.1021/acs.jafc.1c06151.
  • Armand, M. 2007. Lipases and lipolysis in the human digestive tract: Where do we stand? Current Opinion in Clinical Nutrition and Metabolic Care 10 (2):156–64. doi: 10.1097/MCO.0b013e3280177687.
  • Attia, M. F., N. Anton, J. Wallyn, Z. Omran, and T. F. Vandamme. 2019. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. The Journal of Pharmacy and Pharmacology 71 (8):1185–98. doi: 10.1111/jphp.13098.
  • Balakumar, K., C. V. Raghavan, N. T. Selvan, R. H. Prasad, and S. Abdu. 2013. Self nanoemulsifying drug delivery system (SNEDDS) of Rosuvastatin calcium: Design, formulation, bioavailability and pharmacokinetic evaluation. Colloids and Surfaces. B, Biointerfaces 112:337–43. doi: 10.1016/j.colsurfb.2013.08.025.
  • Bao, C., P. Jiang, J. Chai, Y. Jiang, D. Li, W. Bao, B. Liu, B. Liu, W. Norde, and Y. Li. 2019. The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Research International (Ottawa, Ont.) 120:130–40. doi: 10.1016/j.foodres.2019.02.024.
  • Basavaraj, S., and G. V. Betageri. 2014. Improved oral delivery of resveratrol using proliposomal formulation: Investigation of various factors contributing to prolonged absorption of unmetabolized resveratrol. Expert Opinion on Drug Delivery 11 (4):493–503. doi: 10.1517/17425247.2014.878701.
  • Boon, C. S., D. J. McClements, J. Weiss, and E. A. Decker. 2010. Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition 50 (6):515–32. doi: 10.1080/10408390802565889.
  • Bravo-Alfaro, D. A., L. R. Ochoa-Rodríguez, F. Villaseñor-Ortega, G. Luna-Barcenas, and H. S. García. 2022. Self-nanoemulsifying drug delivery system (SNEDDS) improves the oral bioavailability of betulinic acid. Journal of Molecular Liquids 364:119946. doi: 10.1016/j.molliq.2022.119946.
  • Cai, J., Z. Chen, W. Wu, Q. Lin, and Y. Liang. 2022. High animal protein diet and gut microbiota in human health. Critical Reviews in Food Science and Nutrition 62 (22):6225–37. doi: 10.1080/10408398.2021.1898336.
  • Cai, S., Q. Yang, T. R. Bagby, and M. L. Forrest. 2011. Lymphatic drug delivery using engineered liposomes and solid lipid nanoparticles. Advanced Drug Delivery Reviews 63 (10-11):901–8. doi: 10.1016/j.addr.2011.05.017.
  • Chen, C., and X. Fu. 2019. Spheroidization on Fructus Mori polysaccharides to enhance bioavailability and bioactivity by anti-solvent precipitation method. Food Chemistry 300:125245. doi: 10.1016/j.foodchem.2019.125245.
  • Chen, X., Y. Chen, Y. K. Liu, L. Q. Zou, D. J. McClements, and W. Liu. 2022. A review of recent progress in improving the bioavailability of nutraceutical-loaded emulsions after oral intake. Comprehensive Reviews in Food Science and Food Safety 21 (5):3963–4001. doi: 10.1111/1541-4337.13017.
  • Chen, X., X. Liang, G. Zhao, Q. Zeng, W. Dong, L. Ou, H. Zhang, Q. Jiang, and Z. Liao. 2021a. Improvement of the bioavailability of curcumin by a supersaturatable self nanoemulsifying drug delivery system with incorporation of a hydrophilic polymer: In vitro and in vivo characterization. The Journal of Pharmacy and Pharmacology 73 (5):641–52. doi: 10.1093/jpp/rgaa073.
  • Chen, L., W. Yokoyama, P. Alves, Y. Tan, J. Pan, and F. Zhong. 2021b. Effect of encapsulation on β-carotene absorption and metabolism in mice. Food Hydrocolloids. 121:107009. doi: 10.1016/j.foodhyd.2021.107009.
  • Cheng, R., F. Meng, C. Deng, and Z. Zhong. 2015. Bioresponsive polymeric nanotherapeutics for targeted cancer chemotherapy. Nano Today. 10 (5):656–70. doi: 10.1016/j.nantod.2015.09.005.
  • Cho, H. T., L. Salvia-Trujillo, J. Kim, Y. Park, H. Xiao, and D. J. McClements. 2014. Droplet size and composition of nutraceutical nanoemulsions influences bioavailability of long chain fatty acids and Coenzyme Q10. Food Chemistry 156:117–22. doi: 10.1016/j.foodchem.2014.01.084.
  • Cone, R. A. 2009. Barrier properties of mucus. Advanced Drug Delivery Reviews 61 (2):75–85. doi: 10.1016/j.addr.2008.09.008.
  • Cui, J. F., Y. H. Lian, C. Y. Zhao, H. J. Du, Y. H. Han, W. Gao, H. Xiao, and J. K. Zheng. 2019. Dietary fibers from fruits and vegetables and their health benefits via modulation of gut microbiota. Comprehensive Reviews in Food Science and Food Safety 18 (5):1514–32. doi: 10.1111/1541-4337.12489.
  • Dahan, A., and A. Hoffman. 2008. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs. Journal of Controlled Release: Official Journal of the Controlled Release Society 129 (1):1–10. doi: 10.1016/j.jconrel.2008.03.021.
  • Dai, L., W. Zhu, R. Liu, and C. Si. 2018. Lignin-containing self-nanoemulsifying drug delivery system for enhance stability and oral absorption of trans-resveratrol. Particle & Particle Systems Characterization 35 (4):1700447. doi: 10.1002/ppsc.201700447.
  • Danneskiold-Samsøe, N. B., H. Barros, R. Santos, J. L. Bicas, C. B. B. Cazarin, L. Madsen, K. Kristiansen, G. M. Pastore, S. Brix, and M. R. M. Júnior. 2019. Interplay between food and gut microbiota in health and disease. Food Research International (Ottawa, Ont.) 115:23–31. doi: 10.1016/j.foodres.2018.07.043.
  • Date, A. A., N. Desai, R. Dixit, and M. Nagarsenker. 2010. Self-nanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine (London, England) 5 (10):1595–616. doi: 10.2217/nnm.10.126.
  • de Oliveira, W. Q., I. A. Neri-Numa, H. S. Arruda, D. J. McClements, and G. M. Pastore. 2022. Encapsulated flavonoids for diabetic foods: The emerging paradigm for an effective therapy. Trends in Food Science & Technology 127:198–206. doi: 10.1016/j.tifs.2022.06.004.
  • Dille, M. J., T. Baydin, K. A. Kristiansen, and K. I. Draget. 2021. The impact of emulsion droplet size on in vitro lipolysis rate and in vivo plasma uptake kinetics of triglycerides and vitamin D3in rats. Food & Function 12 (7):3219–32. doi: 10.1039/D0FO03386C.
  • Dressman, J. B., K. Thelen, and S. Willmann. 2011. An update on computational oral absorption simulation. Expert Opinion on Drug Metabolism & Toxicology 7 (11):1345–64. doi: 10.1517/17425255.2011.617743.
  • Duan, H., J. Li, L. Yu, and L. Fan. 2022. The road ahead of dietary restriction on anti-aging: Focusing on personalized nutrition. Critical Reviews in Food Science and Nutrition 62:1–18. doi: 10.1080/10408398.2022.2110034.
  • Elsheikh, M. A., Y. S. Elnaggar, E. Y. Gohar, and O. Y. Abdallah. 2012. Nanoemulsion liquid preconcentrates for raloxifene hydrochloride: Optimization and in vivo appraisal. International Journal of Nanomedicine 7:3787–802. doi: 10.2147/IJN.S33186.
  • Ercolini, D., and V. Fogliano. 2018. Food design to feed the human gut microbiota. Journal of Agricultural and Food Chemistry 66 (15):3754–8. doi: 10.1021/acs.jafc.8b00456.
  • Fasinu, P., V. Pillay, V. M. K. Ndesendo, L. C. Du Toit, and Y. E. Choonara. 2011. Diverse approaches for the enhancement of oral drug bioavailability. Biopharmaceutics & Drug Disposition 32 (4):185–209. doi: 10.1002/bdd.750.
  • Feng, J., M. Huang, Z. Chai, C. Li, W. Huang, L. Cui, and Y. Li. 2020. The influence of oil composition on the transformation, bioaccessibility, and intestinal absorption of curcumin in nanostructured lipid carriers. Food & Function 11 (6):5223–39. doi: 10.1039/d0fo00473a.
  • Fonseca, C., S. Simoes, and R. Gaspar. 2002. Paclitaxel-loaded PLGA nanoparticles: Preparation, physicochemical characterization and in vitro anti-tumoral activity. Journal of Controlled Release: Official Journal of the Controlled Release Society 83 (2):273–86. doi: 10.1016/S0168-3659(02)00212-2.
  • Frozza, R. L., A. Bernardi, K. Paese, J. B. Hoppe, T. D. Silva, A. M. O. Battastini, A. R. Pohlmann, S. S. Guterres, and C. Salbego. 2010. Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. Journal of Biomedical Nanotechnology 6 (6):694–703. doi: 10.1166/jbn.2010.1161.
  • Gao, X., L. Li, X. Cai, Q. Huang, J. Xiao, and Y. Cheng. 2021a. Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges. Biomaterials 265:120404. doi: 10.1016/j.biomaterials.2020.120404.
  • Gao, Y., Y. Sun, G. Liao, H. Zhang, and Q. Long. 2021b. DSPE-PEG polymers for improving pulmonary absorption of poorly absorbed macromolecules in rats and relative mechanism. Drug Development and Industrial Pharmacy 47 (2):337–46. doi: 10.1080/03639045.2021.1879837.
  • Gleeson, J. P., S. M. Ryan, and D. J. Brayden. 2016. Oral delivery strategies for nutraceuticals: Delivery vehicles and absorption enhancers. Trends in Food Science & Technology 53:90–101. doi: 10.1016/j.tifs.2016.05.007.
  • Gowd, V., C. Jori, A. A. Chaudhary, H. A. Rudayni, S., and Khan, R. 2022. Resveratrol and resveratrol nano-delivery systems in the treatment of inflammatory bowel disease. The Journal of Nutritional Biochemistry 109:109101. doi: 10.1016/j.jnutbio.2022.109101.
  • Gupta, A., H. B. Eral, T. A. Hatton, and P. S. Doyle. 2016. Nanoemulsions: Formation, properties and applications. Soft Matter 12 (11):2826–41. doi: 10.1039/c5sm02958a.
  • Ha, E., W. Sim, S. Lee, J. Jeong, J. Kim, I. Baek, D. H. Choi, H. Park, S. Hwang, and M. Kim. 2019. Preparation and evaluation of resveratrol-loaded composite nanoparticles using a supercritical fluid technology for enhanced oral and skin delivery. Antioxidants 8 (11):554. doi: 10.3390/antiox8110554.
  • Han, J.-R., W.-H. Shang, J.-N. Yan, Y.-N. Du, D. J. McClements, H. Xiao, H.-T. Wu, and B.-W. Zhu. 2020. Protection of β-carotene from chemical degradation in emulsion-based delivery systems using scallop (patinopecten yessoensis) gonad protein isolates. Food and Bioprocess Technology 13 (4):680–92. doi: 10.1007/s11947-020-02429-6.
  • Hao, J., Y. Gao, J. Zhao, J. Zhang, Q. Li, Z. Zhao, and J. Liu. 2015. Preparation and optimization of resveratrol nanosuspensions by antisolvent precipitation using Box-Behnken design. AAPS PharmSciTech 16 (1):118–28. doi: 10.1208/s12249-014-0211-y.
  • Jaisamut, P., K. Wiwattanawongsa, and R. Wiwattanapatapee. 2017. A novel self-microemulsifying system for the simultaneous delivery and enhanced oral absorption of curcumin and resveratrol. Planta Medica 83 (5):461–7. doi: 10.1055/s-0042-108734.
  • Jaiswal, M., R. Dudhe, and P. K. Sharma. 2015. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 5 (2):123–7. doi: 10.1007/s13205-014-0214-0.
  • Jaworska, M., E. Sikora, M. Zielina, and J. Ogonowski. 1970. Studies on the formation of O/W nano-emulsions, by low-energy emulsification method, suitable for cosmeceutical applications. Acta Biochimica Polonica 60 (4):779–82. doi: 10.18388/abp.2013_2057.
  • Joye, I. J., and D. J. McClements. 2014. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Current Opinion in Colloid & Interface Science 19 (5):417–27. doi: 10.1016/j.cocis.2014.07.002.
  • Ju, S. N., H. H. Shi, J. Y. Yang, Y. C. Zhao, C. H. Xue, Y. M. Wang, Q. R. Huang, and T. T. Zhang. 2022. Characterization, stability, digestion and absorption of a nobiletin nanoemulsion using DHA-enriched phosphatidylcholine as an emulsifier in vivo and in vitro. Food Chemistry 397:133787. doi: 10.1016/j.foodchem.2022.133787.
  • Karaś, M., A. Jakubczyk, U. Szymanowska, U. Złotek, and E. Zielińska. 2017. Digestion and bioavailability of bioactive phytochemicals. International Journal of Food Science & Technology 52 (2):291–305. doi: 10.1111/ijfs.13323.
  • Karn, A., C. Zhao, F. Yang, J. Cui, Z. Gao, M. Wang, F. Wang, H. Xiao, and J. Zheng. 2021. In-vivo biotransformation of citrus functional components and their effects on health. Critical Reviews in Food Science and Nutrition 61 (5):756–76. doi: 10.1080/10408398.2020.1746234.
  • Katouzian, I., A. Faridi Esfanjani, S. M. Jafari, and S. Akhavan. 2017. Formulation and application of a new generation of lipid nano-carriers for the food bioactive ingredients. Trends in Food Science & Technology 68:14–25. doi: 10.1016/j.tifs.2017.07.017.
  • King, R. E., J. A. Bomser, D. B. Min, and H. Fiedler. 2006. Bioactivity of resveratrol. Comprehensive Reviews in Food Science and Food Safety 5 (3):65–70. doi: 10.1111/j.1541-4337.2006.00001.x.
  • Knight, R., C. Callewaert, C. Marotz, E. R. Hyde, J. W. Debelius, D. McDonald, and M. L. Sogin. 2017. The microbiome and human biology. Annual Review of Genomics and Human Genetics 18:65–86. doi: 10.1146/annurev-genom-083115022438.
  • Komaiko, J., and D. J. McClements. 2015. Low-energy formation of edible nanoemulsions by spontaneous emulsification: Factors influencing particle size. Journal of Food Engineering 146:122–8. doi: 10.1016/j.jfoodeng.2014.09.003.
  • Koppel, N., V. M. Rekdal, and E. P. Balskus. 2017. Chemical transformation of xenobiotics by the human gut microbiota. Science 356 (6344):eaag2770. doi: 10.1126/science.aag2770.
  • Kosińska, A., and W. Andlauer. 2013. Modulation of tight junction integrity by food components. Food Research International 54 (1):951–60. doi: 10.1016/j.foodres.2012.12.038.
  • Kumari, A., S. K. Yadav, Y. B. Pakade, B. Singh, and S. C. Yadav. 2010. Development of biodegradable nanoparticles for delivery of quercetin. Colloids and Surfaces. B, Biointerfaces 80 (2):184–92. doi: 10.1016/j.colsurfb.2010.06.002.
  • Lerner, A., and T. Matthias. 2015. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmunity Reviews 14 (6):479–89. doi: 10.1016/j.autrev.2015.01.009.
  • Li, F., Y. H. Han, X. Wu, X. Q. Cao, Z. L. Gao, Y. Sun, M. Q. Wang, and H. Xiao. 2022. Gut microbiota-derived resveratrol metabolites, dihydroresveratrol and lunularin, significantly contribute to the biological activities of resveratrol. Frontiers in Nutrition 9:912591. doi: 10.3389/fnut.2022.912591.
  • Li, Z., D. Xu, Y. Yuan, H. Wu, J. Hou, W. Kang, and B. Bai. 2020. Advances of spontaneous emulsification and its important applications in enhanced oil recovery process. Advances in Colloid and Interface Science 277:102119. doi: 10.1016/j.cis.2020.102119.
  • Liu, W., D. Sun, C. Li, Q. Liu, and J. Xu. 2006. Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method. Journal of Colloid and Interface Science 303 (2):557–63. doi: 10.1016/j.jcis.2006.07.055.
  • Luca, S. V., I. Macovei, A. Bujor, A. Miron, K. Skalicka-Woźniak, A. C. Aprotosoaie, and A. Trifan. 2020. Bioactivity of dietary polyphenols: The role of metabolites. Critical Reviews in Food Science and Nutrition 60 (4):626–59. doi: 10.1080/10408398.2018.1546669.
  • Luo, H., Z. Li, M. Yao, D. J. McClements, and H. Xiao. 2022. Impact of excipient emulsions made from different types of oils on the bioavailability and metabolism of curcumin in gastrointestinal tract. Food Chemistry 370:130980. doi: 10.1016/j.foodchem.2021.130980.
  • Ma, Z., N. Wang, H. He, and X. Tang. 2019. Pharmaceutical strategies of improving oral systemic bioavailability of curcumin for clinical application. Journal of Controlled Release: Official Journal of the Controlled Release Society 316:359–80. doi: 10.1016/j.jconrel.2019.10.053.
  • Mamadou, G., C. Charrueau, J. Dairou, N. Limas Nzouzi, B. Eto, and G. Ponchel. 2017. Increased intestinal permeation and modulation of presystemic metabolism of resveratrol formulated into self-emulsifying drug delivery systems. International Journal of Pharmaceutics 521 (1-2):150–5. doi: 10.1016/j.ijpharm.2017.02.036.
  • Mathias, N. R., and J. Crison. 2012. The use of modeling tools to drive efficient oral product design. The AAPS Journal 14 (3):591–600. doi: 10.1208/s12248-012-9372-3.
  • McClements, D. J. 2011. Edible nanoemulsions: Fabrication, properties, and functional performance. Soft Matter. 7 (6):2297–316. doi: 10.1039/C0SM00549E.
  • McClements, D. J. 2015. Nanoscale nutrient delivery systems for food applications: Improving bioactive dispersibility, stability, and bioavailability. Journal of Food Science 80 (7):N1602–N1611. doi: 10.1111/1750-3841.12919.
  • McClements, D. J. 2018. Enhanced delivery of lipophilic bioactives using emulsions: A review of major factors affecting vitamin, nutraceutical, and lipid bioaccessibility. Food & Function 9 (1):22–41. doi: 10.1039/c7fo01515a.
  • McClements, D. J., E. A. Decker, Y. Park, and J. Weiss. 2009. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Critical Reviews in Food Science and Nutrition 49 (6):577–606. doi: 10.1080/10408390902841529.
  • McClements, D. J., E. A. Decker an, and d J. Weiss. 2007. Emulsion-based delivery systems for lipophilic bioactive components. Journal of Food Science 72 (8):R109–R124. doi: 10.1111/j.1750-3841.2007.00507.x.
  • McClements, D. J., F. Li, and H. Xiao. 2015. The nutraceutical bioavailability classification scheme: Classifying nutraceuticals according to factors limiting their oral bioavailability. Annual Review of Food Science and Technology 6:299–327. doi: 10.1146/annurev-food-032814-014043.
  • McClements, D. J., H. Xiao, and P. Demokritou. 2017. Physicochemical and colloidal aspects of food matrix effects on gastrointestinal fate of ingested inorganic nanoparticles. Advances in Colloid and Interface Science 246:165–80. doi: 10.1016/j.cis.2017.05.010.
  • McClements, D. J., and H. Xiao. 2017. Designing food structure and composition to enhance nutraceutical bioactivity to support cancer inhibition. Seminars in Cancer Biology 46:215–26. doi: 10.1016/j.semcancer.2017.06.003.
  • Misaka, S., F. Müller, and M. F. Fromm. 2013. Clinical relevance of drug efflux pumps in the gut. Current Opinion in Pharmacology 13 (6):847–52. doi: 10.1016/j.coph.2013.08.010.
  • Miyamoto, J., M. Igarashi, K. Watanabe, S. Karaki, H. Mukouyama, S. Kishino, X. Li, A. Ichimura, J. Irie, Y. Sugimoto, et al. 2019. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nature Communications 10 (1):1–15. doi: 10.1038/s41467-019-11978-0.
  • Mohanty, C., and S. K. Sahoo. 2010. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation. Biomaterials 31 (25):6597–611. doi: 10.1016/j.biomaterials.2010.04.062.
  • Mollazadeh, S., M. Mackiewicz, and M. Yazdimamaghani. 2021. Recent advances in the redox-responsive drug delivery nanoplatforms: A chemical structure and physical property perspective. Materials Science & Engineering. C, Materials for Biological Applications 118:111536. doi: 10.1016/j.msec.2020.111536.
  • Murillo, A. G., D. Aguilar, G. H. Norris, D. M. DiMarco, A. Missimer, S. Hu, J. A. Smyth, S. Gannon, C. N. Blesso, Y. Luo, et al. 2016. Compared with powdered lutein, a lutein nanoemulsion increases plasma and liver lutein, protects against hepatic steatosis, and affects lipoprotein metabolism in guinea pigs. The Journal of Nutrition 146 (10):1961–9. doi: 10.3945/jn.116.235374.
  • Nectoux, A. M., C. Abe, S. Huang, N. Ohno, J. Tabata, Y. Miyata, K. Tanaka, T. Tanaka, H. Yamamura, and T. Matsui. 2019. Absorption and metabolic behavior of hesperidin (rutinosylated hesperetin) after single oral administration to sprague-dawley rats. Journal of Agricultural and Food Chemistry 67 (35):9812–9. doi: 10.1021/acs.jafc.9b03594.
  • Gursoy, R. N., and S. Benita. 2004. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 58 (3):173–82. doi: 10.1016/j.biopha.2004.02.001.
  • Neves, A. R., M. Lucio, S. Martins, J. L. Lima, and S. Reis. 2013. Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. International Journal of Nanomedicine 8:177–87. doi: 10.2147/IJN.S37840.
  • Oganesyan, E. A., I. I. Miroshnichenko, N. S. Vikhrieva, A. A. Lyashenko, and S. Y. Leshkov. 2010. Use of nanoparticles to increase the systemic bioavailability of trans-resveratrol. Pharmaceutical Chemistry Journal 44 (2):74–6. doi: 10.1007/s11094-010-0401-1.
  • Oh, Y. 2016. Bioactive compounds and their neuroprotective effects in diabetic complications. Nutrients 8 (8):472. doi: 10.3390/nu8080472.
  • Pandita, D., S. Kumar, N. Poonia, and V. Lather. 2014. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Research International 62:1165–74. doi: 10.1016/j.foodres.2014.05.059.
  • Penalva, R., I. Esparza, E. Larraneta, C. J. González-Navarro, C. Gamazo, and J. M. Irache. 2015. Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotoxic shock. Journal of Agricultural and Food Chemistry 63 (23):5603–11. doi: 10.1021/jf505694e.
  • Peng, C. Y., X. F. Xu, Y. F. Ren, H. L. Niu, Y. Q. Yang, R. Y. Hou, X. C. Wan, and H. M. Cai. 2021. Fluoride absorption, transportation and tolerance mechanism in Camellia sinensis, and its bioavailability and health risk assessment: A systematic review. Journal of the Science of Food and Agriculture 101 (2):379–87. doi: 10.1002/jsfa.10640.
  • Pérez-Beltrán, Y. E., I. Rivera-Iñiguez, K. Gonzalez-Becerra, N. Pérez-Naitoh, J. Tovar, S. G. Sáyago-Ayerdi, and E. J. Mendivil. 2022. Personalized dietary recommendations based on lipid-related genetic variants: A systematic review. Frontiers in Nutrition 9:830283. doi: 10.3389/fnut.2022.830283.
  • Porter, C. J. H., and W. N. Charman. 2001. Intestinal lymphatic drug transport: An update. Advanced Drug Delivery Reviews 50 (1-2):61–80. doi: 10.1016/S0169-409X(01)00151-X.
  • Pouton, C. W., and C. J. H. Porter. 2008. Formulation of lipid-based delivery systems for oral administration: Materials, methods and strategies. Advanced Drug Delivery Reviews 60 (6):625–37. doi: 10.1016/j.addr.2007.10.010.
  • Qiu, C., M. Zhao, E. A. Decker, and D. J. McClements. 2015. Influence of protein type on oxidation and digestibility of fish oil-in-water emulsions: Gliadin, caseinate, and whey protein. Food Chemistry 175:249–57. doi: 10.1016/j.foodchem.2014.11.112.
  • Rahimi, H. R., R. Nedaeinia, A. Shamloo, S. Nikdoust, and R. Oskuee. 2016. Novel delivery system for natural products: Nano-curcumin formulations. Avicenna Journal of Phytomedicine 6 (4):383–98.
  • Ribnicky, D. M., D. E. Roopchand, A. Oren, M. Grace, V. Poulev, M. A. Lila, R. Havenaar, and I. Raskin. 2014. Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1). Food Chemistry 142:349–57. doi: 10.1016/j.foodchem.2013.07.073.
  • Rosales, T. K. O., and J. P. Fabi. 2022. Nanoencapsulated anthocyanin as a functional ingredient: Technological application and future perspectives. Colloids and Surfaces. B, Biointerfaces 218:112707. doi: 10.1016/j.colsurfb.2022.112707.
  • Salvia-Trujillo, L., Q. Sun, B. H. Um, Y. Park, and D. J. McClements. 2015. In vitro and in vivo study of fucoxanthin bioavailability from nanoemulsion-based delivery systems: Impact of lipid carrier type. Journal of Functional Foods 17:293–304. doi: 10.1016/j.jff.2015.05.035.
  • Sanidad, K. Z., E. Sukamtoh, H. Xiao, D. J. McClements, and G. Zhang. 2019. Curcumin: Recent advances in the development of strategies to improve oral bioavailability. Annual Review of Food Science and Technology 10 (1):597–617. doi: 10.1146/annurev-food-032818-121738.
  • Sanna, V., A. M. Roggio, S. Siliani, M. Piccinini, S. Marceddu, A. Mariani, and M. Sechi. 2012. Development of novel cationic chitosan-and anionic alginate-coated poly(D,L-lactide-co-glycolide) nanoparticles for controlled release and light protection of resveratrol. International Journal of Nanomedicine 7:5501–16. doi: 10.2147/IJN.S36684.
  • Santos, A. C., I. Pereira, M. Pereira-Silva, L. Ferreira, M. Caldas, M. Magalhães, A. Figueiras, A. J. Ribeiro, and F. Veiga. 2019. Nanocarriers for resveratrol delivery: Impact on stability and solubility concerns. Trends in Food Science & Technology 91:483–97. doi: 10.1016/j.tifs.2019.07.048.
  • Scaldaferri, F., M. Pizzoferrato, V. Gerardi, L. Lopetuso, and A. Gasbarrini. 2012. The gut barrier: New acquisitions and therapeutic approaches. Journal of Clinical Gastroenterology 46:S12–S17. doi: 10.1097/MCG.0b013e31826ae849.
  • Seki, T., S. Harada, O. Hosoya, K. Morimoto, and K. Juni. 2008. Evaluation of the establishment of a tight Junction in Caco-2 cell monolayers using a pore permeation model involving two different sizes. Biological & Pharmaceutical Bulletin 31 (1):163–6. doi: 10.1248/bpb.31.163.
  • Selma, M. V., J. C. Espín, and F. A. Tomás-Barberán. 2009. Interaction between phenolics and gut microbiota: Role in human health. Journal of Agricultural and Food Chemistry 57 (15):6485–501. doi: 10.1021/jf902107d.
  • Sender, R., S. Fuchs, and R. Milo. 2016. Revised estimates for the number of human and bacteria cells in the body. PLoS Biology 14 (8):e1002533. doi: 10.1371/journal.pbio.1002533.
  • Shah, B. M., S. S. Palakurthi, T. Khare, S. Khare, and S. Palakurthi. 2020. Natural proteins and polysaccharides in the development of micro/nano delivery systems for the treatment of inflammatory bowel disease. International Journal of Biological Macromolecules 165 (Pt A):722–37. doi: 10.1016/j.ijbiomac.2020.09.214.
  • Singh, B., R. Singh, S. Bandyopadhyay, R. Kapil, and B. Garg. 2013. Optimized nanoemulsifying systems with enhanced bioavailability of carvedilol. Colloids and Surfaces. B, Biointerfaces 101:465–74. doi: 10.1016/j.colsurfb.2012.07.017.
  • Singh, G., and R. S. Pai. 2014a. In-vitro/in-vivo characterization of trans-resveratrol-loaded nanoparticulate drug delivery system for oral administration. The Journal of Pharmacy and Pharmacology 66 (8):1062–76. doi: 10.1111/jphp.12232.
  • Singh, G., and R. S. Pai. 2014b. Optimized PLGA nanoparticle platform for orally dosedtrans-resveratrol with enhanced bioavailability ­potential. Expert Opinion on Drug Delivery 11 (5):647–59. doi: 10.1517/17425247.2014.890588.
  • Singh, G., and R. S. Pai. 2015. Trans-resveratrol self-nano-emulsifying drug delivery system (SNEDDS) with enhanced bioavailability potential: Optimization, pharmacokinetics and in situ single pass intestinal perfusion (SPIP) studies. Drug Delivery 22 (4):522–30. doi: 10.3109/10717544.2014.885616.
  • Singh, G., and R. S. Pai. 2016. In vitro and in vivo performance of supersaturable self-nanoemulsifying system of trans-resveratrol. Artificial Cells, Nanomedicine, and Biotechnology 44 (2):510–6. doi: 10.3109/21691401.2014.966192.
  • Siu, F., S. Ye, H. Lin, and S. Li. 2018. Galactosylated PLGA nanoparticles for the oral delivery of resveratrol: Enhanced bioavailability and in vitro anti-inflammatory activity. International Journal of Nanomedicine 13:4133–44. doi: 10.2147/IJN.S164235.
  • Subramanian, D. A., R. Langer, and G. Traverso. 2022. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. Journal of Nanobiotechnology 20 (1):362. doi: 10.1186/s12951-022-01539-x.
  • Tao, J., S. Li, R.-Y. Gan, C.-N. Zhao, X. Meng, and H.-B. Li. 2020. Targeting gut microbiota with dietary components on cancer: Effects and potential mechanisms of action. Critical Reviews in Food Science and Nutrition 60 (6):1025–37. doi: 10.1080/10408398.2018.1555789.
  • Tsutsumi, K., S. K. Li, R. V. Hymas, C. L. Teng, L. G. Tillman, G. E. Hardee, W. I. Higuchi, and N. F. H. Ho. 2008. Systematic studies on the paracellular permeation of model permeants and oligonucleotides in the rat small intestine with chenodeoxycholate as enhancer. Journal of Pharmaceutical Sciences 97 (1):350–67. doi: 10.1002/jps.21093.
  • Vanza, J. D., R. B. Patel, and M. R. Patel. 2020. Nanocarrier centered therapeutic approaches: Recent developments with insight towards the future in the management of lung cancer. Journal of Drug Delivery Science and Technology 60:102070. doi: 10.1016/j.jddst.2020.102070.
  • Vasconcelos, T., F. Araújo, C. Lopes, A. Loureiro, J. Das Neves, S. Marques, and B. Sarmento. 2019. Multicomponent self nano emulsifying delivery systems of resveratrol with enhanced pharmacokinetics profile. European Journal of Pharmaceutical Sciences : official Journal of the European Federation for Pharmaceutical Sciences 137:105011. doi: 10.1016/j.ejps.2019.105011.
  • Wang, C., S. Ding, S. Wang, Z. Shi, N. K. Pandey, L. Chudal, L. Wang, Z. Zhang, Y. Wen, H. Yao, et al. 2021a. Endogenous tumor microenvironment-responsive multifunctional nanoplatforms for precision cancer theranostics. Coordination Chemistry Reviews 426:213529. doi: 10.1016/j.ccr.2020.213529.
  • Wang, Z., Y. Li, D. Ma, M. Zeng, Z. Wang, F. Qin, J. Chen, M. Christian, and Z. He. 2021b. Alkaloids from lotus (Nelumbo nucifera): Recent advances in biosynthesis, pharmacokinetics, bioactivity, safety, and industrial applications. Critical Reviews in Food Science and Nutrition 61:1–34. doi: 10.1080/10408398.2021.2009436.
  • Wang, Q., W. Yu, Z. Li, B. Liu, Y. Hu, S. Chen, R. de Vries, Y. Yuan, L. E. Erazo Quintero, G. Hou, et al. 2022. The stability and bioavailability of curcumin loaded α-lactalbumin nanocarriers formulated in functional dairy drink. Food Hydrocolloids. 131:107807. doi: 10.1016/j.foodhyd.2022.107807.
  • Wang, P., and S. Sang. 2018. Metabolism and pharmacokinetics of resveratrol and pterostilbene. BioFactors (Oxford, England) 44 (1):16–25. doi: 10.1002/biof.1410.
  • Wei, W., M. Lu, W. Xu, N. E. Polyakov, A. V. Dushkin, and W. K. Su. 2022. Preparation of protamine-hyaluronic acid coated core-shell nanoparticles for enhanced solubility, permeability, and oral bioavailability of decoquinate. International Journal of Biological Macromolecules 218:346–55. doi: 10.1016/j.ijbiomac.2022.07.152.
  • Wolf, A. R., D. A. Wesener, J. Y. Cheng, A. N. Houston-Ludlam, Z. W. Beller, M. C. Hibberd, R. J. Giannone, S. L. Peters, R. L. Hettich, S. A. Leyn, et al. 2019. Bioremediation of a common product of food processing by a human gut bacterium. Cell Host & Microbe 26 (4):463–77.e8. doi: 10.1016/j.chom.2019.09.001.
  • Wong, H., R. Bendayan, A. Rauth, Y. Li, and X. Wu. 2007. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Advanced Drug Delivery Reviews 59 (6):491–504. doi: 10.1016/j.addr.2007.04.008.
  • Wu, X., M. Song, M. Wang, J. Zheng, Z. Gao, F. Xu, G. Zhang, and H. Xiao. 2015. Chemopreventive effects of nobiletin and its colonic metabolites on colon carcinogenesis. Molecular Nutrition & Food Research 59 (12):2383–94. doi: 10.1002/mnfr.201500378.
  • Xiao, J., W. Tian, H. Wang, M. Chen, Q. Huang, M. Zhang, M. Lu, M. Song, Y., and Cao, Y. 2022. Updated design strategies for oral delivery systems: Maximized bioefficacy of dietary bioactive compounds achieved by inducing proper digestive fate and sensory attributes. Critical Reviews in Food Science and Nutrition 62:1–20. doi: 10.1080/10408398.2022.2109583.
  • Yadav, S., S. K. Gandham, R. Panicucci, and M. M. Amiji. 2016. Intranasal brain delivery of cationic nanoemulsion-encapsulated TNFα siRNA in prevention of experimental neuroinflammation. Nanomedicine: Nanotechnology, Biology, and Medicine 12 (4):987–1002. doi: 10.1016/j.nano.2015.12.374.
  • Yang, J., H. He, Z. Gu, L. Cheng, C. Li, Z. Li, and Y. Hong. 2020. Conjugated linoleic acid loaded starch-based emulsion nanoparticles: In vivo gastrointestinal controlled release. Food Hydrocolloids. 101:105477. doi: 10.1016/j.foodhyd.2019.105477.
  • Yang, Y., C. Zhao, G. Tian, C. Lu, S. Zhao, Y. Bao, D. J. McClements, H. Xiao, and J. Zheng. 2017. Effects of preheating and storage temperatures on aroma profile and physical properties of citrus-oil emulsions. Journal of Agricultural and Food Chemistry 65 (35):7781–9. doi: 10.1021/acs.jafc.7b03270.
  • Yao, M., D. J. McClements, and H. Xiao. 2015. Improving oral bioavailability of nutraceuticals by engineered nanoparticle-based delivery systems. Current Opinion in Food Science 2:14–9. doi: 10.1016/j.clinmicnews.2015.01.008.
  • Yao, M., Y. Fei, S. Zhang, B. Qiu, L. Zhu, F. Li, B. Berglund, H. Xiao, and L. Li. 2022. Gut microbiota composition in relation to the metabolism of oral administrated resveratrol. Nutrients 14 (5):1013. doi: 10.3390/nu14051013.
  • Yao, M. F., Z. Z. Li, D. J. McClements, Z. H. Tang, and H. Xiao. 2020. Design of nanoemulsion-based delivery systems to enhance intestinal lymphatic transport of lipophilic food bioactives: Influence of oil type. Food Chemistry 317:126229. doi: 10.1016/j.foodchem.2020.126229.
  • Yao, K., D. J. McClements, C. Yan, J. Xiao, H. Liu, Z. Q. Chen, X. M. Hou, Y. Cao, H. Xiao, and X. J. Liu. 2021. In vitro and in vivo study of the enhancement of carotenoid bioavailability in vegetables using excipient nanoemulsions: Impact of lipid content. Food Research International (Ottawa, Ont.) 141:110162. doi: 10.1016/j.foodres.2021.110162.
  • Yen, C., C. Chang, M. Hsu, and Y. Wu. 2017. Self-nanoemulsifying drug delivery system for resveratrol: Enhanced oral bioavailability and reduced physical fatigue in rats. International Journal of Molecular Sciences 18 (9):1853. doi: 10.3390/ijms18091853.
  • Yodsanit, N., B. Wang, Y. Zhao, L. Guo, K. C. Kent, and S. Gong. 2021. Recent progress on nanoparticles for targeted aneurysm treatment and imaging. Biomaterials 265:120406. doi: 10.1016/j.biomaterials.2020.120406.
  • Yu, Y., X. Zhang, and L. Qiu. 2014. The anti-tumor efficacy of curcumin when delivered by size/charge-changing multistage polymeric micelles based on amphiphilic poly(β-amino ester) derivates. Biomaterials 35 (10):3467–79. doi: 10.1016/j.biomaterials.2013.12.096.
  • Yusoff, I. M., Z. M. Taher, Z. Rahmat, and L. S. Chua. 2022. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Research International (Ottawa, Ont.) 157:111268. doi: 10.1016/j.foodres.2022.111268.
  • Zeng, X., W. Su, Y. Zheng, Y. He, Y. He, H. Rao, W. Peng, and H. Yao. 2019a. Pharmacokinetics, tissue distribution, metabolism, and excretion of naringin in aged rats. Frontiers in Pharmacology 10:34. doi: 10.3389/fphar.2019.00034.
  • Zeng, X., H. Yao, Y. Zheng, T. Chen, W. Peng, H. Wu, and W. Su. 2019b. Metabolite profiling of naringin in rat urine and feces using stable isotope-labeling-based liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry 68 (1):409–17. doi: 10.1021/acs.jafc.9b06494.
  • Zhang, Z., Y. Huang, F. Gao, Z. Gao, H. Bu, W. Gu, and Y. Li. 2011. A self-assembled nanodelivery system enhances the oral bioavailability of daidzein: In vitro characteristics and in vivo performance. Nanomedicine (London, England) 6 (8):1365–79. doi: 10.2217/nnm.11.39.
  • Zhang, M., K. L. Feng, G. Y. Huang, Y. P. Xin, J. Xiao, Y. Cao, R. Ludescher, C. T. Ho, and Q. R. Huang. 2020a. Assessment of oral bioavailability and biotransformation of emulsified nobiletin using in vitro and in vivo models. Journal of Agricultural and Food Chemistry 68 (41):11412–20. doi: 10.1021/acs.jafc.0c04450.
  • Zhang, F., F. He, L. Li, L. Guo, B. Zhang, S. Yu, and W. Zhao. 2020b. Bioavailability based on the gut microbiota: A new perspective. Microbiology and Molecular Biology Reviews 84 (2):e00072-19. doi: 10.1128/MMBR.00072-19.
  • Zhang, R., and D. J. McClements. 2016. Enhancing nutraceutical bioavailability by controlling the composition and structure of gastrointestinal contents: Emulsion-based delivery and excipient systems. Food Structure 10:21–36. doi: 10.1016/j.foostr.2016.07.006.
  • Zhang, X., J. Niu, and J. Y. Wu. 2021. Evaluation and manipulation of the key emulsification factors toward highly stable PCM-water nano-emulsions for thermal energy storage. Solar Energy Materials and Solar Cells 219:110820. doi: 10.1016/j.solmat.2020.110820.
  • Zhang, B., Y. Xu, H. Lv, W. Pang, J. Wang, H. Ma, and S. Wang. 2021a. Intestinal pharmacokinetics of resveratrol and regulatory effects of resveratrol metabolites on gut barrier and gut microbiota. Food Chemistry 357:129532. doi: 10.1016/j.foodchem.2021.129532.
  • Zhang, R., Z. Zhang, L. Zou, H. Xiao, G. Zhang, E. A. Decker, and D. J. McClements. 2015. Enhancing nutraceutical bioavailability from raw and cooked vegetables using excipient emulsions: Influence of lipid type on carotenoid bioaccessibility from carrots. Journal of Agricultural and Food Chemistry 63 (48):10508–17. doi: 10.1021/acs.jafc.5b04691.
  • Zhang, M., S. Zhu, W. Yang, Q. Huang, and C. T. Ho. 2021b. The biological fate and bioefficacy of citrus flavonoids: Bioavailability, biotransformation, and delivery systems. Food & Function 12 (8):3307–23. doi: 10.1039/D0FO03403G.
  • Zhao, S., W. Gao, G. Tian, C. Zhao, C. DiMarco-Crook, B. Fan, C. Li, H. Xiao, Y. Lian, and J. Zheng. 2018a. Citrus oil emulsions stabilized by citrus pectin: The influence mechanism of citrus variety and acid treatment. Journal of Agricultural and Food Chemistry 66 (49):12978–88. doi: 10.1021/acs.jafc.8b04711.
  • Zhao, S., G. Tian, C. Zhao, C. Li, Y. Bao, C. DiMarco-Crook, Z. Tang, C. Li, D. Julian McClements, H. Xiao, et al. 2018b. The stability of three different citrus oil-in-water emulsions fabricated by spontaneous emulsification. Food Chemistry 269:577–87. doi: 10.1016/j.foodchem.2018.07.062.
  • Zheng, J., J. Bi, D. Johnson, Y. Sun, M. Song, P. Qiu, P. Dong, E. Decker, and H. Xiao. 2015. Analysis of 10 metabolites of polymethoxyflavones with high sensitivity by electrochemical detection in high-performance liquid chromatography. Journal of Agricultural and Food Chemistry 63 (2):509–16. doi: 10.1021/jf505545x.
  • Zheng, J., M. Song, P. Dong, P. Qiu, S. Guo, Z. Zhong, S. Li, C. T. Ho, and H. Xiao. 2013. Identification of novel bioactive metabolites of 5-demethylnobiletin in mice. Molecular Nutrition & Food Research 57 (11):1999–2007. doi: 10.1002/mnfr.201300211.
  • Zhong, Q., and M. Jin. 2009. Nanoscalar structures of spray-dried zein microcapsules and in vitro release kinetics of the encapsulated lysozyme as affected by formulations. Journal of Agricultural and Food Chemistry 57 (9):3886–94. doi: 10.1021/jf803951a.
  • Zhou, J., M. Zhou, F. Yang, C. Liu, R. Pan, Q. Chang, X. Liu, and Y. Liao. 2015. Involvement of the inhibition of intestinal glucuronidation in enhancing the oral bioavailability of resveratrol by labrasol containing nanoemulsions. Molecular Pharmaceutics 12 (4):1084–95. doi: 10.1021/mp5005838.
  • Zhou, F. Z., X. H. Yu, D. H. Luo, X. Q. Yang, and S. W. Yin. 2023. Pickering water in oil emulsions prepared from biocompatible gliadin/ethyl cellulose complex particles. Food Hydrocolloids. 134:108050. doi: 10.1016/j.foodhyd.2022.108050.
  • Zu, Y., Y. Zhang, W. Wang, X. Zhao, X. Han, K. Wang, and Y. Ge. 2016. Preparation and in vitro/in vivo evaluation of resveratrol-loaded carboxymethyl chitosan nanoparticles. Drug Delivery 23 (3):981–91. doi: 10.3109/10717544.2014.924167.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.