920
Views
17
CrossRef citations to date
0
Altmetric
Review Articles

The flavors of edible mushrooms: A comprehensive review of volatile organic compounds and their analytical methods

, , , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Abdullah, M., G. Young, and D. Games. 2008. Supercritical fluid extraction of carboxylic and fatty acids from Agaricus spp. mushroorms. Journal of Agricultural & Food Chemistry 56 (5):1704–12.
  • Åhlberg, M. K. 2021. A profound explanation of why eating green (wild) edible plants promote health and longevity. Food Frontiers 2 (3):240–67. doi: 10.1002/fft2.106.
  • Aisala, H., H. Manninen, T. Laaksonen, K. M. Linderborg, T. Myoda, A. Hopia, and M. Sandell. 2020. Linking volatile and non-volatile compounds to sensory profiles and consumer liking of wild edible Nordic mushrooms. Food Chemistry 30 (304):125403.
  • Aisala, H., J. Sola, A. Hopia, K. M. Linderborg, and M. Sandell. 2019. Odor-contributing volatile compounds of wild edible Nordic mushrooms analyzed with HS–SPME–GC–MS and HS–SPME–GC–O/FID. Food Chemistry 283:566–78. doi: 10.1016/j.foodchem.2019.01.053.
  • Amanpour, A., H. Kelebek, and S. Selli. 2017. Aroma constituents of shade-dried aerial parts of Iranian dill (Anethum graveolens L.) and savory (Satureja sahendica Bornm.) by solvent-assisted flavor evaporation technique. Journal of Food Measurement and Characterization 11 (3):1430–9. doi: 10.1007/s11694-017-9522-5.
  • Ba, H. V., M. C. Oliveros, K. S. Ryu, and L. Hwang. 2010. Development of analysis condition and detection of volatile compounds from Cooked Hanwoo Beef by SPME-GC/MS analysis. Korean Journal for Food Science of Animal Resources 30 (1):73–86. doi: 10.5851/kosfa.2010.30.1.73.
  • Bel-Rhlid, R., R. G. Berger, and I. Blank. 2018. Bio-mediated generation of food flavors –towards sustainable flavor production inspired by nature. Trends in Food Science & Technology 78:134–43. doi: 10.1016/j.tifs.2018.06.004.
  • Bergmann, A. J., G. L. Points, R. P. Scott, G. Wilson, and K.-A. Anderson. 2018. Development of quantitative screen for 1550 chemicals with GC-MS. Analytical and Bioanalytical Chemistry 410 (13):3101–10. doi: 10.1007/s00216-018-0997-7.
  • Bunkowski, A., S. Maddula, A. N. Davies, M. Westhoff, P. Litterst, B. Bodeker, and J. I. Baumbach. 2010. One-year time series of investigations of analytes within human breath using ion mobility spectrometry. International Journal for Ion Mobility Spectrometry 13 (3-4):141–8. doi: 10.1007/s12127-010-0052-7.
  • Cadwallader, K. R. 2019. Aromas. In Encyclopedia of food chemistry, 1st ed, 22–9. Elsevier: Champaign. doi:10.1016/B978-0-08-100596-5.21623-5.
  • Chen, C. C., and C. M. Wu. 1984. Volatile components of mushroom (Agaricus subrufecens). Journal of Food Science 49 (4):1208–9. doi: 10.1111/j.1365-2621.1984.tb10433.x.
  • Chen, H. Z., M. Zhang, and Z. M. Guo. 2019. Diserimination of fresh cul broccolil feshness by volatles using electronic nose and gas chromalography mass spectrometry. Postharvest Biology and Technology 148:168–75. doi: 10.1016/j.postharvbio.2018.10.019.
  • Cho, I. H., S. Y. Kim, H. K. Choi, and Y. S. Kim. 2006. Characterization of aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.). Journal of Agricultural and Food Chemistry 54 (17):6332–5.
  • Combet, E., D. C. Eastwood, K. S. Burton, E. Combet, J. Henderson, J. Henderson, and E. Combet. 2006. Eight-carbon volatiles in mushrooms and fungi: Properties, analysis, and biosynthesis. Mycoscience 47 (6):317–26. doi: 10.1007/S10267-006-0318-4.
  • Costa, R., S. De Grazia, E. Grasso, and A. Trozzi. 2015. Headspace-solid-phase microextraction-gas chromatography as analytical methodology for the determination of volatiles in wild mushrooms and evaluation of modifications occurring during storage. Journal of Analytical Methods in Chemistry 2015:951748. doi: 10.1155/2015/951748.
  • Costa, R., L. Tedone, S. De Grazia, P. Dugo, and L. Mondello. 2013. Multiple headspace-solid-phase microextraction: An application to quantification of mushroom volatiles. Analytica Chimica Acta 770 (770):1–6. doi: 10.1016/j.aca.2013.01.041.
  • Deng, X., G. Huang, Q. Tu, H. Zhou, Y. Li, H. Shi, X. Wu, H. Ren, K. Huang, X. He, et al. 2021. Evolution analysis of flavor-active compounds during artificial fermentation of Pu-erh tea. Food Chemistry 357:129783.
  • Díaz, P., E. Ibáñez, G. Reglero, and F. J. Señoráns. 2009. Optimization of summer truffle aroma analysis by SPME: Comparison of extraction with different polarity fibres. LWT - Food Science and Technology 42 (7):1253–9. doi: 10.1016/j.lwt.2009.02.017.
  • Díaz-Maroto, M. C., M. S. Pérez-Coello, and M. D. Cabezudo. 2002. Supercritical carbon dioxide extraction of volatiles from spices: Comparison with simultaneous distillation–extraction. Journal of Chromatography. A 947 (1):23–9. doi: 10.1016/s0021-9673(01)01585-0.
  • Donelian, A., L. H. C. Carlson, T. J. Lopes, and R. A. F. Machado. 2009. Comparison of extraction of patchouli (Pogostemon cablin) essential oil with supercritical CO2 and by steam distillation. The Journal of Supercritical Fluids 48 (1):15–20. doi: 10.1016/j.supflu.2008.09.020.
  • Du, X., J. Sissons, M. Shanks, and A. Plotto. 2021. Aroma and flavor profile of raw and roasted Agaricus bisporus mushrooms using a panel trained with aroma chemicals. LWT 138:110596. doi: 10.1016/j.lwt.2020.110596.
  • Dudareva, N., A. Klempien, J. K. Muhlemann, and I. Kaplan. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. The New Phytologist 198 (1):16–32. doi: 10.1111/nph.12145.
  • Dunkel, A., M. Steinhaus, M. Kotthoff, B. Nowak, D. Krautwurst, P. Schieberle, and T. Hofmann. 2014. Nature’s chemical signatures in human olfaction: A foodborne perspective for future biotechnology. Angewandte Chemie (International ed. in English) 53 (28):7124–43. doi: 10.1002/anie.201309508.
  • El Sheikha, A. F., and D. M. Hu. 2018. How to trace the geographic origin of mushrooms? Trends in Food Science & Technology 78:292–303. doi: 10.1016/j.tifs.2018.06.008.
  • Farag, M. A., F. Elmetwally, R. Elghanam, N. Kamal, K. Hellal, H. S. Hamezah, C. Zhao, and A. Mediani. 2023. Metabolomics in tea products; a compile of applications for enhancing agricultural traits and quality control analysis of Camellia sinensis. Food Chemistry 404 (Pt B):134628. doi: 10.1016/j.foodchem.2022.134628.
  • Farag, M. A., N. S. Ramadan, M. Shorbagi, N. Farag, and H. A. Gad. 2022. Profiling of primary metabolites and volatiles in Apricot (Prunus armeniaca L.) seed kernels and fruits in the context of its different cultivars and soil type as analyzed using chemometric tools. Foods 11 (9):1339. doi: 10.3390/foods11091339.
  • Fu, L., G. Yang, L. Liu, Y. Ma, X. Zhang, X. Zhang, C. Li, and Y. Sun. 2020. Analysis of volatile components of auricularia auricula from different origins by GC-MS combined with electronic nose. Journal of Food Quality 2020:1–9. doi: 10.1155/2020/8858093.
  • Fujioka, K., N. Shimizu, Y. Manome, K. Ikeda, K. Yamamoto, and Y. Tomizawa. 2013. Discrimination method of the volatiles from fresh mushrooms by an electronic nose using a trapping system and statistical standardization to reduce sensor value variation. Sensors (Basel, Switzerland) 13 (11):15532–48. doi: 10.3390/s131115532.
  • Gao, X., D. Liu, L. Gao, Y. Ouyang, Y. Wen, C. Ai, Y. Chen, and C. Zhao. 2022. Health benefits of Grifola frondosa polysaccharide on intestinal microbiota in type 2 diabetic mice. Food Science and Human Wellness 11 (1):68–73. doi: 10.1016/j.fshw.2021.07.008.
  • Gioacchini, A. M., M. Menotta, L. Bertini, I. Rossi, S. Zeppa, A. Zambonelli, G. Piccoli, and V. Stocchi. 2005. Solid-phase microextraction gas chromatography/mass spectrometry: A new method for species identification of truffles. Rapid Communications in Mass Spectrometry 19 (17):2365–70. doi: 10.1002/rcm.2031.
  • Guo, Q., N. M. Adelina, J. Hu, L. Zhang, and Y. Zhao. 2022. Comparative analysis of volatile profiles in four pine-mushrooms using HS-SPME/GC-MS and E-nose. Food Control. 134:108711. doi: 10.1016/j.foodcont.2021.108711.
  • Guo, Y., D. Chen, Y. Dong, H. Ju, C. Wu, and S. Lin. 2018. Characteristic volatiles fingerprints and changes of volatile compounds in fresh and dried Tricholoma matsutake Singer by HS-GC-IMS and HS-SPME-GC-MS. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1099:46–55.
  • Hong, J. Y., S. R. Shin, Y. S. Moon, S. U. Lee, and K. Y. Yoon. 2010. Volatile flavor and nonvolatile taste components in the wild mushroom Sarcodon aspratus (Berk.) S. Ito. The Korean Society of Food Preservation 17:770–6.
  • Honour, J. W. 2006. Gas chromatography-mass spectrometry. Methods in Molecular Biology (Clifton, NJ) 324:53–74. doi: 10.1385/1-59259-986-9:53.
  • Hou, H., C. Liu, X. Lu, D. Fang, Q. Hu, Y. Zhang, and L. Zhao. 2021. Characterization of flavor frame in shiitake mushrooms (Lentinula edodes) detected by HS-GC-IMS coupled with electronic tongue and sensory analysis: Influence of drying techniques. LWT 146:111402. doi: 10.1016/j.lwt.2021.111402.
  • Hussain, S. Z., and K. Maqbool. 2014. GC-MS: Principle, technique and its application in Food Science. International Journal of Current Science 13:116–26.
  • Inglis, T. J., D. R. Hahne, A. J. Merritt, and M. W. Clarke. 2015. Volatile-sulfur-compound profile distinguishes Burkholderia pseudomallei from Burkholderia thailandensis. Journal of Clinical Microbiology 53 (3):1009–11. doi: 10.1128/JCM.03644-14.
  • Jung, M. Y., D. E. Lee, S. H. Baek, S. M. Lim, I. M. Chung, J. G. Han, and S. H. Kim. 2021. An unattended HS-SPME-GC-MS/MS combined with a novel sample preparation strategy for the reliable quantitation of C8 volatiles in mushrooms: A sample preparation strategy to fully control the volatile emission. Food Chemistry 347:128998. doi: 10.1016/j.foodchem.2020.128998.
  • Kakumyan, P., and K. Matsui. 2009. Characterization of volatile compounds in Astraeus spp. Bioscience, Biotechnology, and Biochemistry 73 (12):2742–5. doi: 10.1271/bbb.90282.
  • Kalac, P. 2009. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chemistry 113 (1):9–16.
  • Karpas, Z. 2013. Applications of ion mobility spectrometry (IMS) in the field of foodomics. Food Research International 54 (1):1146–51. doi: 10.1016/j.foodres.2012.11.029.
  • Kumar, A., and I. Víden. 2007. Volatile organic compounds: Sampling methods and their worldwide profile in ambient air. Environmental Monitoring and Assessment 131 (1–3):301–21.
  • Lee, S. N., N. S. Kim, and D. S. Lee. 2003. Comparative study of extraction techniques for determination of garlic flavor components by gas chromatography-mass spectrometry. Analytical and Bioanalytical Chemistry 377 (4):749–56. doi: 10.1007/s00216-003-2163-z.
  • Li, C., S. Al-Dalali, Z. Wang, B. Xu, and H. Zhou. 2022. Investigation of volatile flavor compounds and characterization of aroma-active compounds of water-boiled salted duck using GC-MS-O, GC-IMS, and E-nose. Food Chemistry 386:132728. doi: 10.1016/j.foodchem.2022.132728.
  • Liang, L., W. Duan, J. Zhang, Y. Huang, Y. Zhang, and B. Sun. 2022. Characterization and molecular docking study of taste peptides from chicken soup by sensory analysis combined with nano-LC-Q-TOF-MS/MS. Food Chemistry 383:132455. doi: 10.1016/j.foodchem.2022.132455.
  • Liang, L., C. Zhou, J. Zhang, Y. Huang, J. Zhao, B. Sun, and Y. Zhang. 2022. Characteristics of umami peptides identified from porcine bone soup and molecular docking to the taste receptor T1R1/T1R3. Food Chemistry 387:132870. doi: 10.1016/j.foodchem.2022.132870.
  • Li, D.-C., R.-S. Liu, H.-M. Li, Z.-P. Yuan, T. Chen, and Y.-J. Tang. 2014. Ranking the significance of fermentation conditions on the volatile organic compounds of Tuber melanosporum fermentation system by combination of head-space solid phase microextraction and chromatographic fingerprint similarity analysis. Bioprocess and Biosystems Engineering 37 (3):543–52. doi: 10.1007/s00449-013-1021-4.
  • Liu, D., Y. Chen, X. Xiao, R. Zhong, C. Yang, B. Liu, and C. Zhao. 2019. Nutrient properties and nuclear magnetic resonance-based metabonomic analysis of macrofungi. Foods 8 (9):397. doi: 10.3390/foods8090397.
  • Liu, X. S., J. B. Liu, Z. M. Yang, H. L. Song, Y. Liu, and T. T. Zou. 2014. Aroma-active compounds in Jinhua Ham produced with different fermentation periods. Molecules (Basel, Switzerland) 19 (11):19097–113. doi: 10.3390/molecules191119097.
  • Li, W., J. Wang, W. Chen, Y. Yang, J. Zhang, J. Feng, H. Yu, and Q. Li. 2019. Analysis of volatile compounds of Lentinula edodes grown in different culture substrate formulations. Food Research International (Ottawa, ON) 125:108517.
  • Li, M., R. Yang, H. Zhang, S. Wang, D. Chen, and S. Lin. 2019. Development of a flavor fingerprint by HS-GC-IMS with PCA for volatile compounds of Tricholoma matsutake Singer. Food Chemistry 290:32–9.
  • Li, Q., L. Zhang, W. Li, X. Li, W. Huang, H. Yang, and L. Zheng. 2016. Chemical compositions and volatile compounds of Tricholoma matsutake from different geographical areas at different stages of maturity. Food Science and Biotechnology 25 (1):71–7.
  • Lord, H., and J. Pawliszyn. 2000. Evolution of solid-phase microextraction technology. Journal of Chromatography. A 885 (1–2):153–93.
  • Lu, X., H. Hou, D. Fang, Q. Hu, J. Chen, and L. Zhao. 2022. Identification and characterization of volatile compounds in Lentinula edodes during vacuum freeze-drying. Journal of Food Biochemistry 46 (6):e13814. doi: 10.1111/jfbc.13814.
  • Maga, J. A. 1981. Mushroom flavor. Journal of Agricultural and Food Chemistry 29 (1):1–4. doi: 10.1021/jf00103a001.
  • Maggi, F., F. Papa, G. Cristalli, G. Sagratini, and S. Vittori. 2010. Characterisation of the mushroom-like flavour of Melittis melissophyllum L. subsp. melissophyllum by headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS). Food Chemistry 123 (4):983–92. doi: 10.1016/j.foodchem.2010.05.049.
  • March, R. E., D. S. Richards, and R. W. Ryan. 2006. Volatile compounds from six species of truffle head-space analysis and vapor analysis at high mass resolution. International Journal of Mass Spectrometry 249:60–7.
  • Mathey, M. F., E. Siebelink, C. de Graaf, and W. A. Van Staveren. 2001. Flavor enhancement of food improves dietary intake and nutritional status of elderly nursing home residents. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 56 (4):M200–M205. doi: 10.1093/gerona/56.4.M200.
  • Mau, J. L., R. B. Beelman, and G. R. Ziegler. 1992. 1-octen-3-ol in the cultivated mushroom. Agricus bisporus. Journal of Food Science 57 (3):704–6. doi: 10.1111/j.1365-2621.1992.tb08077.x.
  • Mau, J. L., C. C. Chyau, J. Y. Li, and Y. H. Tseng. 1997. Flavor compounds in straw mushrooms Volvariella volvacea harvested at different stages of maturity. Journal of Agricultural and Food Chemistry 45 (12):4726–9. doi: 10.1021/jf9703314.
  • Mau, J. L., Y. P. Lin, P. T. Chen, Y. H. Wu, and J. T. Peng. 1998. Flavor compounds in king oyster mushrooms Pleurotus eryngii. Journal of Agricultural and Food Chemistry 46 (11):4587–91. doi: 10.1021/jf980508+.
  • Miyazawa, M., N. Matsuda, N. Tamura, and R. Ishikawa. 2008. Characteristic flavor of volatile oil from dried fruiting bodies of Hericium erinaceus. (Bull.: Fr.) Pers. Journal of Essential Oil Research 20 (5):420–3.
  • Nickerson, G. B., and S. T. Likens. 1966. Gas chromatographic evidence for the ccurrence of the hopoil components in beer. Journal of Chromatography A 21:1–5. doi: 10.1016/S0021-9673(01)91252-X.
  • Niu, Y., R. Wang, Z. Xiao, J. Zhu, X. Sun, and P. Wang. 2019. Characterization of ester odorants of apple juice by gas chromatography-olfactometry, quantitative measurements, odour threshold, aroma intensity and electronic nose. Food Research International (Ottawa, ON) 120:92–101. doi: 10.1016/j.foodres.2019.01.064.
  • Nosaka, S., and M. Miyazawa. 2014. Characterization of volatile components and odor-active compounds in the oil of edible mushroom Boletopsis leucomelas. Journal of Oleo Science 63 (6):577–83. doi: 10.5650/jos.ess13215.
  • Pan, Y., X. Wan, F. Zeng, R. Zhong, W. Guo, X.-C. Lv, C. Zhao, and B. Liu. 2020. Regulatory effect of Grifola frondosa extract rich in polysaccharides and organic acids on glycolipid metabolism and gut microbiota in rats. International Journal of Biological Macromolecules 155:1030–9. doi: 10.1016/j.ijbiomac.2019.11.067.
  • Pei, F., W. Yang, N. Ma, Y. Fang, L. Zhao, X. An, Z. Xin, and Q. Hu. 2016. Effect of the two drying approaches on the volatile profiles of button mushroom (Agaricus bisporus) by headspace GC–MS and electronic nose. LWT - Food Science and Technology 72:343–50. doi: 10.1016/j.lwt.2016.05.004.
  • Picard, S. M., and P. Issenberg. 1973. Investigation of some Volatile constiuents of mushroons (Agaricus bisporus): Changes which occur during heating. Journal of Agricultural and Food Chemistry 21 (6):959–62. doi: 10.1021/jf60190a033.
  • Polettini, A. 1996. A simple automated procedure for the detection and identification of peaks in gas chromatography-continuous scan mass spectrometry. Application to systematic toxicological analysis of drugs in whole human blood. Journal of Analytical Toxicology 20 (7):579–86. doi: 10.1093/jat/20.7.579.
  • Pu, D., Y. Shan, J. Wang, B. Sun, Y. Xu, W. Zhang, and Y. Zhang. 2022. Recent trends in aroma release and perception during food oral processing: A review. Critical Reviews in Food Science and Nutrition. doi: 10.1080/10408398.2022.2132209.
  • Qian, M., M. Y. Zheng, W. H. Zhao, Q. Liu, X. Zeng, and W. Bai. 2021. Effect of marinating and frying on the flavor of braised pigeon. Journal of Food Processing and Preservation 45 (3):219–29. doi: 10.1111/jfpp.15219.
  • Rasmussen, L. H., and M. Rosenfjeld. 2020. A rapid gc-fid method for determination of sabinene, β-pinene, α-thujone and β-thujone in the essential oil of kitchen sage (Salvia officinalis L.). Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1149:122159. doi: 10.1016/j.jchromb.2020.122159.
  • Reverchon, E. 1997. Supercritical fluid extraction and fractionation of essential oils and related products. The Journal of Supercritical Fluids 10 (1):1–37. doi: 10.1016/S0896-8446(97)00014-4.
  • Risticevic, S., L. Heather, G. Tadeusz, A. Catherine, and J. Pawliszyn. 2010. Protocol for solid-phase microextraction method development. Nature Protocols 5 (1):122–39. doi: 10.1038/nprot.2009.179.
  • Roncero-Ramos, I., and C. Delgado-Andrade. 2017. The beneficial role of edible mushrooms in human health. Current Opinion in Food Science 14:122–8. doi: 10.1016/j.cofs.2017.04.002.
  • Saffarionpour, S., and M. Ottens. 2018. Recent advances in techniques for flavor recovery in liquid food processing. Food Engineering Reviews 10 (2):81–94. doi: 10.1007/s12393-017-9172-8.
  • Sahraoui, N., M. A. Vian, I. Bornard, C. Boutekedjiret, and F. Chemat. 2008. Improved microwave steam distillation apparatus for isolation of essential oils. Comparison with conventional steam distillation. Journal of Chromatography. A 1210 (2):229–33. doi: 10.1016/j.chroma.2008.09.078.
  • Shvartsburg, A. 2010. Ion mobility spectrometry (IMS) and mass spectrometry (MS). Encyclopedia of Spectroscopy & Spectrometry 23:1140–8.
  • Siek, T. J., I. A. Albin, L. A. Sather, and R. C. Lindsay. 1971. Comparison of flavor thresholds of aliphatic lactones with those of fatty acids, esters, aldehydes, alcohols, and ketones1,2. Journal of Dairy Science 54 (1):1–4. doi: 10.3168/jds.S0022-0302(71)85770-3.
  • Song, H., and J. Liu. 2018. GC-O-MS technique and its applications in food flavor analysis. Food Research International 114:187–98. doi: 10.1016/j.foodres.2018.07.037.
  • Splivallo, R., S. Bossi, M. Maffei, and P. Bonfante. 2007. Discrimination of truffle fruiting body versus mycelial aromas by stir bar sorptive extraction. Phytochemistry 68 (20):2584–98. doi: 10.1016/j.phytochem.2007.03.030.
  • Splivallo, R., and S. E. Ebeler. 2015. Sulfur volatiles of microbial origin are key contributors to human-sensed truffle ariome. Applied Microbiology and Biotechnology 99 (6):2583–92. doi: 10.1007/s00253-014-6360-9.
  • Sreekumar, R., Z. Al-Attabi, H. Deeth, and M. Turner. 2009. Volatile sulfur compounds produced by probiotic bacteria in the presence of cysteine or methionine. Letters in Applied Microbiology 48 (6):777–82. doi: 10.1111/j.1472-765X.2009.02610.x.
  • Sun, L.-b., Z.-y. Zhang, G. Xin, B.-x. Sun, X.-j. Bao, Y.-y. Wei, X.-m. Zhao, and H.-r. Xu. 2020. Advances in umami taste and aroma of edible mushrooms. Trends in Food Science & Technology 96:176–87. doi: 10.1016/j.tifs.2019.12.018.
  • Sundrasegaran, S., and S. H. Mah. 2020. Extraction methods of virgin coconut oil and palm-pressed mesocarp oil and their phytonutrients. eFood 1 (6):381–91. doi: 10.2991/efood.k.201106.001.
  • Tagkouli, D., G. Bekiaris, S. Pantazi, M. E. Anastasopoulou, G. Koutrotsios, A. Mallouchos, G. I. Zervakis, and N. Kalogeropoulos. 2021. Volatile profiling of Pleurotus eryngii and Pleurotus ostreatus mushrooms cultivated on agricultural and agro-industrial by-products. Foods 10 (6):1287. doi: 10.3390/foods10061287.
  • Tasaki, Y., D. Kobayashi, R. Sato, S. Hayashi, and T. Joh. 2019. Variations in 1-octen-3-ol and lipoxygenase gene expression in the oyster mushroom Pleurotus ostreatus according to fruiting body development, tissue specificity, maturity, and postharvest storage. Mycoscience 60 (3):170–6. doi: 10.1016/j.myc.2019.02.005.
  • Taşkın, H. 2013. Detection of volatile aroma compounds of morchella by headspace gas chromatography mass spectrometry (HS-GC/MS). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41:122–5.
  • Tejedor-Calvo, E., S. García-Barreda, S. Sánchez, D. Morales, C. Soler-Rivas, A. Ruiz-Rodriguez, M. Á. Sanz, A. P. Garcia, A. Morte, and P. Marco. 2021. Supercritical CO2 extraction method of aromatic compounds from truffles. LWT 150:111954. doi: 10.1016/j.lwt.2021.111954.
  • Teng, Z., X. Jiang, F. He, and W. Bai. 2020. Qualitative and quantitative methods to evaluate anthocyanins. eFood 1 (5):339–46. doi: 10.2991/efood.k.200909.001.
  • Tian, R., Z. Q. Liang, Y. Wang, and N. K. Zeng. 2022. Analysis of aromatic components of two edible mushrooms, Phlebopus portentosus and Cantharellus yunnanensis using HS-SPME/GC-MS. Results in Chemistry 4:100282. doi: 10.1016/j.rechem.2022.100282.
  • Verma, D. K., and P. P. Srivastav. 2020. A paradigm of volatile aroma compounds in rice and their product with extraction and identification methods: A comprehensive review. Food Research International (Ottawa, ON) 130:108924. doi: 10.1016/j.foodres.2019.108924.
  • Villares, A., E. Guillamon, L. Mateo-Vivaracho, M. D’Arrigo, and A. Garcia-Lafuente. 2012. Strategies for the preparation and concentration of mushroom aromatic products. Recent Patents on Food, Nutrition & Agriculture 4 (2):107–13. doi: 10.2174/2212798411204020107.
  • Von Mühlen, C., W. Khummueng, C. A. Zini, E. B. Caramão, and P. J. Marriott. 2006. Detector technologies for comprehensive two-dimensional gas chromatography. Journal of Separation Science 29 (12):1909–21. doi: 10.1002/jssc.200500443.
  • Wang, W., and Y. J. Cha. 2018. Volatile compounds in seasoning sauce produced from soy sauce residue by reaction flavor technology. Preventive Nutrition and Food Science 23 (4):356–63. doi: 10.3746/pnf.2018.23.4.356.
  • Wang, S., H. Chen, and B. Sun. 2020. Recent progress in food flavor analysis using gas chromatography–ion mobility spectrometry (GC-IMS). Food Chemistry 315:126158.
  • Wang, X.-M., J. Zhang, L.-H. Wu, Y.-L. Zhao, T. Li, J.-Q. Li, Y.-Z. Wang, and H.-G. Liu. 2014. A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chemistry 151:279–85.
  • Welearegay, T. G., M. F. Diouani, L. Österlund, S. Borys, S. Khaled, H. Smadhi, F. Ionescu, M. Bouchekoua, D. Aloui, D. Laouini, et al. 2019. Diagnosis of human Echinococcosis via exhaled breath analysis: A promise for rapid diagnosis of infectious diseases caused by helminths. The Journal of Infectious Diseases 219 (1):101–9. doi: 10.1093/infdis/jiy449.
  • Wilson, A. D. 2013. Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors (Basel, Switzerland) 13 (2):2295–348. doi: 10.3390/s130202295.
  • Wu, W., L. Zhang, X. Zheng, Q. Huang, M. A. Farag, R. Zhu, and C. Zhao. 2022. Emerging applications of metabolomics in food science and future trends. Food Chemistry 16:100500.
  • Xu, J., K. Liu, and C. Zhang. 2021. Eecronic nose for vlate organic compounds analysis in rice aging. Trends in Food Science & Technology 109:83–93. doi: 10.1016/j.tifs.2021.01.027.
  • Xun, W., G. Wang, Y. Zhang, G. Liao, and C. Ge. 2020. Analysis of flavor-related compounds in four edible wild mushroom soups. Microchemical Journal 159:105548. doi: 10.1016/j.microc.2020.105548.
  • Xu, J., C. Tong, Q. Fu, K. Guo, S. Shi, and Y. Xiao. 2020. Comprehensive polyphenolic profile of Plantago depressa using high-speed counter current chromatography off-line with high-performance liquid chromatography–diode array detector–quadrupole time-of-flight tandem mass spectrometry. eFood 1 (1):94–105. doi: 10.2991/efood.k.191101.001.
  • Xu, X., R. Xu, Q. Jia, T. Feng, Q. Huang, C. T. Ho, and S. Song. 2019. Identification of dihydro-β-ionone as a key aroma compound in addition to C8 ketones and alcohols in Volvariella volvacea mushroom. Food Chemistry 293:333–9. doi: 10.1016/j.foodchem.2019.05.004.
  • Yan, X., H. Chen, G. Du, Q. Guo, Y. Yuan, and T. Yue. 2022. Recent trends in fluorescent aptasensors for mycotoxin detection in food: Principles, constituted elements, types, and applications. Food Frontiers 3 (3):428–52. doi: 10.1002/fft2.144.
  • Yang, W., J. Yu, F. Pei, A. M. Mariga, N. Ma, Y. Fang, and Q. Hu. 2016. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME-GC-MS and electronic nose. Food Chemistry 196:860–6. doi: 10.1016/j.foodchem.2015.09.097.
  • Zhang, H., D. Pu, B. Sun, F. Ren, Y. Zhang, and H. Chen. 2018. Characterization and comparison of key aroma compounds in raw and dry porcini mushroom (Boletus edulis) by aroma extract dilution analysis, quantitation and aroma recombination experiments. Food Chemistry 258:260–8. doi: 10.1016/j.foodchem.2018.03.056.
  • Zhang, Y., C. Venkitasamy, Z. Pan, and W. Wang. 2013. Recent developments on umami ingredients of edible mushrooms–a review. Trends in Food Science & Technology 33 (2):78–92. doi: 10.1016/j.tifs.2013.08.002.
  • Zhang, Z., M. J. Yang, and J. Pawliszyn. 1994. Solid-phase microextraction. A solvent-free alternative for sample preparation. Analytical Chemistry 66 (17):844A–53A. doi: 10.1021/ac00089a001.
  • Zhou, T., H. Liu, Q. Wu, L. Hao, D. Pan, and Y. Dang. 2020. The flavor quality of dried Lentinus edodes with different species and drying methods (charcoal roasting and naturally drying). Journal of Food Measurement and Characterization 14 (1):613–22. doi: 10.1007/s11694-020-00377-5.
  • Zhuang, J., Q. Xiao, T. Feng, Q. Huang, C. T. Ho, and S. Song. 2020. Comparative flavor profile analysis of four different varieties of Boletus mushrooms by instrumental and sensory techniques. Food Research International (Ottawa, ON) 136:109485. doi: 10.1016/j.foodres.2020.109485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.